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Abstract

Testable predictions of many standard economic models take the form of inequality

comparisons between transformations of nonparametric conditional moments. In this

paper, we propose a novel econometric test of this type of restriction, and establish

its asymptotic properties. A key advantage of our approach is that it is computa-

tionally straightforward to implement, even in the presence of a rich set of continuous

conditioning covariates. To illustrate the empirical usefulness of our methodology, we

introduce a new specification test for standard models of ascending auctions. We apply

our test to data from much-studied United States Forest Service timber auctions, and

find clear evidence to reject the Independent Private Values model in favor of a model

of correlated private values.

1 Introduction

Testable implications of economic models often involve restrictions on moments identified in

the data. Econometric tests for these restrictions effectively become specification tests for

the underlying model. In this paper we study models whose restrictions involve inequalities
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dependent?” Aradillas-López is grateful to the Human Capital Foundation (www.hcfoundation.ru), and

especially Andrey P. Vavilov, for support of the Department of Economics, the Center for the Study of

Auctions, Procurements, and Competition Policy (CAPCP, http://capcp.psu.edu/), and the Center for

Research in International Financial and Energy Security (CRIFES, http://crifes.psu.edu/) at Penn State

University.
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between nonlinear transformations of conditional moments, and develop a computationally

simple econometric methodology to test such restrictions. Our testing framework is appli-

cable to a variety of empirical models that are prominent in the literature but have not

been studied in a unified way, such as stoachastic dominance tests, conditional covariance

tests, and tests of other relationships that emerge from models of entry games, auctions,

and social interaction.

While there are no testing methods explicitly aimed at our general problem, some ex-

tension of existing methods (e.g., Chernozhukov, Lee, and Rosen (2013) and Lee, Song, and

Whang (2013)) could be applied. Such extensions would involve test-statistics of either a

Kolmogorov-Smirnov (KS) type or a Cramer-von Mises (Lp−functional) type. The former

involves searching for a supremum, while the latter requires some form of numerical inte-

gration. When a rich collection of conditioning covariates exists, as often occurs in applied

work, implementing either of these in practice could therefore be computationally infeasi-

ble. Instead of relying on these types of test-statistics, we utilize a novel approach: we

first express the restriction implied by an economic model as an unconditional mean-zero

condition, then develop a test for this mean-zero condition. As a result, our test statistic

involves sample averages; this makes it asymptotically pivotal under certain conditions, and

therefore straightforward to implement computationally.

To illustrate the usefulness of our testing procedure, we apply it to test the Independent

Private Values (IPV) assumption widely used in empirical studies of auctions. Whether

the valuations of bidders in an auction are independent or correlated has significant pol-

icy implications.1 Furthermore, in either a first-price or English auction, non-parametric

identification of the model, and the choice of an empirical strategy, depend on whether or

not values are independent (see, e.g., Athey and Haile (2007)). When values are correlated,

policy implications drawn from an IPV-based empirical approach can be misleading; thus,

if the tests presented in this paper lead to rejection of the IPV model, an empirical strategy

that allows for correlation is necessary.2 Within the general framework presented in this

1If private values are independently and symmetrically distributed, a classic result in auction theory

is that the optimal selling mechanism takes the form of a standard auction in which the only relevant

design parameter is the reserve price. IPV also implies revenue-equivalence of the two most prevalent

auction formats, first-price and English auctions; optimality of a reserve price strictly higher than the

seller’s valuation; and invariance of that optimal reserve price to the number of bidders present.
2Identification and estimation in auctions with correlated values has been studied by Li, Perrigne, and

Vuong (2002), Krasnokutskaya (2011), and Hu, McAdams, and Shum (2013) in the case of first-price auc-
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paper, we derive testable implications of both IPV and correlated private values models

of bidding in English auction, and apply these tests to data from USFS timber auctions,

which has been widely studied in the literature under the assumption of IPV. As we discuss

later, the USFS timber data has several features that argue in favor of the plausibility of a

private values model, and a rich vector covariate information available about each auction;

conditioning on such detailed covariates is often used to justify the assumption that any

remaining private-value differences are independent. We nonetheless find clear evidence to

reject independence of values in favor of correlation.

The rest of the paper proceeds as follows. Section 2 describes the structure of our gen-

eral setup, and gives examples of several economic applications that would fit it. Section 3

describes our econometric testing strategy: we show how testable restrictions from a theo-

retical model are transformed into unconditional moment equalities, describe our proposed

test, and establish its asymptotic properties. Section 4 is devoted to our main economic

example: testing standard assumptions used in empirical modeling of English auctions. We

establish testable implications of IPV and positively-correlated private values under differ-

ent models of bidding in English auctions, and show how each model can be expressed as

a case of our general econometric setup. We then perform Monte Carlo simulations, using

simulated data to study the finite-sample properties of the proposed test; and finally, we

apply our tests to actual USFS timber data and present our results. Section 5 concludes.

Appendix A is devoted to the econometric proofs and details about the constructions of our

proposed tests. Appendix B contains proofs of our auction model results.

2 General setup

Here we describe the generic structure of the type of econometric model we study in this

paper. The setup we consider includes the following components.

2.1 Variables

The variables observed in the data can be classified into the following categories:

(i) Outcome variables: Denoted by Y ∈ Rdy , these are quantities under the control of

the decision-makers in the model, such as bids in an auction. Economic theory will

tions, and Aradillas-López, Gandhi, and Quint (2013) in the case of ascending auctions.
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characterize how these decisions are made.

(ii) Conditioning variable of interest: Denoted by N ∈ R, this is the key explanatory

variable whose relationship with Y is predicted by theory and which we will be testing.

(iii) Control variables: Denoted by X ∈ Rdx , these are other observable characteristics

of the environment on which we will be conditioning.

At a high level, we will be testing the relationship between N and Y , while holding X

fixed. The variable N could be allowed to be multidimensional, but we focus on the case

N ∈ R because it corresponds to the main application we study here, where N will denote

the number of bidders in an auction and X will denote all other observable details of the

auction.

In addition to the variables observed in the data, we will sometimes make use of index

variables, denoted by Z ∈ Rdz , which appear when the theoretical predictions being tested

are properties which must hold over a range of values. (For example, a test of first-order

stochastic dominance can be thought of as a test that the relationship F1(z) ≤ F2(z) holds

over a range of values z.)

2.2 Structural functions

The next component of the models we consider is a known, vector-valued function of the

variables above. This function will be denoted by S(y, x, z, n) ∈ Rds , and its expected value

over y, conditional on (x, z, n), by

s (x, z, n) =

∫
S(y, x, z, n)dFY |X,N (y|x, n) = EY |X,N

[
S (Y, x, z, n)

∣∣X = x,N = n
]
.

(Throughout the paper, Fξ will refer to the marginal distribution of a random variable ξ,

and Fξ|η the conditional distribution of ξ given η, with fξ and fξ|η the respective densities.)

This is a vector of conditional moments, and its construction highlights the different roles

played by the control and the index variables: the former (X) affect the distribution of

observed outcomes Y , while the latter (Z) enters into s only as a direct argument in S. The

choice of the function S will depend on the economic model being tested.
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2.3 Transformations

For each pair (n, n′) ∈ Supp(N)×Supp(N), the model produces a finite collection of Qn,n′ ≥

1 known real-valued transformations {mq}. These depend on the pair (n, n′) in question

and on the conditional moments s(·, n) and s(·, n′). We will abbreviate

Rq (X,Z;n, n′) = mq (s(X,Z, n), s(X,Z, n′); n, n′) ∈ R.

The models we consider have predictions of the type

∀ n, n′ ∈ Supp(N), Pr (Rq (X,Z;n, n′) ≤ 0) = 1 for q = 1, . . . Qn,n′ . (1)

2.4 Examples

Next, we illustrate the use of our framework by showing how it would apply to several

standard testing problems. First-order stochastic dominance arises in welfare economics

(comparing income distributions), as well as in tests of treatment effects. Second-order

stochastic dominance arises in models of portfolio choice and uncertainty, and in tests of

differential private information. Conditional covariance relationships arise in many standard

models of asymmetric information, as well as in certain models of collusive behavior in

auctions. Other tests could be used for each of these particular problems; our point here

is to illustrate the elements of our framework. (At the start of the next section, we will

explicitly compare our approach to other methods in the literature.)

Example 1: First order stochastic dominance

Suppose Y is real-valued, and that the economic model predicts the first-order stochastic

dominance relation FY |X,N (·|x, n) %FOSD FY |X,N (·|x, n′) for any x whenever n > n′. Thus,

the model predicts

n > n′ =⇒ FY |X,N (z|x, n) ≤ FY |X,N (z|x, n′) for any (x, z).

This can be written as an instance of our general setup by letting S(y, x, z, n) = 1 {y ≤ z},

so that s(x, z, n) = FY |X,N (z|x, n), and using the single transformation m for each n, n′

m (s(x, z, n); s(x, z, n′);n, n′) = (s(x, z, n)− s(x, z, n′)) · 1 {n > n′} .
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Example 2: Second order stochastic dominance

Next, consider testing whether FY |X,N (·|x, n) %SOSD FY |X,N (·|x, n′) whenever n > n′,

where SOSD denotes second-order stochastic dominance. This requires that

n > n′ =⇒
∫ z

−∞
FY |X,N (v|x, n)dv ≤

∫ z

−∞
FY |X,N (v|x, n′)dv for any (x, z).

This too is an instance of our general setup, with S(y, x, z, n) = max {z − y, 0}. To see why,

note that ∫ z

−∞
1 {Y ≤ v} dv = max {z − Y , 0} ,

and so for a given (x, z, n),

s(x, z, n) = EY |X,N [S(Y, x, z, n)|X = x,N = n] = EY |X,N
[
max {z − Y , 0}

∣∣X = x,N = n
]

=

∫ ∞
−∞

(∫ z

−∞
1 {y ≤ v} dv

)
fY |X,N (y|x, n)dy

=

∫ z

−∞

(∫ ∞
−∞

1 {y ≤ v} fY |X,N (y|x, n)dy

)
dv

=

∫ z

−∞
FY |X,N (v|x, n)dv.

Once again, we would have Qn,n′ = 1 and

m (s(x, z, n); s(x, z, n′);n, n′) = (s(x, z, n)− s(x, z, n′)) · 1 {n > n′} .

Example 3: Covariance Restrictions

Third, let Y1 and Y2 denote two real-valued outcome variables, and X a vector of controls.

A standard conditional covariance test would examine the sign of Cov(Y1, Y2|X). However,

we want to allow for the possibility that Y1, while fully-ordered, might not have a natural

scale. For example, we might test for adverse selection by letting Y1 denote a consumer’s

choice from several available insurance contracts, and Y2 be an ex post measure of risk such

as whether an accident occurred or the size of the claim. The contracts being considered

might be naturally ordered from least to greatest coverage, but not on a natural linear scale.

Thus, to be more general, we test whether for any z in the set of contracts and for any x,

Cov
(
1
{
Y 1 ≤ z

}
, Y2

∣∣X) ≥ 0 (2)

If Y2 = −A, where A is the binary indicator variable that equals 1 if the agent incurs an

accident (requiring them to exercise their insurance contract), then the “positive correlation”
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test proposed by Chiappori and Salanie (2000) and Chiappori, Jullien, Salanié, and Salanie

(2006) for moral hazard and adverse selection in insurance markets takes this form. While

there has been much interest in the application of this testable restriction in the literature,

almost all empirical work has focused on simple parametric specifications, such as a bivariate

probit with linear parameters on X. However, such a restrictive specification can make a

negative result (failing to find the predicted positive correlation) difficult to interpret, since

it could follow from the “wrong” choice of parametrization; we are not aware of any work

that tests the restriction in its full nonparametric form above.

Covariance restrictions also emerge as tests of strategic interaction models, such as en-

try games. Let Y1 denote the action of one player i, and Y2 = η (Y−i) be a real-valued

aggregate measure of the remaining players’ actions Y−i. Then a testable implication of

strategic interaction models shown by de Paula and Tang (2012) for binary action games,

and generalized to an ordered set of actions by Aradillas-López and Gandhi (2011), takes

the form of the covariance restriction (2). As a final example of the use of covariance tests,

several recent papers have shown that the positive correlation of entry decisions among po-

tential bidders in an auction is a testable implication of various hypotheses about bidding

behavior. Li and Zhang (2010) propose such a test of endogenous entry in the standard

affiliated signals model for first price auctions; Haile, Hendricks, Porter, and Onuma (2012)

and Conley and Decarolis (2013) propose such a covariance test to detect collusive bidding

behavior in different institutional settings.

To test this within our framework, note that (2) can be re-expressed as the restriction

E
[
1
{
Y 1 ≤ z

} ∣∣X = x
]
· E
[
Y2

∣∣X = x
]
− E

[
1 {Y ≤ z} · Y2

∣∣X = x
]
≤ 0 for any (x, z).

In this model, there is no variable playing the role of N , so this model fits the special case

(1′) discussed below. Let Z denote the index variable chosen for z. The structural functions

are

S (Y, z) =
(
1 {Y1 ≤ z} , Y2, 1 {Y1 ≤ z} · Y2

)
,

and

s(x, z) = E
[
S (Y, z)

∣∣X = x
]

=
(
E
[
1 {Y1 ≤ z}

∣∣X = x
]

, E
[
Y2

∣∣X = x
]

, E
[
1 {Y1 ≤ z} · Y2

∣∣X = x
])
.

The transformation m is then given by

m (s(x, z)) = E
[
1 {Y1 ≤ z}

∣∣X] · E [Y2

∣∣X]− E [1 {Y1 ≤ z} · Y2

∣∣X] .
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Example 4: Conditional Moment Inequality Models

A special case of our general framework is when there is no N or Z variable, so S (y, x, z) =

S (y, x). In this case, the vector-valued transformations are of the form S(y, x) ∈ Rds and

s (x) =

∫
S(y, x)dFY |X(y|x) = EY |X

[
S (Y, x)

∣∣X = x
]
.

In this case the model consists of q = 1, . . . , Q transformations {mq}. The arguments of

each transformation mq are now simply s(x), with

Rq(x) = mq (s(x)) .

These models predict

Pr (Rq (X) ≤ 0) = 1, q = 1, . . . Q. (1′)

When each Rq is simply a component function for q = 1, . . . , ds, then the above test corre-

sponds to the conditional moment inequality models studied recently by Andrews and Shi

(2013, 2011), Armstrong (2011a, 2011b) and Chetverikov (2012).

3 An econometric test for our general model

The restrictions in (1) involve inequalities between possibly nonlinear transformations of

conditional moments. Existing inferential methods involving some form of conditional mo-

ment inequalities include, among others, Ghosal, Sen, and Vaart (2000), Barrett and Donald

(2003), Hall and Yatchew (2005), Lee, Linton, and Whang (2009), Andrews and Shi (2013,

2011), Chernozhukov, Lee, and Rosen (2013), Lee, Song, and Whang (2013), Ponomareva

(2010), Kim (2009), Menzel (2011), Armstrong (2011a, 2011b), and Chetverikov (2012).

Some of these methods (e.g., Andrews and Shi (2013, 2011)) are not designed to handle

nonlinear transformations of conditional moments, and thus cannot be applied to our more

general problem. Those potentially capable of handling nonlinear transformations are Cher-

nozhukov, Lee, and Rosen (2013) and Lee, Song, and Whang (2013).

The approach developed by Chernozhukov, Lee, and Rosen (2013) uses a Kolomogorov-

Smirnov (KS) type test; relative to this approach, our test has a couple of advantages. First,

our test statistics are asymptotically pivotal, so we do not need to approximate critical values

via resampling. Second, our test does not involve the search for a supremum, which can
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complicate implementation when the conditioning covariates X have high dimensionality

and rich support.

Closer to our approach is the one developed by Lee, Song, and Whang (2013), which

involves a Cramer-von Mises (or Lp)-type test statistic. Lee, Song, and Whang (2013), how-

ever, use a test statistic which is calculated via numerical integration over the testing range

according to a predetermined “weighting function.” This numerical integration could again

be difficult to implement with high-dimensional X. Our test implicitly re-uses the observed

data as the weighting function, replacing a numerical integral with a sample average. This

again avoids the need for resampling, as the critical values for our test are known.

Next, we develop a test for the general model described in (1). Our procedure also covers

the special case described in (1′).

