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Abstract

We propose a powerful, fully automated, and numericallysblalgorithm to com-
pute (inverse) equilibrium bid functions for asymmetricdépendent Private Values,
First-Price auctions. The algorithm relies upon a builtligebra of local Taylor-series
expansions in order to compute highly accurate solutionthéoset of differential
equations characterizing first order conditions. It offarsextensive user friendly
menu whereby one can assign commonly-used distributiolsdtters and can also
create arbitrary (non-inclusive) coalitions. In additian(inverse) bid functions, the
algorithm also computes a full range of auxiliary statstif interest (expected rev-
enues, probabilities of winning, probability of retentionder reserve pricing and, on
request, optimal reserve price). The algorithm also iresua built-in numerical pro-
cedure designed to automatically produce local Tayldesaxpansions for any user-
supplied distribution, whether analytical or tabulatechg&ical, parametric, semi- or
non-parametric). It provides a tool of unparalleled flelifiypifor the numerical investi-
gation of theoretical conjectures of interest and/or faydmplementation within any
numerical empirical inference procedure relying uponiisgebid functions.
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1 Introduction

In this paper, we propose a powerful numerical algorithnotuesfirst-price, single-object
auctions, where bidders draw Independent and Private ¥ghereafter IPV) from hetero-
geneous distributions, allowing for subsets of biddersottude and for a set reserve price.
We also provide operational univariate quadratures tauetalprobabilities of winning, as
well as expected revenues for the bidders and the auctiohleeldatter is used to compute
optimal reserves under asymmetric environments. Thisaisbles us to provide insights
as to whether collusion among subsets of bidders is sublaina

We first review some of the relevant literature. Much of theieaauction literature as-
sumed that bidders draw their signals from a common undwylglistribution. Pioneering
contributions include Riley and Samuelson (1981), Milgrama Weber (1982), Matthews
(1983), and Maskin and Riley (1984). Important theoretieallts such as revenue equiva-
lence theorems obtain under symmetry. However, the assomgftsymmetry is often far
too restrictive for many empirical applications.

Relaxing the symmetry assumption prevents analyticavdgon of (first-price) bid
functions and, therefore, considerably complicates nee@omparisons. Nevertheless, im-
portant results have been derived under asymmetry. Forgeagxistence and uniqueness
results under asymmetry can be found in Lebrun (1996, 199®6or Maskin and Riley
(20004, 2000b). Furthermore, under stochastic domindmhaskin and Riley (2000a) show
that the high-bid auction dominates the open-bid auctidarnms of seller revenue and that
the strong bidder (with the stochastically dominant disttion) shades his bid more than
the weak bidder. They also provide examples of situationsrevithe seller revenue is
higher in open auctions than in high auctions. From a nurakpierspective, a pioneering
contribution which lead to the present paper is found in Maliset al (1994) (hereafter
MMRS). They proposed a numerical algorithm to compute firste, equilibrium-bid
functions in a two (subgroups of) players asymmetric emritent under uniform distri-
butions. Actually, the MMRS framework also implicitly agsas stochastic dominance.
Marshall and Schulenberg (1998) modified MMRS to accomnedzgerve prices set by
the auctioneer.

Other numerical algorithms have been proposed in the fitexa Of particular inter-
est is the program BIDCOM¥by Li, Riley and Tan@ The program is user-friendly but
restricted to (truncated) power and/or Normal density fioms. It has allowed Riley and
Li (1997) to make several strong claims relative to a vargdtgsymmetric scenarios. Two
guotes from the authors are relevant for the present papessibly there are other impor-
tant classes of distributions for which quite different clusions may emerge. We strongly
encourage any suggestions along these lines;” and, “Beddesdifferential equations
which define the equilibrium bid functions are very poorlyhbeed at the lower end-point,

1See Riley and Li (1997) for comments and applications. Tlgmm can be downloaded from the site
http://www.econ.ucla.edu/riley/bidcomp/.



there are some quite complex technical issues which had de&le with before we could
develop such a program.” The algorithm we present here agesethese two key issues
at an unparalleled level of generality and provides, tloeeefa powerful numerical tool
to reassess Riley and Li's main findings in a much broadereseni he illustrations pre-
sented below contribute a first step toward a more systeradilysis, which goes beyond
the objectives of the present paper, but does belong to eaareh agenda.