3.1 Expressing (1) as an unconditional mean-zero condition

We will assume that N has discrete support, but our econometric approach can be extended

to cases where N is continuous. X will be allowed to include discrete and/or continuously

distributed covariates. We group

W ≡ (X,Z) and U ≡ (Y,X,N,Z) .

To simplify exposition, we will assume that the support of W = (X,Z) does not vary with

N , i.e., for all n, n′ ∈ Supp(N),

Supp
(
W
∣∣N = n

)
= Supp

(
W
∣∣N = n′

)
= Supp(W ) (3)

although this assumption can be relaxed. For each n, n′ ∈ Supp(N) and q = 1, . . . , Qn,n′

consider the unconditional expectation

T qn,n′ = E [max {Rq(W ;n, n′), 0}]

and note that this expectation is nonnegative, and it is zero if and only if (1) holds for this

n, n′ and q. Nonnegativity allows us to combine all restrictions into

T =
∑

n,n′∈Supp(N)

Qn,n′∑
q=1

T qn,n′ .

We then have T ≥ 0, with T = 0 if and only if (1) holds.
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3.2 Choosing a testing range

Let N ⊆ Supp(N) denotes the range of values we consider for N . We separate X into its

continuous variables Xc and its discrete variables Xd, and assume Xc has an absolutely

continuous distribution with respect to the Lebesgue measure; we denote the dimension of

Xc as r. Our test will estimate T by replacing Rq(w;n, n′) with a nonparametric estimator

R̂q(w;n, n′). One of the main requirements for our asymptotic theory is that these nonpara-

metric estimators satisfy certain asymptotic properties uniformly over the range of values

of (x, z) ≡ w considered. For this reason, we will specify a testing range W ⊂ Supp(W )

such that (x, z) ∈ W implies xc ∈ int(Supp(Xc)). We will also assume that W is such that

fX,N (x, n) ≥ f > 0 ∀ (x, z) ∈ W, n ∈ N ,

where fX,N is the joint distribution of X and N . Note that this condition would be auto-

matically satisfied, e.g., if (X,N) have bounded support and their joint density is bounded

away from zero everywhere. We will focus on the expectations T qn,n′ conditional on W ∈ W.

From now on we will re-define

T qn,n′ = E
[
max

{
Rq(W ;n, n′), 0

}
· 1 {W ∈ W}

]
and T =

∑
n,n′∈N

Qn,n′∑
q=1

T qn,n′ . (4)

3.3 Nonparametric estimators

We maintain that we observe a sample {Ui ≡ (Yi, Xi, Ni, Zi): 1 ≤ i ≤ L} with Ui ∼ F . We

employ kernel-based estimators constructed using a kernel K : Rq −→ R and a bandwidth

sequence hL −→ 0. For a given x ≡
(
xc, xd

)
and h > 0 denote

H (Xi − x;h) = K

(
Xc
i − xc

h

)
· 1
{
Xd
i − xd = 0

}
.

For a given (x, z) = w and n we use

f̂X,N (x, n) =
1

L · hrL

L∑
i=1

H (Xi − x;hL) · 1 {Ni = n} ,

ŝ(w, n) =
1

L · hrL

L∑
i=1

S (Yi, w, n) · H (Xi − x;hL) · 1 {Ni = n}
/
f̂X,N (x, n),

R̂q (w;n, n′) = mq (ŝ(w, n), ŝ(w, n′); n, n′) .
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As we described above, our target testing range depends on fX,N . We estimate T qn,n′ and

T as

T̂ qn,n′ =
1

L

L∑
i=1

R̂q (Wi;n, n
′) · 1

{
R̂q (Wi;n, n

′) ≥ −bL
}
· 1 {Wi ∈ W} ,

T̂ =
∑

n,n′∈N

Qn,n′∑
q=1

T̂ qn,n′ .

(5)

bL −→ 0 is a nonnegative bandwidth sequence, whose inclusion will allow us to deal with

the “kink” at zero in the function max{v, 0} and obtain (under assumptions described

below) asymptotically pivotal properties for T̂ qn,n′ and T̂ . Its role is analogous, e.g., to the

bandwidth sequences βn in Jun, Pinkse, and Wan (2010) and τn in Kim (2009). Both of

these papers also involve testing and inference with moment inequalities.3

3.4 Asymptotic properties

We characterize the asymptotic distribution of T̂ under four types of assumptions:

(i) Smoothness conditions

(ii) A special regularity assumption

(iii) Bias-reducing kernels and bandwidth convergence conditions

(iv) Manageability properties of the empirical processes involved

Assumption 3.1. (Smoothness conditions)

(i) As before we let w = (x, z). For each (n, n′) ∈ N 2 and F × F−almost every (w1, w2) ∈

W2, the objects

EY |X,N
[
S(Y,w1, n

′)
∣∣X = x2, N = n

]
and fX,N (x2, n)

are M times differentiable with respect to xc2, with bounded derivatives. Below, we will

describe how large M needs to be.

3We could use a bandwidth specific to each of our q = 1, . . . , Qn,n′ restrictions and generalize (5) to

T̂ q
n,n′ =

1

L

L∑
i=1

R̂q
(
Wi;n, n

′) · 1{R̂q (Wi;n, n
′) ≥ −bqL(n, n′)

}
· 1 {Wi ∈ W} . (5′)

As long as each of the bandwidths bqL(n, n′) satisfies the conditions to be described in Assumption 3.3 below,

all our asymptotic results would follow through. We focus on the expression given in (5) for expositional

purposes.
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(ii) For some −∞ < s < s < ∞ and each of the ` = 1, . . . , ds elements in the vector of

conditional moments s(w, n), we have s ≤ s`(w, n) ≤ s ∀ w ∈ W, n ∈ N . Whenever these

derivatives exist, let

∇smq (sa, sb;n, n
′) = (∇samq (sa, sb;n, n

′) , ∇sbmq (sa, sb;n, n
′))
′
.

And define ∇ss′mq (sa, sb;n, n
′) accordingly. For some η > 0, the Jacobian ∇smq (sa, sb;n, n

′)

and Hessian ∇ss′mq (sa, sb;n, n
′) exist for any (sa, sb) ∈ [s− η, s+ η]

ds and any (n, n′) ∈

N 2. Furthermore, for some D <∞,

sup
(sa,sb)∈[s−η, s+η]ds

n,n′∈N

∥∥∥∇smq (sa, sb;n, n
′)
∥∥∥ ≤ D,

sup
(sa,sb)∈[s−η, s+η]ds

n,n′∈N

∥∥∥∇ss′mq (sa, sb;n, n
′)
∥∥∥ ≤ D.

In the auction application we consider in later sections, the functions ψ−1
q:n(s) are smooth

and differentiable inside any interval in the interior of the unit interval. For this reason, in

order to satisfy the conditions in Assumption 3.1 in the auctions models we study here, the

testing range W will have to be such that must be such that

0 < G ≤ Gq:n(z|x) ≤ G < 1 ∀ (z, x) ≡ w ∈ W, n ∈ N ,

and the same must be true for G∆
n:n(z|x).

Next note that any test of (1) must allow for the special case where

Pr (Rq (W ;n, n′) = 0) > 0.

That is, Rq (W ;n, n′) may have a point mass at zero.4 While we allow for this, we assume

that Rq (W ;n, n′) has a finite density in an open neighborhood to the left of zero. More

precisely we impose the following condition.

Assumption 3.2. (A regularity condition) There exist constants b > 0 and A < ∞

such that, for any 0 < b ≤ b and each n, n′ ∈ N and q = 1, . . . , Qn,n′ ,

Pr
(
−b ≤ Rq (W ;n, n′) < 0

∣∣W ∈ W) ≤ b ·A.
4This will happen if the inequality being tested holds with equality at a positive measure of points.
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The smoothness conditions in Assumption 3.1 can lead to
√
L−consistency of T̂ if we can

make the bias in our nonparametric estimators disappear at a fast enough rate. We describe

conditions under which this can be achieved in the following assumption.

Assumption 3.3. (Kernels and bandwidths) Let M be as described in Assumption 3.1.

We use a bias-reducing kernel K of order M with bounded support. The kernel is a function

of bounded variation, symmetric around zero and satisfies sup
v∈Rr

∣∣K(v)
∣∣ ≤ K < ∞. The

bandwidth sequences bL and hL satisfy

L1/2 · hrL · bL −→∞

and for a small enough ε1 > 0,

bL · Lε1√
hrL

−→ 0 and L1/2+ε1 · b2L −→ 0.

In addition, M is large enough that

L1/2+ε1 · hML −→ 0.

If our bandwidths are of the form hL ∝ L−αh and bL ∝ L−αb it is not hard to verify that

the smallest value for which Assumption 3.3 can hold is M = 2r + 1. This is the smallest

number of bounded derivatives that the functionals in Assumption 3.1 must possess.

Assumption 3.4. (Empirical process conditions)

Let

S(y) = sup
w∈W,n∈N

∥∥S(y, w, n)
∥∥.

Then E
[
exp

{
S(Y )2 · ε

}]
≤ C for some ε > 0 and C <∞ (i.e., S(Y )2 possesses a moment

generating function). For each ` = 1, . . . , ds and each n ∈ N , the class of functions

F ` =
{
f : f(y) = S`(y, w, n) for some w ∈ W

}
is Euclidean (see Definition 2.7 in Pakes and Pollard (1989)) with respect to the envelope

S(·).

Using the results in Pakes and Pollard (1989) (in particular, Lemmas 2.4 and 2.14), direct

inspection shows that each of the classes of functions considered in the examples of Section

4 is in fact Euclidean.
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Theorem 1. If Assumptions 3.1-3.4 hold, then for each n, n′ ∈ N and q = 1, . . . , Qn,n′ ,

T̂ qn,n′ = T qn,n′ +
1

L

L∑
i=1

λqL (Ui;n, n
′) + ξqL(n, n′),

where

(i) E [λqL (Ui;n, n
′)] = 0.

(ii) If Pr
(
Rq(W ;n, n′) < 0

∣∣W ∈ W) = 1, then λqL (Ui;n, n
′) = 0 w.p.1.

(iii) |ξqL(n, n′)| = Op
(
L−1/2−ε) for some ε > 0.

Proof: In the appendix.

A precise expression for the “influence function” λqL (Ui;n, n
′) is given in the appendix. Let

λL (Ui) =
∑

n,n′∈N

Qn,n′∑
q=1

λqL (Ui;n, n
′) .

By Theorem 1,

(i) E [λL (Ui)] = 0.

(ii) If Pr
(
Rq(W ;n, n′) < 0

∣∣W ∈ W) = 1 ∀ n, n′ ∈ N and q = 1, . . . , Qn,n′ , then λL (Ui) =

0 w.p.1.

By the representation result in Theorem 1, we have

T̂ = T +
1

L

L∑
i=1

λL (Ui) + ξL, where ξL = Op

(
L−1/2−ε

)
for some ε > 0. (6)

Let

σ2
L = Var (λL (Ui)) .

Because σ2
L = 0 if our (weak) inequalities are satisfied almost surely as strict inequalities,

σ2
L is the relevant measure for the slackness in (1).

3.5 A test statistic

The linear representation in (6) and the specific properties of the influence function λL(Ui)

are the foundation of our test. Let κL −→ 0 be a nonnegative sequence such that Lε ·κL −→

∞ for any ε > 0 (e.g., κL ∝ log(L)−1). Define

tL =

√
L · T̂

max {σL, κL}
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We can characterize the asymptotic properties of tL in three relevant cases.

(i) If (1) is violated with positive probability over our testing range, then

tL =

√
L · T

max {σL, κL}︸ ︷︷ ︸
→+∞

+
1√
L

L∑
i=1

λL(Ui)

max {σL, κL}︸ ︷︷ ︸
=Op(1)

+Op

(
L−ε

κL

)
︸ ︷︷ ︸

=op(1)

(ii) If the restrictions in (1) are satisfied as strict inequalities w.p.1 over our testing range,

then

tL = Op

(
L−ε

κL

)
= op(1).

In this case, for any c > 0 we have lim
L→∞

Pr (tL ≤ c) = 1.

(iii) If the restrictions in (1) are satisfied w.p.1 over our testing range but at least one of

them holds with equality with positive probability,

tL =
1√
L

L∑
i=1

λL(Ui)

max {σL, κL}
+Op

(
L−ε

κL

)
︸ ︷︷ ︸

=op(1)

In this case, for any c > 0 we have lim
L→∞

Pr (tL ≤ c) ≥ Φ(c), where Φ is the Standard

Normal distribution.

Take any α ∈ (0, 1) and let c1−α be the Standard Normal critical value that satisfies

Φ (c1−α) = 1− α. From the above results we have

(i) lim
L→∞

Pr (tL ≤ c1−α) ≥ 1− α if (1) is satisfied w.p.1 over our testing range,

(ii) lim
L→∞

Pr (tL ≤ c1−α) = 0 otherwise.

σ2
L is unknown but is nonparametrically identified and can be estimated as

σ̂2
L =

1

L

L∑
i=1

λ̂2
L(Ui).

The estimator λ̂L(Ui) for the influence function is described in the appendix. Under the

conditions leading to Theorem 1 we will have
∣∣σ̂2
L − σ2

L

∣∣ = op(1). Let

t̂L =

√
L · T̂

max {σ̂L, κL}
.

For a target size α ∈ (0, 1) consider the rejection rule

“Reject (1) if t̂L > c1−α” (7)
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This decision rule would have the following properties,

lim
L→∞

Pr
(

1 is rejected when it is true
)
≤ α,

lim
L→∞

Pr
(

1 is rejected when it is violated over our testing range
)

= 1.

3.5.1 Tuning parameters and scale invariance

Trivially, if Rq(W ;n, n′) ≤ 0, then we will also have d · Rq(W ;n, n′) ≤ 0 for any d ≥ 0.

Having a statistic that is invariant to a rescaling of Rq(·) is therefore desirable. Let sa, sb

be two given values such that |mq (sa, sb;n, n
′)| > 0 and denote R

q

n,n′ ≡ |mq (sa, sb;n, n
′)|,

and let R =
∑Qn,n′

q=1

∑
n,n′∈N R

q

n,n′ . We can use a bandwidth bL specific to each pair (n, n′)

considered (see footnote 3). Consider bandwidths of the type

bqL(n, n′) = cb ·max
{

Ωqn,n′ , R
q

n,n′

}
· L−αb , where Ωqn,n′ = {Var (Rq(Wi;n, n

′))}1/2

where cb > 0 is a constant chosen by the researcher and αb is selected so as to satisfy the

restrictions in Assumption 3.3. We consider max
{

Ωqn,n′ , R
q

n,n′

}
because Ωqn,n′ could be

zero if Rq(Wi;n, n
′) = 0 w.p.1 (i.e., the restrictions hold with equality almost surely). In

the implementation we would replace Ωqn,n′ with a nonparametric estimator.

We can proceed similarly with the sequence κL. Let λ∗L(Ui) denote the expression

for λL(Ui) that would correspond if Rq(Wi;n, n
′) ≥ 0 w.p.1 for each n, n′ ∈ N and q =

1, . . . , Qn,n′ . This would be the case if our inequalities almost surely either held with equality

or were violated. Now define Σ2
L = Var (λ∗L(Ui)) and let κ > 0 be a prespecified constant.

Using a sequence of the form

κL = cκ ·max
{

ΣL, R
}
· log(L)−1

would be conducive to scale invariant properties for our test-statistic. In the implementa-

tion we would replace ΣL with a nonparametric estimator. Once again we advocate using

max
{

ΣL, R
}

because we could have ΣL = 0 if all our restrictions hold as strict inequalities

almost surely.

4 Application: Testing Models of English Auctions

In this section, we demonstrate the usefulness of the testing approach described above by

applying it to test certain standard assumptions made in the empirical modeling of English
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auctions. We first show theoretically how certain testable implications follow from each

model, and how these implications fit within our testing framework. We run Monte Carlo

simulations to demonstrate the power of the resulting tests, then apply the tests to actual

data from United States Forest Service timber auctions.

4.1 Testable Implications of Various Models of English Auctions

4.1.1 General Setup

Each auction in the data is characterized by a set of observable (to the researcher) covariates

describing that particular auction, X; a number of bidders, N ; and a vector of bids, BBB =

(B1, . . . , BN ). The joint distribution of the observables (X,N,BBB) is thus nonparametrically

identified by the data. We will maintain the following assumption throughout:

Assumption 4.1. Bidders have private values, and the joint distribution of these private

values is symmetric.

Thus, we will assume that bidders have private values VVV = (V1, . . . , VN ); let F ( · |x, n) de-

note the joint distribution of these valuations, conditional on X = x and N = n.5 Symmetry

imposes the additional restriction that F (v1, v2, . . . , vn|x, n) = F (vσ(1), vσ(2), . . . , vσ(n)|x, n)

for σ : {1, 2, . . . , n} → {1, 2, . . . , n} any permutation. An independent private values (IPV)

model would impose the additional restriction that F (v1, . . . , vn|x, n) =
∏n
i=1 FV (vi|x, n)

for some univariate distribution FV (which may or may not depend on n).

Our primary focus is to understand and test the implications of the IPV assumption

in English (ascending) auctions. Unlike the case of first-price auctions (see section 5.5 in

Athey and Haile (2007)), bids in ascending auctions may be correlated even if valuations

are not. Thus, we cannot test the IPV model in ascending auctions simply by testing for

conditional covariance among bids. However, in this section we show it is still possible to

derive non-parametric testable implications of ascending auctions using the properties of

order statistics.

Fixing N = n, let V1:n ≤ V2:n ≤ . . . ≤ Vn:n denote the order statistics of the random

vector of valuations VVV , and Fk:n (· | x) the distribution of Vk:n conditional on the realization

(X,N) = (x, n). Similarly, let B1:n ≤ . . . ≤ Bn:n denote the order statistics of the random

5This is a slight abuse of notation, as the domain of F : <n+ → [0, 1] depends on n, but the meaning

should be clear.

17



vector of bids BBB, and Gk:n (· | x) the distribution of Bk:n given (X,N) = (x, n). Since bids

are observed, Gk:n( · | x) are identified from the data.

For k ≤ n, define a function ψk:n : [0, 1]→ [0, 1] by

ψk:n(s) =
n!

(n− k)!(k − 1)!

∫ s

0

tk−1(1− t)n−kdt

For t ∈ (0, 1), the integrand is positive, so ψk:n is strictly increasing everywhere and therefore

invertible. Athey and Haile (2002) observe that if n independent random variables are drawn

from a distribution H(·), the distribution of the kth-lowest is ψk:n (H(·)). Under an IPV

model, then, for any k and n, FV (v|x, n) = ψ−1
k:n(Fk:n(v|x)).

4.1.2 Testing IPV with Fixed N

In an open-outcry English auction, a bidder responds to his opponents’ bids; a bidder’s

valuation therefore does not uniquely determine his bid in an English auction, and inferring

valuations from bids is not a straightforward exercise. To address this, Haile and Tamer

(2003) introduced an “incomplete model” of bidding in ascending auctions. Rather than

impose a unique mapping from primitives to equilibrium outcomes, Haile and Tamer (2003)

impose only weak assumptions about bidder behavior, and aim to partially identify an IPV

model. They assume bidders never bid higher than their valuations, which implies Bk:n ≤

Vk:n; and they assume that bidders never allow the auction to end at a price they could

profitably beat, which implies that for k < n, Vk:n ≤ Bn:n + ∆, where ∆ is the minimum

bid increment at the end of the auction. While Haile and Tamer (2003) assume IPV,

these bidding assumptions are roughly analogous to bidders playing weakly undominated

strategies, and need not depend on bidders’ beliefs or the joint distribution of valuations;

they are therefore equally natural in any private-values setting. We will use “Haile-and-

Tamer bidding” to describe bidding strategies which satisfy these two assumptions, but are

otherwise unrestricted.

In order to create a test that will still have power even in such an unstructured model of

bidding, we must place some structure on how we might expect independence to be violated,

that is, what we see as the alternative hypothesis to IPV. We do this in a theoretically general

and non-parametric way:

Assumption 4.2. For each n and x, the joint distribution F ( · |x, n) is such that for any

v and i, the probability Pr(Vi < v|X = x,N = n, ‖{j 6= i : Vj < v}‖ = k) is nondecreasing
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in k.

This formulation of correlated private values was introduced by Aradillas-López, Gandhi,

and Quint (2013). There, we show (Lemma 1) that Assumption 4.2 holds under all the stan-

dard models of symmetric, correlated private values: specifically, affiliated private values,

conditionally-independent private values, and IPV with unobserved heterogeneity.

Haile-and-Tamer bidding implies thatGk:n(v|x) ≥ Fk:n(v|x) and Fn−1:n(v|x) ≥ G∆
n:n(v|x),

where G∆
n:n(·|x) is the distribution of Bn:n + ∆ (given X = x). Even though valuations are

not uniquely pinned down, the model is still testable:

Proposition 1. Under IPV and Haile-and-Tamer bidding, for any (x, n, v) and any k ≤

n− 2,

ψ−1
k:n (Gk:n(v|x)) ≥ ψ−1

n−1:n

(
G∆
n:n(v|x)

)
(8)

On the other hand, if values are not independent, then at any (x, n, v) where Assumption

4.2 holds strictly – that is, where Pr (Vi < v | X = x,N = n, ‖{j 6= i : Vj < v}‖ = k) is not

the same for all k – then for k ≤ n− 2,

ψ−1
k:n(Fk:n(v|x)) < ψ−1

n−1:n(Fn−1:n(v|x))

and (8) will therefore be violated if there is sufficiently little slack in the “Haile and Tamer

bounds”.

The first part of Proposition 1 was noted by Haile and Tamer (2003) (Remark 2), who

point out that it could be used as a test of the IPV model. The second part of the proposition,

however, is new, and shows that this test can have power against the standard alternative

hypotheses to independence.

In order to apply our testing framework, we now represent the restriction in Proposition

1 as an instance of (1), and in particular, as a case of (1′). The decision variables are

Y = (B1:N , . . . , BN−1:n, BN :N + ∆). The index variable Z could be any real-valued random

variable with the property that Support(V ) ⊆ Support(Z). For a given w ≡ (x, z), y and

n, the structural function S is the vector-valued indicator S(y, w, n) = 1 {y ≤ z}, so

s (w, n) = EY |X,N
[
S(Y,w, n)

∣∣X = x,N = n
]

=
(
G1:n(z|x), . . . , Gn−1:n(z|x), G∆

n:n(z|x)
)
.

For each n, the model involves Qn = n− 2 transformations {mq}, with

mq (s (w, n) ; n) = ψ−1
n−1:n

(
G∆
n:n(z|x)

)
− ψ−1

q:n (Gq:n(z|x)) , q = 1, . . . , n− 2.
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As Proposition 1 indicates, the power of the test depends on how close G∆
n:n is to Fn−1:n

and Gk:n to Fk:n. If the top two bids are close together in most auctions (implying also that

∆ is small), then the first inequality will not have much slack: sinceG∆
n:n ≤ Fn−1:n ≤ Gn−1:n,

if Gn−1:n and G∆
n:n are close together, Fn−1:n must be close to G∆

n:n. Thus, the real concern

is whether Gk:n is close to Fk:n for k ≤ n−2 – that is, whether losing bidders other than the

second-highest bid close to their valuations. Song (2004) considers the possibility that the

“top two losers” bid close to their values, even if the others do not; this would be enough

for our test to have power. Unfortunately, there is no easy way to check this in the data.

And if only the highest losing bidder approaches his value, this test may have little power.

As a result, we consider another approach to testing the IPV model, which relies only

on transaction prices (or the winning and highest losing bids) but requires variation in the

number of bidders.

4.1.3 Testing IPV using Variation in N

Exploiting variation in N requires an assumption about the nature of this variation. We

will assume that variation in the number of bidders is independent of the realization of their

valuations. To formalize this condition, let Fnm(· | x) denote the joint distribution of m

bidders drawn at random from an auction with n bidders, conditional on X = x.6

Definition. Values are independent of N if Fnm( · | x) = Fn
′

m ( · | x) for all (x, n, n′,m).

Under the IPV model, this simply means that the marginal distribution FV ( · | x, n) does

not depend on n. This assumption has been used in Haile, Hong, and Shum (2003), Guerre,

Perrigne, and Vuong (2009), Gillen (2009), and Aradillas-López, Gandhi, and Quint (2013),

and has been termed an “exclusion restriction” since N is excluded from the distribution

FV ( · | x).

This test, and the subsequent ones, are based only on the distribution of the second-

highest valuation VN−1:N as N changes. In many applications, including in Aradillas-

López, Gandhi, and Quint (2013), this valuation is assumed to be equal to the transaction

price BN :N – as it would be in a “button auction”. If bidders only increase their bids

by the minimum amount toward the end of the auction, this should be true to within a

bid increment under the Haile-and-Tamer bidding assumptions. Here, we present the test

6Since F ( · | x, n) is symmetric, Fnm(v1, . . . , vm | x) = F (v1, . . . , vm,∞,∞, . . . ,∞ | x, n).
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under both under the assumption that Bn:n = Vn−1:n, and under the weaker Haile-and-

Tamer assumptions; in our application, we use the former test.

Proposition 2. Assume Bn:n = Vn−1:n and values are independent of N .

(a) Under IPV, for any (x, n, n′, v),

ψ−1
n−1:n (Gn:n(v|x)) = ψ−1

n′−1:n′ (Gn′:n′(v|x)) (9)

(b) Under Assumption 4.2 (nonnegatively correlated private values), for any (x, n, n′, v),

n > n′ −→ ψ−1
n−1:n (Gn:n(v|x)) ≥ ψ−1

n′−1:n′ (Gn′:n′(v|x)) (10)

Further, (10) holds strictly wherever Assumption 4.2 holds strictly, that is, at every

point (x, n, n′, v) where n > n′ and Pr(Vi < v |X = x,N = n, ‖{j 6= i : Vj < v}‖ = k)

is not the same for all k.

(9) was proposed by Athey and Haile (2002) as a possible basis for a test of the IPV

model. (See also the discussion in Athey and Haile (2007).) The drawback of (9) as a

standalone test, however, is that it is really a joint test of two assumptions: IPV and the

exclusion restriction. That is, a rejection of (9) could follow from a violation either of IPV

or of the exclusion restriction. (10), on the other hand, is a new result, and contributes

to our testing strategy in two ways. First, it ensures that (9) has power against all the

standard models of positively-correlated values when the exclusion restriction holds. More

importantly, it provides a testable implication of the exclusion restriction itself which does

not depend on independence of values. In Appendix B.5, we show that (10) has power

as a test of the exclusion restriction. Specifically, we show fairly general conditions under

which a correlated private values model, combined with either of the two standard models

of endogenous entry in auctions (those of Levin and Smith (1994) and Samuelson (1985)),

would lead to a violation of (10). (This is also illustrated in a numerical example in Section

4.1.7 below.) Thus, if data violates (9) but satisfies (10), this supports the hypothesis that

the failure of (9) is caused by a violation of IPV rather than a violation of the exclusion

restriction. If this is indeed the case – values are correlated, but independent of the number

of bidders – then both upper and lower bounds are identified for the seller’s expected profit

and optimal reserve price, using the approach laid out in Aradillas-López, Gandhi, and
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Quint (2013).7

To gain intuition for Proposition 2, consider what happens to the distribution of trans-

action prices as N increases. As N increases, transaction prices get stochastically higher

(the distribution shifts to the right), since the price is set by the second-highest of a bigger

group. (Pinkse and Tan (2005) refer to this as the sampling effect.) If values are IPV and

FV does not vary with n, Proposition 2 says that this must happen at a particular “speed”

– that is, for each v, Fn−1:n(v) must fall exactly fast enough so that ψ−1
n−1:n(Fn−1:n(v))

remains constant.

Relative to that benchmark, correlation of values slows down the sampling effect – if

values are correlated, then each incremental bidder has less impact on transaction price, as

bidder values are more prone to be close together. So if values are correlated but independent

of N , Fn−1:n(v) falls more slowly than under IPV, and ψ−1
n−1:n(Fn−1:n(v)) therefore increases

with n.

On the other hand, violations of the exclusion restriction would likely be due to a positive

relationship between valuations and N – that is, endogenous participation favoring auctions

for more-valuable prizes. This would augment the sampling effect, causing Fn−1:n(v) to fall

more quickly than under IPV; provided this effect was stronger than the slowing-down due

to correlation, it would result in ψ−1
n−1:n(Fn−1:n(v)) decreasing with n. As noted above, we

have shown that even in the presence of correlation, the test of (10) has power against a

fairly wide class of “typical” violations of the exclusion restriction.

The restriction in (10) is an instance of (1) where the decision variable is Y = BN :N and

(as before) the index variable Z could be any real-valued random variable with the property

that Support(V ) ⊆ Support(Z). The structural function is S(y, w, n) = S(y, z) = 1 {y ≤ z}

and

s (w, n) = EY |X,N
[
S(Y,w, n)

∣∣X = x,N = n
]

= Gn:n(z|x).

For each n, n′ the model involves a single transformation (i.e., Qn,n′ = 1) given by

m (s (w, n) ; s (w, n′) ; n, n′) =
(
ψ−1
n′−1:n′ (Gn′:n′(z|x))− ψ−1

n−1:n (Gn:n(z|x))
)
· 1 {n > n′} .

The restriction in (9) involves an equality between transformations of conditional moments.

Notice however that we can frame it as the combination of two inequalities: (10) along with

its reverse inequality. If either fails, we would reject (9).

7In that paper, we also show that the same upper bound on profit, and a weaker upper bound on the

optimal reserve price, still hold if the exclusion restriction is violated.
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4.1.4 Extending Proposition 2 to Haile-and-Tamer bidding behavior

In Appendix B.2, we show that if we drop the assumption Bn:n = Vn−1:n, and instead

assume Haile-and-Tamer bidding behavior, then (9) and (10) above become

ψ−1
n−1:n (Gn−1:n(v|x)) ≥ ψ−1

n′−1:n′

(
G∆
n′:n′(v|x)

)
(11)

and

n > n′ −→ ψ−1
n−1:n (Gn−1:n(v|x)) ≥ ψ−1

n′−1:n′

(
G∆
n′:n′(v|x)

)
(12)

respectively. Both of these can again be written as instances of (1). The decision variables

are Y = (BN−1:N , BN :N + ∆), and once again, the index variable Z could be any real-

valued random variable with the property that Support(V ) ⊆ Support(Z). For (11), the

structural function S is given by S(y, w, n) = S(y, z) = 1 {y ≤ z} and therefore

s (w, n) = EY |X,N
[
S(Y,w, n)

∣∣X = x,N = n
]

=
(
Gn−1:n(z|x), G∆

n:n(z|x)
)
.

For each n, n′ the model involves a single transformation (i.e., Qn,n′ = 1) given by

m (s (w, n) ; s (w, n′) ; n, n′) = ψ−1
n′−1:n′

(
G∆
n′:n′(z|x)

)
− ψn−1:n (Gn−1:n(z|x)) .

For (12), S(y, w, n) = 1 {y ≤ z} (again), and therefore

s (w, n) = EY |X,N
[
S(Y,w, n)

∣∣X = x,N = n
]

=
(
Gn−1:n(z|x), G∆

n:n(z|x)
)
.

As before, the model entails a single transformation for each n, n′ given now by

m (s (w, n) ; s (w, n′) ; n, n′) =
(
ψ−1
n′−1:n′

(
G∆
n′:n′(z|x)

)
−ψ−1

n−1:n (Gn−1:n(z|x))
)
· 1 {n > n′} .

4.1.5 Testing IPV when the Exclusion Restriction Fails

When the exclusion restriction is rejected, of course, (9) no longer offers a test of IPV.

Without any restriction on how FV ( · |x, n) can vary with n, the IPV model is just-identified

from transaction price data, and therefore not testable. However, a natural restriction would

be a general positive reslationship between the number of bidders and their valuations. This

can be formalized as the following condition:8

8In Aradillas-López, Gandhi, and Quint (2013), we generalize this notion of valuations being “stochasti-

cally increasing in N” to settings with correlated values, and show conditions under which it follows from

three different models of endogenous entry.
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Assumption 4.3. If valuations are IPV but the distribution FV ( · | x, n) depends on n, then

it does so in such a way that (for any x) n > n′ implies FV ( · | x, n) %
FOSD

FV ( · | x, n′).