Another relevant paper is that of Bajari (2001) who propasa&ral numerical meth-
ods to solve asymmetric auctions (and procurements) irr todsmpare competition and
collusion. The first algorithm is essentially that of Rilaydali (1997) which is found to
be often slow to converge, an issue of significant concerrppli@d work where it may
be necessary to evaluate the inverse bid functions a langdeuof times. A second al-
gorithm makes the initial guess that participants bid thalues and then iterates on the
best responses. This algorithm is faster than the first ohednvergence is not guaran-
teed as pointed out by Bajari himself and confirmed by our oantier experimentation
with iterated best responses. Athey (1997) confirms nuraknstability within a similar
framework using discretized strategies and types spdeesdh, as pointed out by Bajari,
the use of closed form derivatives - as available e.g., undemality - can significantly al-
leviate, but not eliminate numerical instability). Bajathird algorithm assigns parametric
flexible functional forms to the bid functions (typicallyioorder polynomials), and solves
for equilibrium within such constrained strategy spacess ¢losely related to the concept
of Constrained Strategic Equilibrium (CSE) proposed by antrer and Richard (1997)
and will often produce accurate numerical approximatianthée (unknown) equilibrium
bid functions in view of their typical smoothness. It is falio be fast, at least with good
starting values. It remains, however, an approximationsghaccuracy needs to be care-
fully assessed. Armantier and Richard (1997) suggest cosgpaof the individual best
responses to CSE strategies, which can be numericallyatealpoint by point. Note that
the algorithm we propose offer such verifications as an aptio

To some extent, Bajari’s third algorithm is the one which @strclosely related to ours
since both rely upon polynomial approximations. There @syéver, a fundamental differ-
ence between the two. Bajari's algorithm produces appratersolutions (as emphasized
by Bajari himself) based on a singigobal polynomial approximation for each (inverse)
bid function. Ours relies upon a fine grid sequenc®oél polynomial approximations in
order to produce highly accurate and exact solutions to teedrder conditions. More-
over, as explained below, these local (Taylor-series) @pprations can also be used for
highly accurate numerical evaluation of all related sti&gsof interest, such as expected
revenues and probabilities of winning, and the probabdityetention under reserve pric-
ing. Bajari does not discuss the computation of such stzjdtut does provide first-order
approximations for some in the context of a truncated nodistibution example.

The paper by Athey (2001) presents powerful existence #mesifor a broad class of
games of incomplete information under a single crossinglitimm. She relies upon infinite
sequences of increasingly finely discretized games andestgythat a similar approach
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could be used to compute equilibrium solutions. An earlierking paper, Athey (1997),
provides examples. However, as discussed above, coneergemains a critical issue
since the resulting sequence cannot be constructed intbalgtontraction mapping. As
Riley and Li (1997), as well as Athey (2001) emphasized, ttegogical behavior of the
system of differential equations at the origin is important

All in all, the literature clearly offers several innovagiyproposals for the numerical
evaluation of (inverse) bid functions for single object IRkét-price auctions. Neverthe-
less, there does not currently exist user-friendly, falytomated algorithms of sufficient
generality either to allow broad investigations of theimadtissues of interest or, foremost,
to meet the needs of practitioners (uniform, power funaiand/or normal distributions
are typically far too restrictive to provide adequate emspircharacterizations of bidders’
value distributions). Riley and Li's BIDCOMPsoftware contributes a pioneering step to-
ward user-friendliness, but remains too restrictive irsggection of distributions, nor can
it accommodate cartel formation (since the distributidnauirently incorporates are not
closed form order statistics). The other algorithms weudised require significant custom
programming by their potential users. The algorithm we peapin the present paper fills
that gap.