Proposition 3. Assume Bn:n = Vn−1:n. Under IPV and Assumption 4.3,

n > n′ −→ ψ−1
n−1:n (Gn:n(v|x)) ≤ ψ−1

n′−1:n′ (Gn′:n′(v|x)) (13)

for all (x, n, n′, v).

Observe that Proposition 3 gives the opposite conclusion as part (b) of Proposition 2;

that is, relative to the benchmark of (9), violations of the exclusion restriction work in

the opposite direction as correlation among values. When both the exclusion restriction

and independence fail, (13) need not always have power as a test of IPV. Nevertheless, a

rejection would serve as evidence against IPV.

If we assume Haile-and-Tamer bidding, (13) becomes

n > n′ −→ ψ−1
n−1:n

(
G∆
n:n(v|x)

)
≤ ψ−1

n′−1:n′ (Gn′−1:n′(v|x)) (14)

(see Appendix B.2). For testing, both (13) and (14) can be framed as instances of (1). For

the case of (13) the decision variable is Y = BN :N , and (as before) the index variable Z

could be any real-valued random variable with the property that Support(V ) ⊆ Support(Z).

The structural transformation is S(y, w, n) = S(y, z) = 1 {y ≤ z} and

s (w, n) = EY |X,N
[
S(Y,w, n)

∣∣X = x,N = n
]

= Gn:n(z|x).

For each n, n′ the model involves a single transformation (i.e., Qn,n′ = 1) given by

m (s (w, n) ; s (w, n′) ; n, n′) =
(
ψ−1
n−1:n (Gn:n(z|x))− ψ−1

n′−1:n′ (Gn′:n′(z|x))
)
· 1 {n > n′} .

For (14) we have Y = (BN−1:N , BN :N + ∆), S(y, w, n) = 1 {y ≤ z} and consequently

s (w, n) = EY |X,N
[
S(Y,w, n)

∣∣X = x,N = n
]

=
(
Gn−1:n(z|x), G∆

n:n(z|x)
)
.

The model consists of a single transformation for each n, n′ which is given by

m (s (w, n) ; s (w, n′) ; n, n′) =
(
ψ−1
n−1:n

(
G∆
n:n(z|x)

)
−ψ−1

n′−1:n′ (Gn′−1:n′(z|x))
)
· 1 {n > n′} .
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4.1.6 Summarizing the results from auctions models

Table 1 below summarizes the various tests we have derived above:

Table 1: Overview of Observable Implications

Eq. Test of N Bidding assumptions

8 IPV Fixed Haile-and-Tamer bidding

9 IPV ∧ V ⊥ N Variable Transaction price = Vn−1:n

10 V ⊥ N Variable Transaction price = Vn−1:n

13 IPV Variable Transaction price = Vn−1:n

11 IPV ∧ V ⊥ N Variable Haile-and-Tamer bidding

12 V ⊥ N Variable Haile-and-Tamer bidding

14 IPV Variable Haile-and-Tamer bidding

• Rejecting 10 or 13 would also reject 9.

4.1.7 Illustration of Propositions 2 and 3

Equations (9), (10), and (13) are claims that ψ−1
n−1:n(Gn:n(v|x)) is constant, increasing, or

decreasing in n, respectively. To illustrate how ψ−1
n−1:n(Gn:n(v|x)) behaves for various types

of data-generating processes, we graph its value (as a function of v) for different values of N

under four versions of a parametric example. For the example, there are no observable co-

variates X; bidder values are i.i.d. draws from a log-normal distribution, log(Vi) ∼ N(µ, σ2),

with σ2 = 0.5 throughout but µ potentially variable. The four cases are as follows:

1. Values are IPV and independent of N : specifically, µ = 2.25 for every N

2. Values are independent of N , but correlated with each other via conditional inde-

pendence: regardless of N , µ = 2.0 with probability 1
2 and 2.5 with probability 1

2 .

(Variation in µ induces correlation among values.)

3. Values are IPV, but the distribution varies with N : specifically, µ = 2 + 0.05N

4. Values are correlated with each other, and with N . µ = 2.5 or 1.5 with probabilities

1
3 and 2

3 respectively, and N is determined endogenously via equilibrium play of the

entry game described in Samuelson (1985). There are 12 potential bidders, each of
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whom learns µ and his own valuation before deciding whether to pay a cost of $10

to participate in the auction. Bidders play a symmetric, cutoff-strategy equilibrium,

with the cutoff value varying with µ;9 this induces a positive relationship between N

and µ, and therefore between N and valuations.

Figure 1: ψ−1
n−1:n (Gn:n(v)) against v under four scenarios

DGP1: IPV, V ⊥ N DGP2: CPV, V ⊥ N

DGP3: IPV, V 6⊥ N DGP4: CPV, V 6⊥ N

Figure 1 shows plots of ψ−1
n−1:n (Gn:n(v)) against v for various values of n for each scenario.

Now consider what would happen if we ran our tests, in order, on each of these four data-

generating processes. For DGP1, we would fail to reject (9), and conclude (correctly) that

the data was consistent with both IPV and the exclusion restriction. For DGP2, we would

reject (9) but fail to reject (10), (correctly) rejecting IPV but not the exclusion restriction.

9When µ = 2.5, the entry cutoff is 30.57, which is exceeded by 9.7% of bidders; when µ = 1.5, the cutoff

is 15.54, which is exceeded by 3.9% of bidders. By Bayes’ Law, then, Pr(µ = 2.5|N = n) is increasing in n.
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For DGP3, we would reject both (9) and (10), but fail to reject (13), concluding (correctly)

that the data was consistent with an IPV model violating the exclusion restriction. Finally,

for DGP4, we would reject all three tests, concluding (correctly) that both IPV and the

exclusion restriction failed.10

4.2 Monte Carlo Experiments

4.2.1 Setup

In order to investigate the finite-sample properties of our econometric methodology, we ap-

plied the tests of (10) and (13) above on simulated data. The data is based on modifications

of the last three DGPs from Section 4.1.7 to include a single auction-specific covariate X. In

all cases, the maximum number of bidders was 12, and valuations satisfy log(Vi) ∼ N
(
µ, σ2

)
.

We fixed σ2 = 0.5, let X ∼ N (0, 1), and generated µ in ways analogous to DGPs 2, 3 and

4 above in the following way:

(A) Values are independent of N conditional on X but are correlated with each other (even

conditional on X) in the following way. Let ε ∼ N (0, 1) such that ε⊥X. If X + ε > 0

then µ = 2.0, otherwise µ = 2.5.

(B) Values are IPV conditional on X, but the distribution of values varies with N in the

following way. If X < 0 then µ = 1.7 + .05 · N . Otherwise µ = 2.3 + .05 · N . Note

that on average we have µ = 2 + .05 ·N .

(C) Let ε ∼ N (0, 1) with ε⊥X and let c 1
3

denote the 1
3

rd
quantile from the Standard

Normal distribution. Then µ = 2.5 if X+ε√
2
< c 1

3
and µ = 1.5 otherwise. Everything

else is as described in DGP4 above, with N being determined endogenously (given µ)

by the equilibrium outcome of an entry game.

By design, DGP(A) satisfies (10) almost surely as a strict inequality, while it violates (13).

The reverse is true for DGP(B). Both (10) and (13) are violated with positive probability

in DGP(C), but each of these inequalities is satisfied over some range of x and n. Table 2

summarizes the predicted asymptotic behavior of our econometric test for each one of these

designs.

10When neither IPV nor the exclusion restriction hold, it is not necessarily the case that equations 10

and 13 will both be violated: a similar example based on a different entry model (that of Levin and Smith

(1994)) leads to distributions satisfying equation 13 everywhere.
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Table 2: Asymptotic rejection probabilities predicted for our test.

DGP(A) DGP(B) DGP(C)

lim
L→∞

Pr (Reject 10) 0 1 1

lim
L→∞

Pr (Reject 13) 1 0 1

These asymptotic predictions are valid at any significance level.

4.2.2 Kernels and bandwidths

We have r = 1 (one continuous observable X). The smallest order of the kernel that can

satisfy Assumption 3.3 is M = 2r + 1 = 3. We employed a bias-reducing kernel of the type

K(ψ) =

2∑
`=1

c` ·
(
s2 − ψ2

)2` · 1{|ψ| ≤ s},
with s = 30 (as in Section 4.4 of Aradillas-López, Gandhi, and Quint (2013)). The co-

efficients c1, c2 were chosen to ensure that K(·) was bias-reducing of order M = 4. Our

bandwidth hL was chosen as

hL = ch · σ̂(X) · L−αh .

The choices of ch and αh are discussed below. To construct bL and κL we followed the

general guidelines in Section 3.5.1. Let

Ω̂ =

V̂ar

Qn,n′∑
q=1

∑
n,n′∈N

R̂q (W ;n, n′)

 , Σ̂ =
{

V̂ar
(
λ̂∗L(U)

)}
,

where (as described in Section 3.5.1), λ∗L(Ui) is the expression of the influence function

λL(Ui) that would follow if Rq(Wi;n, n
′) ≥ 0 w.p.1. for each n, n′ ∈ N and q = 1, . . . , Qn,n′ .

From here we used

bL = cb · Ω̂ · L−αb , κL = cκ · Σ̂ · log(L)−1.

The bandwidth convergence restrictions in Assumption 3.3 can be satisfied if we set

0 < εh ≤
1

4 · r · (2 · r + 1)
, 0 < εb < εh, αh =

1

4 · r
− εh, αb =

1

4
+ εb.

We chose εh = 9
10 ·

1
4·r·(2·r+1) and εb = 9

10 · εb (r = 1 as described previously). This yielded

αh ≈ 0.28 and αb ≈ 0.32. In our experiments we fixed cκ = 10−1 and studied the properties

of our tests for ch ∈ {0.25, 0.40} and cb ∈
{

10−3, 1
}

for samples of size L = 1, 000, 1, 250

and 1, 500.
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4.2.3 Testing range

As our range for N we used N =
{
n: P̂ r(N = n) ≥ .05

}
. As our index variable Z we used

Z = BN :N (i.e., transaction price)

and the testing range W was given by

W =
{

(x, z): f̂X(x) ≥ f̂ (.005)
X and 10−4 ≤ Ĝk:n(z|x) ≤ 1− 10−4 ∀ 2 ≤ k ≤ n, n ∈ N

}
where f̂

(.005)
X denotes the .005th quantile of f̂X(·).

4.2.4 Results from experiments

Detailed step-by-step details of the construction of our test statistics can be found in

Appendix A.2. We generated 500 simulations of each DGP for ch ∈ {0.25, 0.4} and

cb ∈
{

10−3, 1
}

, fixing cκ = 10−1. This value of cκ made κL negligible in every instance of

our experiments.11 The observed rejection frequencies are summarized in Tables 3 and 4.

Overall, the results from our MC experiments fell very much in line with the asymptotic

predictions summarized in Table 2. We can summarize our main findings as follows.

• The power properties of our tests in the cases of DGPs (A) and (B) – where one of

the inequalities is violated almost everywhere – were remarkably robust to the choices

of the tuning parameters. This was also true for the size of the tests (the probability

of rejecting each model when it is true) in these cases.

• The choice of tuning parameters was more impactful for DGP (C), where neither in-

equality is satisfied w.p.1, but each is satisfied with positive probability over some

range of the data. Still, even in this case the power properties of our test held reason-

ably well even in the worst case.

• The performance of the test was more sensitive to the choice of the bandwidth hL than

to bL. While the effect of changes in bL was predictable ex-ante (with smaller values of

bL leading to higher rejection probabilities), the effect of hL was not as straightforward

to predict. Our results showed, across the board, that a smaller bandwidth hL led to

more power, without any important tradeoff in size.

11This means that by choosing cκ = 10−1 we had max {σ̂L, κL} = σ̂L in every run of our experiments.
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Table 3: Rejection frequencies†, 500 simulations.

ch = 0.4, cb = 10−3

DGP(A) DGP(B) DGP(C)

Eq. 10 Eq. 13 Eq. 10 Eq. 13 Eq. 10 Eq. 13

L = 1, 000 1% 76% 99% 0%b 51% 45%

L = 1, 250 1% 85% 99% 0%c 57% 60%

L = 1, 500 1% 92% 100%a 0%d 67% 70%

ch = 0.25, cb = 10−3

DGP(A) DGP(B) DGP(C)

Eq. 10 Eq. 13 Eq. 10 Eq. 13 Eq. 10 Eq. 13

L = 1, 000 4% 74% 100%e 0%h 71% 61%

L = 1, 250 5% 84% 100%f 0%i 79% 77%

L = 1, 500 4% 91% 100%g 0%j 84% 82%

(†) Critical value used was 1.645, corresponding to a 5% target level.

• Largest values of our test-statistic in cases with 0% rejection were:

(b): 1.11, (c): 1.17, (d): 1.18, (h): 1.37, (i): 1.39, (j): 1.11.

• Smallest values of our test-statistic in cases with 100% rejection were:

(a): 2.37, (e): 1.86, (f): 1.70, (g): 2.21.

• Gains in power did not come at the cost of significant increases in size. At least for the

range considered, smaller bandwidths (both for hL and bL) consistently led to gains

in power which did not come at the expense of important increases in the size of the

test.

4.3 Application to USFS Timber Data

4.3.1 Timber Auctions

We apply our tests to data from timber auctions run by the Unites States Forest Service.

These are auctions for the right to harvest timber on a tract of public land. Auctions are

heterogeneous due to both differences in the tracts themselves (for example, in the type and

density of timber present) and differences in the lease contracts (such as the length of the

lease).
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Table 4: Rejection frequencies†, 500 simulations.

ch = 0.4, cb = 1

DGP(A) DGP(B) DGP(C)

Eq. 10 Eq. 13 Eq. 10 Eq. 13 Eq. 10 Eq. 13

L = 1, 000 0.4% 72% 98% 0%b 44% 32%

L = 1, 250 0.2% 79% 99% 0%c 48% 42%

L = 1, 500 0.2% 88% 100%a 0%d 59% 52%

ch = 0.25, cb = 1

DGP(A) DGP(B) DGP(C)

Eq. 10 Eq. 13 Eq. 10 Eq. 13 Eq. 10 Eq. 13

L = 1, 000 0.4% 65% 99% 0%f 60% 44%

L = 1, 250 0.6% 76% 99% 0%g 70% 59%

L = 1, 500 0.4% 86% 100%e 0%h 75% 69%

(†) Critical value used was 1.645, corresponding to a 5% target level.

• Largest values of our test-statistic in cases with 0% rejection were:

(b): 0.79, (c): 0.99, (d): 0.71, (f): 1.03, (g): 1.05, (h): 0.68.

• Smallest values of our test-statistic in cases with 100% rejection were:

(a): 2.17, (e): 2.21.

Prior to each auction, the Forest Service conducts a “cruise” of the tract and publishes

detailed information on the tract for potential bidders. The timber data therefore includes

a rich set of auction covariates, corresponding to the information the bidders had about

the tract. It has often been argued that these covariates therefore capture all systematic

demand shifters for a tract of timber, and that any remaining variation in valuations is

likely bidder-specific (such as differences in costs and capacity) and hence independent. We

can now explicitly test this claim and evaluate whether independence or correlation better

models valuations in the timber data after we control for these covariates.

A number of other papers have studied Forest Service auctions empirically. Nearly all

have done so within the framework of independent private values.12 Two recent papers,

however, have found indirect evidence of correlation among valuations. Athey, Levin, and

12See, e.g., Baldwin, Marshall, and Richard (1997); Haile (2001); Haile, Hong, and Shum (2003); Lu and

Perrigne (2008); Athey and Levin (2001); and Haile and Tamer (2003).
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Seira (2011) estimate a model allowing for unobserved heterogeneity on data from first-

price auctions, noting that “an extension along these lines appears crucial as... we estimate

implausibly high bid margins when we fail to account for within-auction bid correlation.”13

In Aradillas-López, Gandhi, and Quint (2013), we estimate a model allowing for correlated

values on English auction data; we find the estimates (of expected profit as a function of

reserve price) differ significantly from estimates made under the assumption of independence.

Thus, while independence is a standard assumption in empirical work, both in general

and applied to these particular auctions, there is some recent evidence to suggest this as-

sumption might be worrisome; here, we directly examine the validity of the independence

assumption on this data.

4.3.2 Data

Data on all USFS timber auctions held between 1978 and 1996 was made available to us by

Phil Haile. We focus on the auctions held between 1982 and 1990, as the reserve price policy

in place was stable during that period, and the reserve prices used were generally recognized

not to be binding, allowing us to infer the number of potential bidders from the number

who submitted bids.14 We use auctions from Region 6 (mostly Oregon), which relative to

other regions provides a large sample of English auctions.

We use the same conventions as Haile and Tamer (2003) (which were motivated by the

previous literature) to select auctions most likely to satisfy the assumption of private values.

In particular, we focus on sales whose contracts expire within a year, to minimize the effect

of resale possibilities on valuations. And we focus on scaled sales, where bids are in dollars

per unit of timber actually harvested, and therefore common-value uncertainty about the

13Another key insight of Athey, Levin, and Seira (2011) is that there are ex-ante asymmetries between two

types of bidders: mills and loggers. As we discuss in Aradillas-López, Gandhi, and Quint (2013), our model

can accommodate this type of asymmetry, if we imagine each bidder being independently and randomly

either a miller or a logger, so that the marginal distribution of each bidder’s valuations is the appropriate

mixture between a “mill distribution” and a “logger distribution”. In first-price auctions, bids depend on

beliefs about one’s opponents, so the identities of the other bidders would affect bidding; but in ascending

auctions, bidding is in dominant strategies and this information has no effect.
14Campo, Guerre, Perrigne, and Vuong (2002) write, “It is well known that this reserve price does not

act as a screening device to participating,” and perform analysis that confirms that “the possible screening

effect of the reserve price is negligible” (p. 33). See also Haile (2001), Froeb and McAfee (1988), and Haile

and Tamer (2003).
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total amount of timber should not affect valuations. Within this selection of auctions, there

are both first-price and ascending auctions, allowing us to apply both tests to the same

environment.

For each auction in the sample, in addition to the number of bidders and their bids,

our data contains detailed covariate information about the auction from the government’s

cruise report. We control for six auction covariates which have been emphasized in the

previous literature as being relevant demand shifters: the density of timber (timber volume

over acres in the tract, which we label X1); the government’s appraisal value of the timber

(which we label X2); the estimated profit from manufacturing the timber (sales value minus

manufacturing cost, X3); the estimated harvesting cost (per unit of timber, X4); the species

concentration (the HHI (Herfindahl index) computed as a function of the volume of various

species present, X5); the total volume of timber sold in the six months prior to each auction

(as a measure of the bidding firms’ existing inventory, X6). Bids and monetary covariates

are all measured in 1983 dollars. We let X = (X1, X2, X3, X4, X5, X6) refer to the vector

of covariates, and Xi = (X1
i , X

2
i , X

3
i , X

4
i , X

5
i , X

6
i ) the data corresponding to the ith auction.

X was treated as a continuously distributed random vector. We drop auctions with N = 1

(since there is no second-highest bidder to whose value we can link the transaction price)

and N = 12 (as this appears to be top-coding for “more than 11”). Thus, our range for N

is N {2, 3, . . . , 11}, which leaves us with a sample of L = 2, 034 auctions.

4.3.3 Kernels and bandwidths used

We used the same types of kernels and bandwidths as in our Monte Carlo experiments in

Section 4.2.2 given r = 6. We employed a bias-reducing kernel of order M = 14 which is

essentially an extension of the one used in Section 4.2.2. This was a multiplicative kernel of

the type K(ψ1, . . . , ψ6) =
∏6
`=1 k(ψ`), where

k(ψ) =

7∑
`=1

c` ·
(
s2 − ψ2

)2` · 1{|ψ| ≤ s},
with s = 30 (as in Section 4.4 of Aradillas-López, Gandhi, and Quint (2013)). The coeffi-

cients c1, . . . , c7 were chosen to ensure that k(·) was bias-reducing of order M = 14. Our

bandwidths hL, bL and cL were chosen using the exact same formulas described in Section

4.2.2, with r = 6.
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4.3.4 Testing range

For N we used the entire range of values in the data, {2, 3, . . . , 11}. As our index variable

Z we used

Z = BN :N (i.e., transaction price)

and the testing range W was given by

W =
{

(x, z): f̂X(x) ≥ f̂ (.005)
X and 10−4 ≤ Ĝk:n(z|x) ≤ 1− 10−4 ∀ 2 ≤ k ≤ n, n ∈ N

}
where f̂

(.005)
X denotes the .005th quantile of f̂X(·).

4.3.5 Results

The construction of our test statistics followed the step-by-step description in Appendix A.2.

Table 5 shows the results for the tests of (8), (10) and (13). The results shown correspond to

ch = 0.4, cb = 10−3 and ck = 10−1 (see the bandwidth formulas in Section 4.2.2). Appendix

A.3 shows results for alternative values of these tuning parameters. Although the values of

our test statistics change (as should be expected), the qualitative findings – in particular,

whether each test rejects the model in question – are consistent across the values analyzed.

Table 5: Test Results on Ascending Auction Timber Data

Eq. Test of N Bidding assumptions t̂ Outcome†

8 IPV Fixed Haile-and-Tamer bidding 13.41 Reject

10 V ⊥ N Variable Bn:n = Vn−1:n 0.64 Fail to Reject

13 IPV Variable Bn:n = Vn−1:n 6.75 Reject

(†) Critical values for rejection are 1.645 for α = 5% and 2.326 for α = 1%.

These results paint a consistent picture of the timber data. Both testing methods –

comparing winning to losing bids in auctions of the same size, and comparing transaction

prices across auctions of different sizes – allow us to reject independence of valuations, and

instead give strong evidence of positive correlation among valuations.15 On the other hand,

we fail to reject a model of correlated values which are independent of N ; thus, the exclusion

restriction appears plausible in the ascending auction data.

15As we noted previously, rejection of (13) implies automatically that (9) is rejected, too.
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5 Conclusion

In this paper, we considered testing of economic models whose testable implications in-

volve inequality comparisons between nonlinear transformations of nonparametric condi-

tional moments. Because many commonly-used models in economics fit this description,

it is important to have econometric tools capable of testing these restrictions in a compu-

tationally feasible way in the presence of rich covariate data. In this paper, we described

an econometric methodology capable of testing this type of restriction in a straightforward

way. We studied the asymptotic properties of our procedure, and also highlighted its finite

sample features through Monte Carlo experiments. Our application involved testing for

independence in bidders’ private values in ascending auctions. Applying our test to data

from the United States Forest Service timber auctions, we found clear evidence to reject the

IPV model in favor of a model of correlated private values. Because the IPV assumption

is at the heart of key auction theory results, this finding has significant policy implications,

which are analyzed in detail in Aradillas-López, Gandhi, and Quint (2013).
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A Appendix – Econometrics

A.1 Proof of Theorem 1

A.1.1 A useful probability inequality

As in the main body of the paper, W ⊂ Supp(W ) denotes our testing range for W . Recall

that W ∩ Supp (Xc) ⊂ int (Supp (Xc)), and recall we maintained that

fX,N (x, n) ≥ f > 0 ∀ x ∈ W, n ∈ N .

Let

I = {(w, n): w ∈ W, n ∈ N} .

I denotes our overall testing range. In this section we will describe conditions that yield a

exponential bound for the probability

Pr

(
sup

(w,n,n′)∈I

∣∣∣R̂q(w;n, n′)−Rq(w;n, n′)
∣∣∣ ≥ bL) ,

where bL −→ 0 is the bandwidth sequence used in our construction (5). The bound we

obtain is given in (A12) and its usefulness will become evident in sections to follow. Invoking

Lemma 22 in Nolan and Pollard (1987) and Lemmas 2.4 and 2.14 in Pakes and Pollard (1989)

(see also Example 10 there), having a kernel of bounded variation implies that the class of

functions

GK =
{
g : g(x) = H (x− v;h) for some v ∈ Rdim(X) and some h > 0

}
is Euclidean16 with respect to the constant envelope K. For a given (x, z) ≡ w and n, and

for each of the ` = 1, . . . , ds elements in the vector-valued function S(Yi, w, n) denote

q̃`i (w, n;h) = S`(Yi, w, n) · H(Xi − x;h) · 1 {Ni = n} ,

ṽ`i (w, n;h) =

(
S`(Yi, w, n)− s`(w, n)

fX,N (x, n)

)
· H(Xi − x;h) · 1 {Ni = n} ,

ν̂`(w, n) =
1

L · hrL

L∑
i=1

ṽ`i (w, n;hL) ,

Q̂`(w, n) =
1

L · hrL

L∑
i=1

q̃`i (w, n;hL) ,

Q`(w, n) = s`(w, n) · fX,N (x, n).

16See Definition 2.7 in Pakes and Pollard (1989).
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Using an M th order approximation, the smoothness conditions in Assumption 3.1 imply the

existence of a finite constant M such that,

sup
(x,n)∈I

∣∣∣E [f̂X,N (x, n)
]
− fX,N (x, n)

∣∣∣ ≤M · hML ,
sup

(w,n)∈I

∣∣E [ν̂`(w, n)
]∣∣ ≤M · hML ,

sup
(w,n)∈I

∣∣∣E [Q̂`(w, n)
]
−Q`(w, n)

∣∣∣ ≤M · hML .
(A1)

If the Euclidean properties in Assumption 3.4 hold, Lemma 2.14 in Pakes and Pollard (1989)

implies that the processes

{
q̃`i (w, n;h): w ∈ W, n ∈ N , h > 0, 1 ≤ i ≤ L

}
{
ṽ`i (w, n;h): w ∈ W, n ∈ N , h > 0, 1 ≤ i ≤ L

}
are manageable (as described in Definition 7.9 of Pollard (1990)) with respect to the en-

velopes17 K · S(·) and
(
K/f

)
·
(
S(·) + max {|s|, |s|}

)
respectively. These envelopes possess

a moment generating function by Assumption 3.4. The Euclidean property of the class of

functions GK described above also implies that the process

{H(Xi − x;h) · 1 {Ni = n} : x ∈ W, h > 0, 1 ≤ i ≤ L}

is manageable with respect to the constant envelope K. Using the maximal inequality

results in Chapter 7 of Pollard (1990) combined with the bias conditions in A1 imply that

there exist positive constants A1, A2 and A3 such that for each ` = 1, . . . , ds and any δ > 0,

Pr

(
sup

(x,n)∈I

∣∣∣f̂X,N (x, n)− fX,N (x, n)
∣∣∣ ≥ δ) ≤ A1 · exp

{
−
√
L · hrL

(
A2 · δ −A3 · hML

)}
,

P r

(
sup

(w,n)∈I

∣∣ν̂`(w, n)
∣∣ ≥ δ) ≤ A1 · exp

{
−
√
L · hrL

(
A2 · δ −A3 · hML

)}
,

P r

(
sup

(w,n)∈I

∣∣∣Q̂`(w, n)−Q`(w, n)
∣∣∣ ≥ δ) ≤ A1 · exp

{
−
√
L · hrL

(
A2 · δ −A3 · hML

)}
.

(A2)

Group

µ̂`(w, n) =
([
Q̂`(w, n)−Q`(w, n)

] [
f̂X,N (x, n)− fX,N (x, n)

])′
.

17If a class is Euclidean it is also necessarily manageable. See page 1033 in Pakes and Pollard (1989).
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Using (A2), for any δ > 0 we have

Pr

(
sup

(w,n)∈I

∥∥µ̂`(w, n)
∥∥ ≥ δ) ≤ 2 ·A1 · exp

{
−
√
L · hrL

(
A2 ·

δ√
2
−A3 · hML

)}
. (A2′)

For any (x, z) ≡ w and n such that fX,N (x, n) > 0, a second order approximation yields

s`(w, n)− s`(w, n) =
1

fX,N (x, n)
·
[
Q̂`(w, n)−Q`(w, n)

]
− s`(w, n)

fX,N (x, n)
·
[
f̂X,N (x, n)− fX,N (x, n)

]

+
1

2
· µ̂`(w, n)′

 0 − 1

f̃2
X,N (x,n)

− 1

f̃2
X,N (x,n)

2Q̃`(w,n)

f̃3
X,N (x,n)

 · µ̂`(w, n)

= ν̂`(w, n) +
1

2
· µ̂`(w, n)′

 0 − 1

f̃2
X,N (x,n)

− 1

f̃2
X,N (x,n)

2Q̃`(w,n)

f̃3
X,N (x,n)

 · µ̂`(w, n)

where
(
Q̃`(w, n), f̃X,N (x, n)

)
belong in the line segment that connects

(
Q̂`(w, n), f̂X,N (x, n)

)
with

(
Q`(w, n), fX,N (x, n)

)
. Denote

ξ`L(w, n) =
1

2
· µ̂`(w, n)′

 0 − 1

f̃2
X,N (x,n)

− 1

f̃2
X,N (x,n)

2Q̃`(w,n)

f̃3
X,N (x,n)

 · µ̂`L(w, n).

Then we can express

ŝ`(w, n)− s`(w, n) = ν̂`(w, n) + ξ`L(w, n). (A3)

By Assumption 3.1 there exists a constant Q <∞ such that

sup
(w,n)∈I

∣∣Q`(w, n)
∣∣ ≤ Q.

Define

J =

∥∥∥∥∥∥∥
0 − 1

(f/2)
2

− 1

(f/2)
2

3Q

(f/2)
3

∥∥∥∥∥∥∥ . (A4)

et J be as described in (A4). Combining (A2)-(A2′), for any δ > 0 we have

Pr

(
sup

(w,n)∈I

∣∣ξ`L(w, n)
∣∣ ≥ δ) ≤ Pr( sup

(w,n)∈I

∣∣∣Q̂`(w, n)−Q`(w, n)
∣∣∣ ≥ Q)

+ Pr

(
sup

(x,n)∈I

∣∣∣f̂X,N (x, n)− fX,N (x, n)
∣∣∣ ≥ f/2)+ Pr

(
sup

(x,n)∈I

∣∣µ̂`(w, n)
∣∣ ≥√2δ

J

)

≤ 4 ·A1 · exp

{
−
√
L · hrL

(
A2 ·min

{√
δ

J
, Q, f/2

}
−A3 · hML

)}
.

(A5)
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Combining (A2), (A3) and (A5), for any δ > 0 we have

Pr

(
sup

(w,n)∈I

∣∣ŝ`(w, n)− s`(w, n)
∣∣ ≥ δ)

≤ Pr

(
sup

(w,n)∈I

∣∣ν̂`(w, n)
∣∣ ≥ δ

2

)
+ Pr

(
sup

(w,n)∈I

∣∣ξ`(w, n)
∣∣ ≥ δ

2

)

≤ 5 ·A1 · exp

{
−
√
L · hrL

(
A2 ·min

{
δ

2
,

√
δ

J
, Q, f/2

}
−A3 · hML

)}
.

Our estimator ŝ(w, n) is

ŝ(w, n) =
(
ŝ1(w, n), . . . , ŝds(w, n)

)′
.

Let bL be the vanishing sequence used in our construction. For reasons that will become

clear below, we are interested in a bound for Pr

(
sup

(w,n)∈I
‖ŝ(w, n)− s(w, n)‖ ≥ bL

)
. A

Bonferroni inequality implies

Pr

(
sup

(w,n)∈I
‖ŝ(w, n)− s(w, n)‖ ≥ bL

)
≤

ds∑
`=1

Pr

(
sup

(w,n)∈I

∣∣ŝ`(w, n)− s`(w, n)
∣∣ ≥ bL√

ds

)
.

For large enough L we will have min

{
bL
2 ,
√

bL
J , Q, f/2

}
= bL

2 and consequently

Pr

(
sup

(w,n)∈I
‖ŝ(w, n)− s(w, n)‖ ≥ bL

)
≤ B1 · exp

{
−
√
L · hrL

(
B2 · bL −A3 · hML

)}
, (A6)

where B1 ≡ 5 · ds ·A1 and B2 ≡ A2

2
√
ds

.

We move on to studying the properties of R̂q(w;n, n′) − Rq(w;n, n′). We begin with the

following condition. For a given (x, z) ≡ w and n group

ṽi(w, n;h) =
(
ṽ`i (w, n;h)

)ds
`=1

and ξL(w, n) =
(
ξ`L(w, n)

)ds
`=1

and for a pair n, n′ let

vi(w, n, n
′;h) = (ṽi(w, n;h)′, ṽi(w, n

′;h)′)
′

and ξL(w, n, n′) = (ξL(w, n)′, ξL(w, n′)′)
′
.