In the present paper, we generalize the MMRS algorithm to ehnfmoader class of
first-price, asymmetric IPV auction and procurement pnatslgallowing for arbitrary num-
bers of (subgroups of) players independently drawing thedinations from arbitrary dis-
tributions. Common distributions (exponential, Weibléta, normal, lognormal,...) are
offered as options in the program. Additional distribusaran easily be added by users
in the form of a subroutine. Our program takes care of constrg Taylor-series expan-
sions for these distributions. The only (standard) retsbnds that these distributions have
common support. Stochastic dominance is not required. Whisnable us to investi-
gate whether existing results generalize when stochastidréance no longer holds. As
in MMRS, we are actually computing numerical solutions tystem of Ordinary Differ-
ential Equations (ODESs) characterizing the first-orderditbons for a Nash equilibrium.
The solution belongs to a class of two-point boundary vahleblems and is evaluated by
recursive application of (low order) Taylor-series expans. As highlighted by previous
authors (Marshall et al. (1994), Riley and Li (1997), as vasllAthey (2001)) the problem
is ill-defined at the origin and requires backward extrapotestarting from the end-point.
Since the latter is unknown it needs to be determined bytitgraUniqueness of this end-
point follows from Lebrun (2006) and is also proven by bacidwextrapolation. Based on
Lebrun’s derivation, the search for the end-point is verylAvehaved, as we shall discuss
further below. We note that Bajari’s (2001) third algorithwhich relies upon global poly-
nomial approximation, does not require an explicit endapsearch, but iterates instead on
individual best responses.

For ease of implementation, our algorithm currently relipen equal spacing subdivi-
sions of the support of the component distributions. Whiiglhas proved to be numerically
stable for most distributions, occasional pathologieg¢gally, densities which are not
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bounded away from zero on their supports) would require @madaptive selection of step
size. Such robustification goes beyond the objective of thegmt paper and are currently
addressed by increasing the number of points in the grid &bt msineeded.

The key advantage offered by our algorithm relative to MMIRS In its capability
to accommodate arbitrary distributions, providing us watipowerful tool to investigate
whether classic results (revenue equivalence, a.s.ognéxb situations where symme-
try and/or stochastic dominance are no longer assumed.fddtisre also provides broad
flexibility for the analysis of (sub)coalitions.

The paper is organized as follows. The baseline model anddhgion algorithm
are described in Section 2; expected revenue calculatiengravided in Section 3 for
first-price auctions and in Section 4 for second-price ansti numerical examples are
presented in Section 5; numerical accuracy is discusseddtidd 6 ; Section 7 presents
the procurement version of the algorithm and Section 8 calsd.

2 The Algorithm

2.1 Baseline model

We consider here a single object IPV first-price auction.dBid submit sealed bids, the
highest bidder wins and pays his bid. There Brg@otential bidders. Only those with
private valuations above the reserve pifitset by the auctioneer submit competitive bids.
Bidders are ex-ante heterogeneous. Each bidder belongeetofm types. Each type is
characterized by a distribution functiéphon a common suppof¥, v|. There aré; bidders

in groupi for a total ofN = S, ki (potential) bidders.

Bid functions are denoted by the Gregki = 1,---n. Bidders are assumed to be
risk neutral with utility from winning the auction with a biol given a typev defined as
Ui(v—b) = v—b. The generalization to constant risk aversion is fairlyi&ii and will
not be discussed here. Clearly, utility from winning thetaarcis increasing in the indi-
vidual’s signal. Under these assumptions, Proposition Bagkin and Riley (2000b) es-
tablishes the existence of a monotonic pure-strategyibquin in the standard first-price
auction. Indeed, Lebrun (1996) has shown that these biditinscare strictly monotone
and increasing, therefore, invertible. Inverse bid fumtsiare denoted by the Greek letter
Ai,i=1,--- n. Uniqueness of such equilibrium for the N player game has deeved by
Lebrun (1999), Maskin and Riley (2000b) and Bajari (2001).