For a given (x, z) ≡ w and n, n′ such that the relevant derivatives exist, define

vqi (w, n, n
′;h) = ∇smq (s(w, n), s(w, n′);n, n′)

′
vi(w, n, n

′;h),

ν̂q(w, n, n′) =
1

L · hrL

L∑
i=1

vqi (w, n, n
′;hL).
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Using an M th order approximation, the smoothness conditions in Assumption 3.1 imply the

existence of a finite constant M
′

such that,

sup
(w,n,n′)∈I

|E [ν̂q(w, n, n′)]| ≤M ′ · hML . (A1′)

Denote

µ̂(w, n, n′) =
(

(ŝ(w, n)− s(w, n))
′

(ŝ(w, n′)− s(w, n′))′
)′
.

By the smoothness conditions in Assumption 3.1, for any w ∈ W and n, n′ ∈ N , a second

order approximation yields

R̂q(w;n, n′)−Rq(w;n, n′) = ν̂q(w, n, n′) + ξq,1L (w, n, n′) + ξq,2L (w, n, n′), (A7)

where

ξq,1L (w, n, n′) = ∇smq (s(w, n), s(w, n′);n, n′)
′
ξL(w, n, n′),

ξq,2L (w, n, n′) = µ̂(w, n, n′)′∇ss′mq (s̃(w, n), s̃(w, n′);n, n′) µ̂(w, n, n′),

where (s̃(w, n), s̃(w, n′)) lie in the line segment connecting (ŝ(w, n), ŝ(w, n′)) and (s(w, n), s(w, n′)).

Let D be as described in Assumption 3.1. The smoothness conditions described there along

with the Euclidean properties in Assumption 3.4 imply that the process

{vqi (w, n, n
′;h): (w, n, n′) ∈ I, h > 0, 1 ≤ i ≤ L}

is manageable with respect to the envelope
(
D/f

)
·
(
S(·) + max {|s|, |s|}

)
, which has a

moment generating function by Assumption 3.4. As before, this allows us to use the maximal

inequality results in Chapter 7 of Pollard (1990) which, combined with the bias conditions

in A1’, imply that there exist positive constants B′1, B′2 and B′3 such that, for any δ > 0,

Pr

(
sup

(w,n,n′)∈I
|ν̂q(w, n, n′)| ≥ δ

)
≤ B′1 · exp

{
−
√
L · hrL

(
B′2 · δ −B′3 · hML

)}
. (A8)

Our ultimate goal here is to bound Pr

(
sup

(w,n,n′)∈I

∣∣∣R̂q(w;n, n′)−Rq(w;n, n′)
∣∣∣ ≥ bL). By

(A7),

Pr

(
sup

(w,n,n′)∈I

∣∣∣R̂q(w;n, n′)−Rq(w;n, n′)
∣∣∣ ≥ bL) ≤ Pr( sup

(w,n,n′)∈I
|ν̂q(w, n, n′)| ≥ bL

3

)

+Pr

(
sup

(w,n,n′)∈I

∣∣∣ξq,1L (w, n, n′)
∣∣∣ ≥ bL

3

)
+ Pr

(
sup

(w,n,n′)∈I

∣∣∣ξq,2L (w, n, n′)
∣∣∣ ≥ bL

3

)
(A9)
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Let D and η be as described in Assumption 3.1. Then

Pr

(
sup

(w,n,n′)∈I

∣∣∣ξq,1L (w, n, n′)
∣∣∣ ≥ bL

3

)

≤ Pr

(
sup

(w,n)∈I
‖ŝ(w, n)− s(w, n)‖ ≥ η

)
+ Pr

(
sup

(w,n,n′)∈I
‖ξL(w, n, n′)‖ ≥ bL

3 ·D

)

≤ Pr

(
sup

(w,n)∈I
‖ŝ(w, n)− s(w, n)‖ ≥ η

)
+ 2 · Pr

(
sup

(w,n)∈I
‖ξL(w, n)‖ ≥ bL√

18 ·D2

)
where the last line follows from a Bonferroni inequality and the definition of ξL(w, n, n′).

We also have

Pr

(
sup

(w,n,n′)∈I

∣∣∣ξq,2L (w, n, n′)
∣∣∣ ≥ bL

3

)

≤ Pr

(
sup

(w,n)∈I
‖ŝ(w, n)− s(w, n)‖ ≥ η

)
+ Pr

(
sup

(w,n,n′)∈I
‖µ̂(w, n, n′)‖ ≥

√
bL

3 ·D

)

≤ Pr

(
sup

(w,n)∈I
‖ŝ(w, n)− s(w, n)‖ ≥ η

)
+ 2 · Pr

(
sup

(w,n)∈I
‖ŝ(w, n)− s(w, n)‖ ≥

√
bL

6 ·D

)
Combining these we have

Pr

(
sup

(w,n,n′)∈I

∣∣∣ξq,1L (w, n, n′)
∣∣∣ ≥ bL

3

)
+ Pr

(
sup

(w,n,n′)∈I

∣∣∣ξq,2L (w, n, n′)
∣∣∣ ≥ bL

3

)

≤ 2 · Pr

(
sup

(w,n)∈I
‖ŝ(w, n)− s(w, n)‖ ≥ min

{
η,

√
bL

6 ·D

})

+ 2 · Pr

(
sup

(w,n)∈I
‖ξL(w, n)‖ ≥ bL√

18 ·D2

)
Let J be as described in (A4). Using (A5) and a Bonferroni inequality,

Pr

(
sup

(w,n)∈I
‖ξL(w, n)‖ ≥ bL√

18 ·D2

)
≤

ds∑
`=1

Pr

(
sup

(w,n)∈I

∣∣ξ`L(w, n)
∣∣ ≥ bL√

18 ·D2 · ds

)

≤ 4 ·A1 · ds · exp

{
−
√
L · hrL

(
A2 ·min

{
b
1/2
L

(J2 · 18 ·D2 · ds)1/4
, Q, f/2

}
−A3 · hML

)}
.

(A10)

For large enough L we will have
(

B2√
6·D + A2

(J2·18·D2·ds)1/4

)
× b1/2L ≤ min

{
Q, f/2

}
. Using

(A6) and (A10) we obtain

Pr

(
sup

(w,n,n′)∈I

∣∣∣ξq,1L (w, n, n′)
∣∣∣ ≥ bL

3

)
+ Pr

(
sup

(w,n,n′)∈I

∣∣∣ξq,2L (w, n, n′)
∣∣∣ ≥ bL

3

)
≤ B′′1 · exp

{
−
√
L · hrL

(
B′′2 · b

1/2
L −A3 · hML

)}
,

(A11)
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where B′′1 ≡ 4 · A1 · ds + B1 and B′′2 ≡ min
{

B2√
6·D , A2

(J2·18·D2·ds)1/4

}
. Combined with (A7)

and (A9), we obtain

Pr

(
sup

(w,n,n′)∈I

∣∣∣R̂q(w;n, n′)−Rq(w;n, n′)
∣∣∣ ≥ bL)

≤ B′1 · exp

{
−
√
L · hrL

(
B′2 ·

bL
3
−B′3 · hML

)}
+B′′1 · exp

{
−
√
L · hrL

(
B′′2 · b

1/2
L −A3 · hML

)}
For L large enough we have

(
B′2
3

)
· bL ≤ B′′2 · b

1/2
L and therefore the above bound becomes

Pr

(
sup

(w,n,n′)∈I

∣∣∣R̂q(w;n, n′)−Rq(w;n, n′)
∣∣∣ ≥ bL) ≤ K1 · exp

{
−
√
L · hrL

(
K2 · bL −K3 · hML

)}
,

(A12)

where K1 ≡ max {B′1, B′′1 }, K2 ≡ min
{
B′2
3 , B′′2

}
and K3 ≡ max {A3, B′3}. Going back to

(A7), our results also imply

R̂q(w;n, n′)−Rq(w;n, n′) =
1

L · hrL

L∑
i=1

vqi (w, n, n′;hL) + ξqL(w, n, n′),

where sup
(w,n,n′)∈I

∥∥ξqL(w, n, n′)
∥∥ = Op

(
log(L)2

L · hrL

)
.

(A13)

A.1.2 Proving Theorem 1

Using the main results from our previous section (equations (A12) and (A13)), we show

that under our assumptions there is a linear representation for T̂ qn,n′ . Recall from (5) that

T̂ qn,n′ =
1

L

L∑
i=1

R̂q (Wi;n, n
′) · 1

{
R̂q (Wi;n, n

′) ≥ −bL
}
· 1 {Wi ∈ W} .

From here, a linear representation will immediately follow for T̂ , since it was defined as

T̂ =
∑

n,n′∈N

Qn,n′∑
q=1

T̂ qn,n′ .

We have

T̂ qn,n′ =
1

L

L∑
i=1

R̂q(Wi;n, n
′) · 1 {Rq(Wi;n, n

′) ≥ 0} · 1 {Wi ∈ W}+ ζqL(n, n′),
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where

|ζqL(n, n′)| ≤ 1

L

L∑
i=1

∣∣∣R̂q(Wi;n, n
′)
∣∣∣ · 1 {−2 · bL ≤ Rq(Wi;n, n

′) < 0} · 1 {Wi ∈ W}︸ ︷︷ ︸
=|ζq,1L (n,n′)|

+
2

L

L∑
i=1

∣∣∣R̂q(Wi;n, n
′)
∣∣∣ · 1{∣∣∣R̂q(Wi;n, n

′)−Rq(Wi;n, n
′)
∣∣∣ ≥ bL} · 1 {Wi ∈ W}︸ ︷︷ ︸

=|ζq,2L (n,n′)|

.

We have∣∣∣ζq,1L (n, n′)
∣∣∣

≤ 1

L

L∑
i=1

|Rq(Wi;n, n
′)| · 1 {−2 · bL ≤ Rq(Wi;n, n

′) < 0} · 1 {Wi ∈ W}

+
1

L

L∑
i=1

∣∣∣R̂q(Wi;n, n
′)−Rq(Wi;n, n

′)
∣∣∣ · 1 {−2 · bL ≤ Rq(Wi;n, n

′) < 0} · 1 {Wi ∈ W}

≤ 2 · bL ×
1

L

L∑
i=1

1 {−2 · bL ≤ Rq(Wi;n, n
′) < 0} · 1 {Wi ∈ W}

+ sup
(w,n,n′)∈I

∣∣∣R̂q(w;n, n′)−Rq(w;n, n′)
∣∣∣× 1

L

L∑
i=1

1 {−2 · bL ≤ Rq(Wi;n, n
′) < 0} · 1 {Wi ∈ W}

= Op

(
log(L)√
L · hrL

)
× 1

L

L∑
i=1

1 {−2 · bL ≤ Rq(Wi;n, n
′) < 0} · 1 {Wi ∈ W} ,

(A14)

where the last line follows from (A13). For b > 0 define

gq,1i (b;n, n′) = 1 {−2 · b ≤ Rq(Wi;n, n
′) < 0} · 1 {Wi ∈ W} .

And let

g̃q,1i (b;n, n′) = gq,1i (b;n, n′)− E
[
gq,1i (b;n, n′)

]
, ν̂q,1(n, n′) =

1

L

L∑
i=1

g̃q,1i (bL;n, n′) .

Since N is a finite set, Lemmas 2.4 and 2.14 in Pakes and Pollard (1989) implies that the

process {
g̃q,1i (b;n, n′): b ∈ R, n, n′ ∈ N , 1 ≤ i ≤ L

}
is manageable with respect to the envelope 1. Let b and A be as described in Assumption

3.2. For large enough L we have 2 · bL ≤ b, and therefore the regularity condition described
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in Assumption 3.2 and the aforementioned manageability property yield

sup
n,n′∈N

∣∣∣ν̂q,1L (n, n′)
∣∣∣ = Op

(√
bL
L

)
.

When L is large enough that 2 · bL ≤ b, the regularity condition in Assumption 3.2 implies

1

L

L∑
i=1

1 {−2 · bL ≤ Rq(Wi;n, n
′) < 0} · 1 {Wi ∈ In,n′} = ν̂q,1L (n, n′) + ςq,1L (n, n′),

where sup
n,n′∈N

∣∣∣ςq,1L (n, n′)
∣∣∣ ≤ 2 ·A · bL.

Therefore,

sup
n,n′∈N

∣∣∣∣∣ 1L
L∑
i=1

1 {−2 · bL ≤ Rq(Wi;n, n
′) < 0} · 1 {Wi ∈ In,n′}

∣∣∣∣∣ ≤ Op
(√

bL
L

)
+ 2 ·A · bL

= Op (bL) ,

where the last equality follows from the bandwidth convergence conditions in Assumption

3.3. Going back to (A14), this yields

sup
n,n′∈N

∣∣∣ζq,1L (n, n′)
∣∣∣ ≤ Op (b2L)+Op

(
log(L) · bL√

L · hrL

)
= Op

(
L−1/2−ε

)
for some ε > 0,

where the last equality follows from the bandwidth convergence properties in Assumption

3.3. Using (A12) and (A13),

sup
n,n′∈N

∣∣∣ζq,2L (n, n′)
∣∣∣ ≤ sup

(w,n,n′)∈I

∣∣∣R̂q(w;n, n′)
∣∣∣× 1{ sup

(w,n,n′)∈I

∣∣∣R̂q(w;n, n′)−Rq(w;n, n′)
∣∣∣ ≥ bL}

= Op(1)×Op
(
K

1/2

1 · exp

{
−1

2

√
L · hrL

(
K2 · bL −K3 · hML

)})
= Op

(
L−1/2−ε

)
∀ ε > 0.

From here we conclude that

T̂ qn,n′ =
1

L

L∑
i=1

R̂q(Wi;n, n
′) · 1 {Rq(Wi;n, n

′) ≥ 0} · 1 {Wi ∈ W}+ ζqL(n, n′),

where sup
n,n′∈N

|ζqL(n, n′)| = Op

(
L−1/2−ε

)
for some ε > 0.

(A15)

This can be re-expressed as

T̂ qn,n′ =
1

L

L∑
i=1

max {Rq(Wi;n, n
′), 0} · 1 {Wi ∈ W}

+
1

L

L∑
i=1

(
R̂q(Wi;n, n

′)−Rq(Wi;n, n
′)
)
· 1 {Rq(Wi;n, n

′) ≥ 0} · 1 {Wi ∈ W}+ ζqL(n, n′),

(A16)
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We will begin by studying the second term. For each ` = 1, . . . , ds and any two observations

i, j in 1, . . . , L denote

v` (Ui, Uj ;n, h) =

(
S`(Yj ,Wi, n)− s`(Wi, n)

fX,N (Xi, n)

)
· H (Xj −Xi;h) · 1 {Nj = n} ,

v(Ui, Uj ;n, h) =
(
v1 (Ui, Uj ;n, h) , . . . , vds (Ui, Uj ;n, h)

)′
,

v (Ui, Uj , n, n
′;h) = (v(Ui, Uj ;n, h)′, v(Ui, Uj ;n

′, h)′)
′
,

and let

fq (Ui, Uj , n, n
′;h) =

1

hr
· ∇smq (s(Wi, n), s(Wi, n

′);n, n′)
′
v (Ui, Uj , n, n

′;h) · 1 {Rq(Wi;n, n
′) ≥ 0} · 1 {Wi ∈ W}

Using (A13), we have

1

L

L∑
i=1

(
R̂q(Wi;n, n

′)−Rq(Wi;n, n
′)
)
· 1 {Rq(Wi;n, n

′) ≥ 0} · 1 {Wi ∈ W}

=
1

L2

L∑
i=1

L∑
j=1

fq (Ui, Uj , n, n
′;hL) + %qL(n, n′),

(A17)

where

sup
n,n′∈N

|%qL(n, n′)| = Op

(
log(L)2

L · hrL

)
= Op

(
L−1/2−ε

)
for some ε > 0.

Let us analyze the properties of the first term in the right hand side of (A17) which is a

second-order U process (Serfling (1980), Sherman (1994)). Denote

µqL(n, n′) = E [fq (Ui, Uj , n, n
′;hL)] .

Given the smoothness conditions in Assumption 3.1 there exists a constant D such that for

any i 6= j,

sup
n,n′∈N

∣∣∣E [fq (Ui, Uj , n, n
′;hL)

∣∣Ui]∣∣∣ ≤ D · hML . (A18)

And a dominated convergence argument and iterated expectations imply

sup
n,n′∈N

∣∣µqL(n, n′)
∣∣ ≤ D · hML .

Let

f̃q (Ui, Uj , n, n
′;hL) = fq (Ui, Uj , n, n

′;hL)− µqL(n, n′),

g̃q (Ui, Uj , n, n
′;hL) =

f̃q (Ui, Uj , n, n
′;hL) + f̃q (Uj , Ui, n, n

′;hL)

2
,

V qL(n, n′) =

(
L

2

)−1∑
i<j

g̃q (Ui, Uj , n, n
′;hL) .
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Note first that under our previous assumptions,

sup
n,n′∈N

∣∣∣∣∣ 1

L2

L∑
i=1

fq (Ui, Ui, n, n
′;hL)

∣∣∣∣∣ = Op

(
1

L · hrL

)
= op

(
L−1/2−ε

)
for some ε > 0.

Combined with the vanishing properties of µqL(n, n′), this means that we can express

1

L2

L∑
i=1

L∑
j=1

fq (Ui, Uj , n, n
′;hL) =

(
L− 1

L

)
· V qL(n, n′) + ϑL(n, n′),

where sup
n,n′∈N

|ϑL(n, n′)| = O
(
hML
)

+Op

(
1

L · hrL

)
= op

(
L−1/2−ε

)
for some ε > 0.

Fix u. Symmetry of g̃q implies EU [g̃q (u, U, n, n′;hL)] = EU [g̃q (U, u, n, n′;hL)]. We will

denote

θqL (u, n, n′) = EU [g̃q (u, U, n, n′;hL)] .

Note that E [θqL (U, n, n′)] = 0. Let

tq (Ui, Uj , n, n
′;hL) = g̃q (Ui, Uj , n, n

′;hL)− θqL (Ui, n, n
′)− θqL (Uj , n, n

′) ,

V q,2L (n, n′) =

(
L

2

)−1∑
i<j

tq (Ui, Uj , n, n
′;hL) .

The properties of µqL(n, n′) and the Hoeffding decomposition of V qL ((Serfling (1980)) imply

that

V qL(n, n′) =
2

L

L∑
i=1

θqL(Ui, n, n
′)+V q,2L (n, n′)+τ̃ qL(n, n′), where sup

n,n′∈N
|τ̃ qL(n, n′)| = O

(
hML
)
.

V q,2L (n, n′) is a degenerate U-statistic of order 2 and it satisfies V q,2L (n, n′) = Op

(
1

L·hr
L

)
(see

Serfling (1980), Sherman (1994)). Since N is finite, this property holds uniformly over N .

Let

∆q
L (u, n, n′) = EU [fq (U, u, n, n′;hL)] .

Using (A18), our smoothness conditions imply that the last result can be re-expressed as

V qL(n, n′) =
1

L

L∑
i=1

(∆q
L (Ui, n, n

′)− E [∆q
L (Ui, n, n

′)]) + τ qL(n, n′),

where sup
n,n′∈N

∣∣τ qL(n, n′)
∣∣ = Op

(
1

L · hrL

)
+O

(
hML
)

= Op

(
L−1/2−ε

)
for some ε > 0.

(A19)

46



Taking these results back to (A16) we obtain the main result in this section. Let

λqL (Ui;n, n
′) =(

max {Rq(Wi;n, n
′), 0} · 1 {Wi ∈ W} − T qn,n′

)
+ (∆q

L (Ui, n, n
′)− E [∆q

L (Ui, n, n
′)]) .

By construction, E [λqL (Ui;n, n
′)] = 0. A quick inspection also shows that

Pr
(
Rq(Wi;n, n

′) < 0
∣∣Wi ∈ W

)
= 1 =⇒ λqL (Ui;n, n

′) = 0 w.p.1.

That is, the influence function λqL (Ui;n, n
′) vanishes almost surely if the conditionRq(W ;n, n′) ≤

0 is satisfied as a strict inequality almost everywhere over our testing range. Combining

(A16) and (A19), we obtain

T̂ qn,n′ = T qn,n′ +
1

L

L∑
i=1

λqL (Ui;n, n
′) + ξqL(n, n′), where

(i) E [λqL (Ui;n, n
′)] = 0.

(ii) If Pr
(
Rq(W ;n, n′) < 0

∣∣W ∈ W) = 1, then λqL (Ui;n, n
′) = 0 w.p.1.

(iii) |ξqL(n, n′)| = Op
(
L−1/2−ε) for some ε > 0.

This proves Theorem 1.

Let

λL (Ui) =

Qn,n′∑
q=1

∑
n,n′∈N

λqL (Ui;n, n
′) .

Note that

(i) E [λL (Ui)] = 0.

(ii) If Pr
(
Rq(W ;n, n′) < 0

∣∣W ∈ W) = 1 for each n, n′ ∈ N and q = 1, . . . , Qn,n′ , then

λL (Ui) = 0 w.p.1.

By our previous results, it follows that

T̂ = T +
1

L

L∑
i=1

λL (Ui) + ξL, where ξL = Op

(
L−1/2−ε

)
for some ε > 0.

Let

σ2
L = Var (λL (Ui)) .

Because σ2
L = 0 if our (weak) inequalities are satisfied almost surely as strict inequalities,

σ2
L is the relevant measure for the slackness in our test.
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A.2 Construction of the test statistics

A.2.1 Estimating σ2
Lσ
2
Lσ
2
L

An estimator for σ2
L can be constructed by first estimating the influence function λL (Ui).

For i 6= j let

f̂q (Uj , Ui, n, n
′;hL) =

1

hrL
· ∇smq (ŝ(Wj , n), ŝ(Wj , n

′);n, n′)
′
v̂ (Uj , Ui, n, n

′;h) · 1
{
R̂q(Wj ;n, n

′) ≥ −bL
}
· 1 {Wj ∈ W}

× 1

f̂X,N (Xj , n)
· H (Xi −Xj ;hL) · 1 {Nj = Ni}

We estimate ∆q
L(Ui, n, n

′) as

∆̂q
L(Ui, n, n

′) =
1

L− 1

∑
j 6=i

f̂q (Uj , Ui, n, n
′;hL) .

And from here our estimators for λqL(Ui;n, n
′) and λL(Ui) are

λ̂qL(Ui;n, n
′) =

(
R̂q(Wi;n, n

′) · 1
{
R̂q(Wi;n, n

′) ≥ −bL
}
· 1 {Wi ∈ W} − T̂ qn,n′

)
+
(

∆̂q
L(Ui, n, n

′)− Ê
[
∆̂q
L(Ui, n, n

′)
])
,

λ̂L(Ui) =

Qn,n′∑
q=1

∑
n,n′∈N

λ̂qL(Ui;n, n
′).

From here we can estimate σ2
L as

σ̂2
L =

1

L

L∑
i=1

λ̂2
L(Ui).

Under Assumptions 3.1-3.4 (the conditions leading to Theorem 1), we will have
∣∣σ̂2
L − σ2

L

∣∣ =

op(1).

A.2.2 Detailed expressions for the auction models test statistics

Recall that our test statistic has a generic expression of the form

t̂L =

√
L · T̂

max {σ̂L, κL}

Here we describe the precise expressions for T̂ and σ̂L for each of the auction models

examples. For s ∈ (0, 1) and 1 ≤ k ≤ n denote

∇ψ−1
k:n(s) =

(n− k)! · (k − 1)!

n! ·
[
ψ−1
k:n(s)

]k−1 ·
(
1−

[
ψ−1
k:n(s)

])n−k
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IPV with fixed NNN

For equation (8) we have Qn = n− 2 and for each q = 1, . . . , n− 2,

R̂q(Wj ;n) = ψ−1
n−1:n

(
Ĝ∆
n:n(Zj |Xj)

)
− ψ−1

q:n

(
Ĝq:n(Zj |Xj)

)
,

f̂q (Uj , Ui, n;hL) ={
1

hrL · f̂X,N (Xj , n)
·

[
∇ψ−1

n−1:n

(
Ĝ∆
n:n(Zj |Xj)

)
·
(
1 {BN :N,i + ∆ ≤ Zj} − Ĝ∆

n:n(Zj |Xj)
)

−∇ψ−1
q:n

(
Ĝq:n(Zj |Xj)

)
·
(
1 {Bq:N,i ≤ Zj} − Ĝq:n(Zj |Xj)

)]
· 1 {Ni = n} · H (Xi −Xj ;hL)

× 1
{
R̂q(Wj ;n) ≥ −bL

}
· 1 {Wj ∈ W}

}

From here,

T̂ qn =
1

L

L∑
i=1

R̂q(Wi;n) · 1
{
R̂q(Wi;n) ≥ −bL

}
· 1 {Wi ∈ W} , T̂ =

n−2∑
q=1

∑
n∈N
T̂ qn ,

∆̂q
L(Ui;n) =

1

L− 1

∑
j 6=i

f̂q (Uj , Ui, n;hL) ,

λ̂qL(Ui;n) =
(
R̂q(Wi;n) · 1

{
R̂q(Wi;n) ≥ −bL

}
· 1 {Wi ∈ W} − T̂ qn

)
+
(

∆̂q
L(Ui;n)− Ê

[
∆̂q
L(Ui;n)

])
, λ̂L(Ui) =

n−2∑
q=1

∑
n∈N

λ̂qL(Ui;n), σ̂2
L =

1

L

L∑
i=1

λ̂2
L(Ui),

IPV and V⊥NV⊥NV⊥N

For equation (11) we have Qn,n′ = 1 and

R̂(Wj ;n, n
′) = ψ−1

n′−1:n′

(
Ĝ∆
n′:n′(Zj |Xj)

)
− ψn−1:n

(
Ĝn−1:n(Zj |Xj)

)
,{

1

hrL
·

[
∇ψ−1

n′−1:n′

(
Ĝ∆
n′:n′(Zj |Xj)

)
·

(
1 {BN :N,i + ∆ ≤ Zj} − Ĝ∆

n′:n′(Zj |Xj)
)

f̂X,N (Xj , n′)
· 1 {Ni = n′}

−∇ψ−1
n−1:n

(
Ĝn−1:n(Zj |Xj)

)
·

(
1 {BN−1:N,i ≤ Zj} − Ĝn−1:n(Zj |Xj)

)
f̂X,N (Xj , n)

· 1 {Ni = n}

]

×H (Xi −Xj ;hL) · 1
{
R̂(Wj ;n, n

′) ≥ −bL
}
· 1 {Wj ∈ W}

}
· 1 {n > n′} .
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From here,

T̂n,n′ =
1

L

L∑
i=1

R̂(Wi;n, n
′) · 1

{
R̂(Wi;n, n

′) ≥ −bL
}
· 1 {Wi ∈ W} , T̂ =

∑
n∈N
T̂n,n′ ,

∆̂L(Ui;n, n
′) =

1

L− 1

∑
j 6=i

f̂ (Uj , Ui, n, n
′;hL) ,

λ̂L(Ui;n, n
′) =

(
R̂(Wi;n, n

′) · 1
{
R̂(Wi;n, n

′) ≥ −bL
}
· 1 {Wi ∈ W} − T̂n,n′

)
+
(

∆̂L(Ui;n, n
′)− Ê

[
∆̂L(Ui;n, n

′)
])
, λ̂L(Ui) =

∑
n,n′∈N

λ̂L(Ui;n, n
′),

σ̂2
L =

1

L

L∑
i=1

λ̂2
L(Ui),

(A20)

Nonnegatively correlated values and V⊥NV⊥NV⊥N

For equation (10) we have Qn,n′ = 1 and

R̂(Wj ;n, n
′) =

(
ψ−1
n′−1:n′

(
Ĝn′:n′(Zj |Xj)

)
− ψ−1

n−1:n

(
Ĝn:n(Zj |Xj)

))
· 1 {n > n′} ,

f̂ (Uj , Ui, n, n
′;hL) ={

1

hrL
·

[
∇ψ−1

n′−1:n′

(
Ĝn′:n′(Zj |Xj)

)
·

(
1 {BN :N,i ≤ Zj} − Ĝn′:n′(Zj |Xj)

)
f̂X,N (Xj , n′)

· 1 {Ni = n′}

−∇ψ−1
n−1:n

(
Ĝn:n(Zj |Xj)

)
·

(
1 {BN :N,i ≤ Zj} − Ĝn:n(Zj |Xj)

)
f̂X,N (Xj , n)

· 1 {Ni = n}

]

×H (Xi −Xj ;hL) · 1
{
R̂(Wj ;n, n

′) ≥ −bL
}
· 1 {Wj ∈ W}

}
· 1 {n > n′} .

For equation (12), we have

R̂(Wj ;n, n
′) =

(
ψ−1
n′−1:n′

(
Ĝ∆
n′:n′(Zj |Xj)

)
− ψ−1

n−1:n

(
Ĝn−1:n(Zj |Xj)

))
· 1 {n > n′} ,

f̂ (Uj , Ui, n, n
′;hL) ={

1

hrL
·

[
∇ψ−1

n′−1:n′

(
Ĝ∆
n′:n′(Zj |Xj)

)
·

(
1 {BN :N,i + ∆ ≤ Zj} − Ĝ∆

n′:n′(Zj |Xj)
)

f̂X,N (Xj , n′)
· 1 {Ni = n′}

−∇ψ−1
n−1:n

(
Ĝn−1:n(Zj |Xj)

)
·

(
1 {BN−1:N,i ≤ Zj} − Ĝn−1:n(Zj |Xj)

)
f̂X,N (Xj , n)

· 1 {Ni = n}

]

×H (Xi −Xj ;hL) · 1
{
R̂(Wj ;n, n

′) ≥ −bL
}
· 1 {Wj ∈ W}

}
· 1 {n > n′} .
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In both cases T̂ and σ̂L are constructed following the generic expression (A20).

IPV without independence between VVV and NNN

For equation (13) we have Qn,n′ = 1 and

R̂(Wj ;n, n
′) =

(
ψ−1
n−1:n

(
Ĝn:n(Zj |Xj)

)
− ψ−1

n′−1:n′

(
Ĝn′:n′(Zj |Xj)

))
· 1 {n > n′} ,

f̂ (Uj , Ui, n, n
′;hL) ={

1

hrL
·

[
∇ψ−1

n−1:n

(
Ĝn:n(Zj |Xj)

)
·

(
1 {BN :N,i ≤ Zj} − Ĝn:n(Zj |Xj)

)
f̂X,N (Xj , n)

· 1 {Ni = n}

−∇ψ−1
n′−1:n′

(
Ĝn′:n′(Zj |Xj)

)
·

(
1 {BN :N,i ≤ Zj} − Ĝn′:n′(Zj |Xj)

)
f̂X,N (Xj , n′)

· 1 {Ni = n′}

]

×H (Xi −Xj ;hL) · 1
{
R̂(Wj ;n, n

′) ≥ −bL
}
· 1 {Wj ∈ W}

}
· 1 {n > n′}

In the case of (14),

R̂(Wj ;n, n
′) =

(
ψ−1
n−1:n

(
Ĝ∆
n:n(Zj |Xj)

)
− ψ−1

n′−1:n′

(
Ĝn′−1:n′(Zj |Xj)

))
· 1 {n > n′} ,

f̂ (Uj , Ui, n, n
′;hL) ={

1

hrL
·

[
∇ψ−1

n−1:n

(
Ĝ∆
n:n(Zj |Xj)

)
·

(
1 {BN :N,i + ∆ ≤ Zj} − Ĝ∆

n:n(Zj |Xj)
)

f̂X,N (Xj , n)
· 1 {Ni = n}

−∇ψ−1
n′−1:n′

(
Ĝn′−1:n′(Zj |Xj)

)
·

(
1 {BN−1:N,i ≤ Zj} − Ĝn′−1:n′(Zj |Xj)

)
f̂X,N (Xj , n′)

· 1 {Ni = n′}

]

×H (Xi −Xj ;hL) · 1
{
R̂(Wj ;n, n

′) ≥ −bL
}
· 1 {Wj ∈ W}

}
· 1 {n > n′}

In both instances we construct T̂ and σ̂L using the generic expression (A20).