Here we assume further thBgtis twice continuously differentiable with a density
bounded away from zero dw,Vv|]. Whence, under these assumptions, Lebrun(1999) proves
that the equilibrium is unique, and that the inverse bid fioms have a common support
R t,], wheret, is the bid associated with the valuatigrandR is the reserve price set by the
auctioneer. We show in this paper that this equilibrium i®aable to numerical analysis,



and presents itself as a natural extension to the methogeged in MMRS. As such, the
(numerical) determination @f is a critical component of the problem to be solved.

2.2 The differential equations

Lett = ¢;(v) denote the equilibrium bid submitted by biddevith private signav € |v, V.
For the ease of notation, bidders with signals lower tharréserveR are assumed to bid
their signals, whencé;(v) = v for v< R. Letv = Ai(t) denote inverse bid functions. Fol-
lowing Lebrun (1999), tha;s share a common suppdvit,|. For the ease of presentation,
we momentarily assume thitis known. Bidder with signalv € [R,V] submits a bid,
which is solution of the optimization problem

t=arg max(v—u) - [Fu(W)%j [F(A ()b, (1)

ue(RYV)
The Ordinary Differential Equations (ODESs) defined by thesFDrder Conditions (FOCs)
are given by

n

Ma1Fs(As(t)) = (Ai(t) —t) - [Zlki*,j fi (A (1)A} (0N Fs(As(D))], (2)
=

wherek’; = k —1 andk’; = k; for j #i,i: 1—n. Let/i(t) = R(Ai(t)). Equation (2) is
rewritten as

1 noLGm |
1=[R(4(1) -t j;‘ﬁ,j Q) ,i=1-n (3)
The boundary conditions fay; and/; are given by
MR =R Aj(ty)=v, i:1—n,and (4)
G(R)=FR(R), &4(t)=1 1i:1-n, (5)

respectively. As noted by several authors and discussedriintroduction, the system
(3) of ODEs is ill-behaved at the lower boundary. If, for exgeyR = v then a recursive
application of 'Hospital’s rule fot — v produces the result that the right derivative/of
atvis given by
im 2/ (t) = fi(v)- —
Jim £(0) =19 =1
and, most importantly, that all higher-order right derives atv are zero. If instea® > v,
then

i:l—n, (6)

Jim, i) =+o, i:l—n, (7)



as in Marshall and Schulenberg (1998). Whence, following RBJ we shall solve the
ODEs (3) backward starting from the right bounddr{t,) = 1, assuming momentarily
thatt, is known.

2.3 The baseline algorithm

Our algorithm amounts to constructing piecewise polynbmpgproximations to the;s
from which (as discussed in Section 2.4 below) approxinmatfor the\js andd;s immedi-
ately follow. Assuming we just computegly = ¢;(to) wheretg € (R t,), we describe next
how to construct Taylor-series expansions for #fseatty which are then used to compute
Xi 1 = {i(t1) at the next point; = to — At, whereAt denotes the selected step size.

Since equation (3) involves compositions, product, and etifanctions, brute force
Taylor-series expansions would be unnecessarily contpticenor would it provide the
auxiliary expansions required below for expected reveramesprobability calculations).
Instead, we develop an algebra of Taylor-series expan&ipiiseating separately the in-
dividual operations required for equation (3). This amsuotintroducing the following
auxiliary expansions:

eitzoo i (t—to)d, 8
D=3 a1 ®)
Fin(t) —t = g Pyt —to)], (©)
i=
HO/E0 = 5 by (=10 (10
=
R0 = 3 dhjlx—xo)l. (1)
X j; j(X—xo

Our algorithm takes as input the Taylor-series expansid’)rﬁgé (actually, the expansion
of all commonly used distributions are pre-programmed asdliscussed in Section 2.4.4,
our program also includes automated construction of Tesdoies expansion for arbitrary
distributions). The algorithm then iterates between @quat(8), (9), and (10) in that order,
increasing the order of approximation by one unit at a timbe Tact that equation (10)
includes a derivative provides the key to moving from ordlerl to orderJ. Specifically,
given{(aj;,bij, pij), j : 1 — J— 1}, stepJ of our algorithm follows the sequence:

(1) Links equation (10) from step— 1 to equation (8) for step through the identity
Ui(t) = 4i(t) - [4/(t) /¢;(t)] in order to computeys;

(2) Applies lemma 1 (composition) in Appendix A to compuig from equation (9);



(3) Uses the ODE's linking equations (9) and (10) to comiite

The relationships between these coefficients and that @ dtimctions of interest, such
as theF s (input) and thepjs (output), are discussed in Section 2.4. The details of the
computations we just outlined are given by equations (12229 below.

e The computation of & j given {(& j,bij);j < J}. The corresponding recurrence
relationship obtains from the identitiést) = 4i(t). ¢(t)/¢i(t) which together with
formulae (8) and (9) imply the identities

i]alj t—tO [zoairt—to ] [Z}blst—to ] (12)

Equating the coefficients of ordér 1 produces the following relationship

1J 1
=3 %aurbu r—1, (I:1—-nJd:1— Jdu), (13

with initial conditions
a;,o:&(to), biyozfi/(to)/gi(to), i:1—n. (14)

e The computation of pj j given {(& j, di j); j < J}. The corresponding relationship
obtains by application of Lemma 1 in Appendix A to the comfiosi of Fi‘1 (in-
put) and/; (output from (13)), accounting for the additional factet [to+ (t —to)].
Whence we have

J

Pia=> diBiro—2, (@(:1-nJ:1—Jdu), (15)
o]
Jor41
Bira= > asbir10s (r:1-1J), (16)
&S

with zg =z = 1,z = 0 for J > 1, and initial conditions
pio=F 1(xo0), 6Gioo=1 (i:1—n). (17)

e The computation of b j given {p; j;j <J);(bij;j <J)}. The corresponding rela-
tionships originate from the ODEs themselves. Substigugixpansions (9) and (10)



into equation (3) produces the identities

1= [ipi,r(t _tO)r] [élkl*,ﬁ ib&s(t _tO)S] ) (18)

fori:1— nand/:1— nEquation (18) can be rewritten as

1= ji Liki*x (ripi,rbaj—r)] (t—to). (19)

Equating the coefficients ¢f —to)” to zero ford > 1 and rearranging the correspond-
ing identities into matrix form produces the following vegal recurrence relation-
ship

wherePy = diag(p1,0,- - , Pn0), In is the identity matrix of orden, iy, = (1---1),k' =
(kl7 e kn)7 bfj = (bl,J7 e 7bn,J)7CO = —in and

co=| Pk (3ioabear) [,3>0. (21)

Standard formulae for partitioned matrices produce theviohg expressions for the
determinant and inverse Of, —ink):

| ink/
ON-T

Ih—ink|=1—N, (In—ik) 1= (22)

Formulae (12) to (22) fod : 0 — Jy define our baseline recurrences algorithm for
the evaluation of Taylor-series expansions at an arbitvasg pointy € (R t.), from
which function values at a new point=to — At are approximated.

2.4 Additional details

A number of additional details need to be addressed in oaleomplete an operational
implementation of our baseline algorithm.