A.3 Recomputing the tests in Section 4.3.5 with alternative band-

widths

Here we present the results for the test-statistics in Table 5 using alternative values for the

constants ch and cb used in the construction of hL and bL, respectively. As we did in Table

5, ck was set to 10−1 throughout.
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Table A.1: Test Results on Auction Timber Data using alternative values of ch and cb

ch = 0.25, cb = 10−3ch = 0.25, cb = 10−3ch = 0.25, cb = 10−3

Eq. Test of Auctions N Bid assump t̂ Outcome†

8 IPV English Fixed H&T bidding 1.94 Reject‡

10 V ⊥ N English Variable Bn:n = Vn−1:n 0.67 Fail to Reject

13 IPV English Variable Bn:n = Vn−1:n 2.52 Reject

ch = 0.25, cb = 1ch = 0.25, cb = 1ch = 0.25, cb = 1

Eq. Test of Auctions N Bid assump t̂ Outcome†

8 IPV English Fixed H&T bidding 1.93 Reject‡

10 V ⊥ N English Variable Bn:n = Vn−1:n 0.49 Fail to Reject

13 IPV English Variable Bn:n = Vn−1:n 2.39 Reject

ch = 0.5, cb = 10−3ch = 0.5, cb = 10−3ch = 0.5, cb = 10−3

Eq. Test of Auctions N Bid assump t̂ Outcome†

8 IPV English Fixed H&T bidding 16.15 Reject

10 V ⊥ N English Variable Bn:n = Vn−1:n 0.71 Fail to Reject

13 IPV English Variable Bn:n = Vn−1:n 9.25 Reject

ch = 0.5, cb = 1ch = 0.5, cb = 1ch = 0.5, cb = 1

Eq. Test of Auctions N Bid assump t̂ Outcome†

8 IPV English Fixed H&T bidding 15.92 Reject

10 V ⊥ N English Variable Bn:n = Vn−1:n 0.10 Fail to Reject

13 IPV English Variable Bn:n = Vn−1:n 9.07 Reject

(†) Critical values for rejection are 1.645 for α = 5% and 2.326 for α = 1%.

(‡) Denotes rejection at level α = 5%. All other results hold at α = 1%.
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B Appendix – Auctions Models

B.1 Proof of Proposition 1

Under the Haile-and-Tamer bidding assumptions, Bk:n ≤ Vk:n, which implies Gk:n(v|x) ≥

Fk:n(v|x); and Vn−1:n ≤ Bn:n + ∆, which implies Fn−1:n(v|x) ≥ G∆
n:n(v|x). So under IPV,

ψ−1
k:n (Gk:n(v|x)) ≥ ψ−1

k:n (Fk:n(v|x)) = FV (v|x)

= ψ−1
n−1:n (Fn−1:n(v|x)) ≥ ψ−1

n−1:n

(
G∆
n:n(v|x)

)
For the second part, fix n, x, and v, and let Pr(v|m) denote the probability that Vi <

v, conditional on exactly m of the other n − 1 valuations being less than v. Suppress

the dependence of value distributions on x. Let Pi denote the probability that exactly i

valuations are greater than or equal to v, so P0 = Fn:n(v), Pn = 1 − F1:n(v), and Pi =

Fn−i:n(v) − Fn−i+1:n(v) for 1 ≤ i < n. Let Pr(m) be the probability that V1, . . . , Vm ≥ v

and Vm+1, . . . , Vn−1 < v. By symmetry, Pi+1 = nCi+1 Pr(i)(1 − Pr(v|n − 1 − i)) and

Pi = nCi Pr(i) Pr(v|n− 1− i); so

1
nCi+1

Pi+1

1
nCi

Pi
=

Pr(i)(1− Pr(v|n− 1− i))
Pr(i) Pr(v|n− 1− i)

=
1− Pr(v|n− 1− i)

Pr(v|n− 1− i)

By assumption, this is weakly increasing in i, and strictly increasing for some i.

Let p = ψ−1
n−1:n(Fn−1:n(v)), and let P Ii = nCip

n−i(1 − p)i, and F Ik:n(v) = ψk:n(p) =∑n−k
i=0 P Ii , so P Ii and F Ik:n are what Pi and Fk:n would be if valuations were independent

draws from the distribution FV (·) = ψ−1
n−1:n(Fn−1:n(·)). By construction,

1
nCi+1

P Ii+1

1
nCi

P Ii
=

1− p
p

and therefore does not vary with i. Note that P0 +P1 = Fn−1:n(v) = F In−1:n(v) = P I0 +P I1 .

Claim 1. P0 > P I0 .

Proof is by contradiction. Since P0 + P1 = P I0 + P I1 , if P0 ≤ P I0 , then P1 ≥ P I1 . Then

1
nC2

P2

1
nC1

P1

≥
1

nC1
P1

1
nC0

P0

≥
1

nC1
P I1

1
nC0

P I0
=

1− p
p

=
1

nC2
P I2

1
nC1

P I1

and so since P1 ≥ P I1 and P2

P1
≥ P I

2

P I
1

, then P2 ≥ P I2 . Similarly, since P3

P2
≥ P2

P1
≥ P I

2

P I
1

=
P I

3

P I
2

,

P3 ≥ P I3 ; and likewise, Pi ≥ P Ii for every i > 3, with at least one strict inequality due to the

requirement that Assumption 4.2 holds strictly. This leads to
∑n
i=0 Pi >

∑n
i=0 P

I
i , which is

a contradiction since both must be equal to 1.
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Claim 2. P2 < P I2 .

Since P1 < P I1 , if P2 ≥ P I2 , then P2

P1
>

P I
2

P I
1

, and so P3

P2
>

P I
3

P I
2

giving P3 > P I3 and so on;

this would give P0 +P1 = P I0 +P I1 , P2 ≥ P I2 , and Pi > P Ii for i ≥ 3, yielding a contradiction.

(Note that if Pr(v|m) is only weakly increasing in m, everything up to here applies as

weak inequalities and P2 ≤ P I2 , which will be used below in the proof of Proposition 2.)

Claim 3. If Pk > P Ik , then Pk′ > P Ik′ for all k′ > k.

We know that P1 < P I1 . Let j denote the smallest i > 0 such that Pi > P Ii . This means

Pj > P Ij but Pj−1 ≤ P Ij−1, and therefore

1
nCj

Pj
1

nCj−1
Pj−1

>

1
nCj

P Ij
1

nCj−1
P Ij−1

=
1− p
p

Which means that
1

nCj+1
Pj+1

1
nCj

Pj
≥

1
nCj

Pj
1

nCj−1
Pj−1

>
1− p
p

=

1
nCj+1

P Ij+1

1
nCj

P Ij

and so Pj > P Ij and
Pj+1

Pj
>

P I
j+1

P I
j

, meaning Pj+1 > P Ij+1. Likewise,

1
nCj+2

Pj+2

1
nCj+1

Pj+1

≥
1

nCj+1
Pj+1

1
nCj

Pj
>

1− p
p

=

1
nCj+2

P Ij+2

1
nCj+1

P Ij+1

and so Pj+2 > P Ij+2, and so on, proving the claim.

Claim 4. For k > 1, if Fn−k:n(v) ≥ F In−k:n(v) then Pk > P Ik .

By construction, Fn−k:n(v) =
∑k
i=0 Pi and F In−k:n(v) =

∑k
i=0 P

I
i . We know that P0 +

P1 = P I0 + P I1 , and P2 < P I2 ; so if
∑k
i=0 Pk ≥

∑k
i=0 P

I
k , there must be some j (2 < j ≤ k)

such that Pj > P Ij . But then by the previous claim, Pk > P Ik .

Claim 5. For 1 < k < n, Fn−k:n(v) < F In−k:n(v).

If Fn−k:n(v) ≥ F In−k:n(v), then by the last claim, Pk > P Ik . But then by the previous

claim, Pk′ > P Ik′ for all k′ > k. So

1 = Fn−k:n(v) +
∑
k′>k

Pk > F In−k:n(v) +
∑
k′>k

P Ik = 1

a contradiction. So it must be that Fn−k:n(v) < F In−k:n(v). But

F In−k:n(v) = ψn−k:n(p) = ψn−k:n

(
ψ−1
n−1:n(Fn−1:n(v))

)
so the last claim is that Fn−k:n(v) < ψn−k:n

(
ψ−1
n−1:n(Fn−1:n(v))

)
, proving the proposition.
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B.2 Generalizing Prop. 2 and 3 to Haile-and-Tamer Bidding

Propositions 2 and 3 have direct analogs which rely on the bidding assumptions of Haile

and Tamer rather than the requirement that Gn:n = Fn−1:n:

Proposition B1. Assume bidding behavior satisfies the Haile-and-Tamer assumptions and

valuations are independent of N .

(a) Under IPV, for any (x, n, n′, v),

ψ−1
n−1:n (Gn−1:n(v|x)) ≥ ψ−1

n′−1:n′

(
G∆
n′:n′(v|x)

)
(11)

(b) Under Assumption 4.2, for any (x, n, n′, v),

n > n′ −→ ψ−1
n−1:n (Gn−1:n(v|x)) ≥ ψ−1

n′−1:n′

(
G∆
n′:n′(v|x)

)
(12)

Proposition B2. Assume bidding behavior satisfies the Haile-and-Tamer assumptions and

Assumption 4.3 holds. Under IPV, for any (x, n, n′, v),

n > n′ −→ ψ−1
n−1:n

(
G∆
n:n(v|x)

)
≤ ψ−1

n′−1:n′ (Gn′−1:n′(v|x)) (14)

These are proved side-by-side with Propositions 2 and 3 below.

B.3 Proof of Propositions 2 and B1

Part a. Under IPV and the exclusion restriction,

ψ−1
n−1:n (Fn−1:n(v|x)) = FV (v|x, n)

= FV (v|x, n′) = ψ−1
n′−1:n′ (Fn′−1:n′(v|x))

If Bn:n = Vn−1:n, then Gn:n(v|x) = Fn−1:n(v|x) and Gn′:n′(v|x) = Fn′−1:n′(v|x), giv-

ing (9). Under Haile-and-Tamer bidding, Gn−1:n(v|x) ≥ Fn−1:n(v|x) and Fn′−1:n′(v|x) ≥

G∆
n′:n′(v|x), giving (11).

Part b. Fix n, x, and v. As above, let p = ψ−1
n−1:n(Fn−1:n(v|x)), and let Pi be the probability

that exactly i (of n) valuations are at least v. Under Assumption 4.2, as noted above in the

proof of Proposition 8, P2 ≤ nC2p
n−2(1− p)2. If valuations are independent of N , plugging
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r = n− 2 into equation 9 of Athey and Haile (2002) and rearranging gives

Fn−2:n−1(v|x) = Fn−1:n(v|x) + 2
n [Fn−2:n(v|x)− Fn−1:n(v|x)]

= npn−1 − (n− 1)pn + 2
nP2

≤ npn−1 − (n− 1)pn + 2
n
n(n−1)

2 pn−2(1− p)2

= (n− 1)pn−2 − (n− 2)pn−1

= ψn−2:n−1(p)

= ψn−2:n−1

(
ψ−1
n−1:n (Fn−1:n(v|x))

)
or ψ−1

n−2:n−1(Fn−2:n−1(v|x)) ≤ ψ−1
n−1:n(Fn−1:n(v|x)); if Assumption 4.2 holds strictly at

(v, x, n), then (from the proof of Proposition 1 above) P2 < nC2p
n−2(1 − p)2 and this

holds strictly. From there, Gn:n = Fn−1:n and Gn′:n′ = Fn′−1:n′ establish (10), and

Gn−1:n ≥ Fn−1:n and Fn′−1:n′ ≥ G∆
n′:n′ establish (12) under Haile-and-Tamer bidding.

B.4 Proof of Propositions 3 and B2

Let n > n′; under Assumption 4.3, FV ( · |x, n) %
FOSD

FV ( · |x, n′), so

ψ−1
n−1:n (Fn−1:n(v|x)) = FV (v|x, n)

≤ FV (v|x, n′) = ψ−1
n′−1:n′ (Fn′−1:n′(v|x))

Again, if Bn:n = Vn−1:n, then Gn:n = Fn−1:n and Gn′:n′ = Fn′−1:n′ , and (13) follows,

with strict inequality whenever FV (v|x, n) < FV (v|x, n′) ; under Haile-and-Tamer bidding,

G∆
n:n ≤ Fn−1:n and Gn′−1:n′ ≥ Fn′−1:n′ , and (14) follows.

B.5 Violations of (10) Under Two Entry Models

Here, we show how dependence of valuations on N generated by two standard models of

endogenous participation in auctions would lead to rejection of the exclusion restriction due

to a violation of (10).

Consider a model of independent private values with unobserved heterogeneity. There

is a one-dimensional variable θ ∈ < which is observed by bidders but not the analyst.

Valuations are i.i.d. ∼ FV (· | θ), and θ > θ′ implies F ( · |θ) %FOSD F ( · |θ′). For each θ,

assume FV (·|θ) is twice differentiable and has bounded support [v, v]. Let fV (· | θ) denote

the density function.

Now, we apply two standard models of endogeous entry to this environment. In the first

model, that of Levin and Smith (1994), there are n potential bidders, who each observe θ
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but not their own valuations before deciding whether to enter (in which case they incur a

cost c and participate in the auction) or not (earning a payoff of 0). Bidders play a different

symmetric mixed strategy for each realization of θ, leading to a stochastic N with a different

distribution for each θ.

In the second model, that of Samuelson (1985), bidders observe both θ and their own

valuation before making their entry decision, and play a different pure-strategy symmetric

equilibrium in cutoff strategies for each θ.

Proposition B3. In the Levin-Smith entry game, if fV (v|θ) and the equilibrium entry prob-

ability are both strictly increasing in θ, then the valuations generated would violate Equation

(10) over some range of v.

In the Sameulson entry game, if valuations and θ are related via the Strict Monotone

Likelihood Ratio Property, then the valuations generated would violate (10) over some range

of v.

Proof. The Taylor expansion of ψ−1
n−1:n(Fn−1:n(v)) around v = v, after a lot of algebra,

gives

ψ−1
n−1:n(Fn−1:n(v)) = 1− (v − v)

√
Eθ|n (fV (v|θ))2

+O
(
(v − v)2

)
(B1)

Let n > n′. If θ|N = n �FOSD θ|N = n′ and fV (v|θ) is increasing in θ, then Eθ|n (fV (v|θ))2
>

Eθ|n′ (fV (v|θ))2
, in which case ψ−1

n−1:n(Fn−1:n(v)) < ψ−1
n′−1:n′(Fn′−1:n′(v)) for v sufficiently

close to v, violating (10).

For the Levin-Smith result, this is all we need. We showed in Aradillas-López, Gandhi,

and Quint (2013) that if the entry probability is increasing in θ, then n > n′ implies

θ|N = n %FOSD θ|N = n′; the same argument shows this is strict when the entry probability

is strictly increasing.

In the Samuelson game, the entry cutoff v∗(θ) is the solution to vF n̄−1
V (v|θ) = c. Under

the strict MLRP, FV (v|θ) is strictly decreasing in θ on (v, v), so v∗(θ) and 1− FV (v∗(θ)|θ)

are both strictly increasing in θ; so θ|N = n �FOSD θ|N = n′ when n > n′, as above. But

now we require the density of valuations at v conditional on entry to be strictly increasing

in θ. This density can be written as

fV (v|θ)
1− FV (v∗(θ)|θ)

=
fV (v|θ)∫ v

v∗(θ)
fV (v|θ)dv

=

(∫ v

v∗(θ)

fV (v|θ)
fV (v|θ)

dv

)−1
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Since v∗(θ) is increasing in θ, an increase in θ shrinks the interval [v∗(θ), v] over which the

integral is taken; and if v and θ are related by the strict MLRP, since v < v, fV (v|θ)
fV (v|θ) is

strictly decreasing in θ. So
∫ v
v∗(θ)

fV (v|θ)
fV (v|θ)dv is strictly decreasing in θ, meaning fV (v|θ)

1−FV (v∗(θ)|θ)

is strictly increasing in θ; so (B1) gives ψ−1
n−1:n(Fn−1:n(v)) < ψ−1

n′−1:n′(Fn′−1:n′(v)) for v close

to v.
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