2.4.1 Numerical search fort,

With very few exceptions, one of which is found in Appendix AMMRS, t. cannot
be found analytically. Instead, we shall rely on the unicgssnresult in Lebrun (1999),
together with the initial conditions (5), to defibeas

n

t.=arg min 3 [4(Rt) ~RR]", (23)

where/;(-|t¢) denotes the solutions to the ODEs in (3) under a tentativeited condition
¢i(ts) = 1. Note that since

tﬂgﬂﬁ_lwmﬂ>—t%:0, (24)
the coefficients pi ;i : 1 — n) should be zero fotg = R This prevents us from solv-
ing the system (20) &b = R but we do not need to do so. Instead we compitg|-)
from the Taylor-series expansiong@t= R+ At. Substituting these approximate values in
the objective function (23) suffices to produce very acauestimates of, for At small
enough. Alternatively, once we have an estimate;ef= /i(tp), we can also compute
Pio= Ffl(xi,o) —to according to equation (9), and use the objective funci@n pﬁo.
As for the actual minimization, we rely upon the simplex suline AMOEBA which is
numerically very efficient for our problem.

2.4.2 Additional Taylor-series expansions

As described in Section 2.4.4 below, our algorithm conssrdiaylor-series expansions of
Fi‘1 to compute those df,i : 1 — n. Very little work is required to reformulate it in terms
of the primitives of the problem, the distributiénand the bid functiong;. First, note that
the inverse bid functions; are given by

it :t+oo i i(t—to)l. 25
(t) jzgnﬂ 0) (25)

Next, we can rely upon Lemma 2 in Appendix A to transform Taxderies expansions of
F andA; into those oiFi‘1 ando;, respectively.

2.4.3 Support conditions

As expected from the formulation of equation (3), our altion can become numerically
unstable if theljs get too close to zero. Our current program implementagoguires
that tail areas of (very) low probability be truncated awkpte that such truncations are
commonly imposed in empirical applications since mostestion techniques for auction
models critically rely upon the invertibility of bid funains and lack robustness relative to
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tail area behavior of the latter. See e.g., Donald and Padl€96), Laffont et al (1995)
or Florens et al (2004). See also Marshall et al (2005) forrapiecal application where
truncation of an assumed Weibull distribution had to be isgabfor estimation purposes.
Note, however, that many distributions of interest witlctadle higher order statistics (e.qg.,
exponential, Weibull or extreme value distribution) havéoounded support. In practice
any such distributiors with unbounded support will be replaced by a truncated vesio
thereof F () F(Y)
" i\V)—FH(v
TV Ee R’

Transforming the Taylor-series expansioerﬁ‘1 into that ofFi*‘1 follows by application
of Lemma 1 in Appendix to the following composite function

VIV<W (26)

R W =R (R +UR©-RV)]), 0<u<l (27)

Such transformations are automated in our computer pragram

2.4.4 Automated Taylor-series expansions

Analytical Taylor-series expansions for inverse CDFs aaglable for a number of stan-
dard distributions such as the extreme value distributidmsh are commonly assumed in
empirical applications. However, there are situationsretieis is not the case. One such
important situation is discussed in Section 2.4.5 belowratvee analyze non-inclusive
coalitions. Other important examples would be applicaiatere empirical and/or non-
parametric CDFs have been numerically evaluated.

In order to accommodate such situations, our program iesl@dfully-automated nu-
merical procedure for the computation of (piecewise) Tagkries expansions for the in-
verses of arbitrary CDFs. This procedure incorporatesdheving steps:

1. We construct an equally spaced gfid; j : 1 — J} for the interval0, 1];

2. Using a standard root finder we compute the correspondimgglally spaced) grid
for the inverse CDFF 1, {vj;vj = F~1(u;);j:1— J};

3. Next, we construct B-spline interpolator foF ~. Specifically, we invoke the IMSL
subroutines DBSNAK (to construct a knot sequence) and DBSIN computeB-
spline coefficients). See de Boor (1978) for numerical tietai

4. Finally, we invoke the IMSL subroutine BSCPP to conveeBhspline interpolator
into a piecewise polynomial approximation, which provitles Taylor series expan-
sion needed for our algorithm.
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2.45 IMSL subroutines

Our program relies upon the following (double precisiomrsutines from the IMSL li-
brary, which we have found to be numerically very robust congnts of our algorithm:

DBETDF : Evaluates the beta probability distribution fuont

DNORDF : Evaluates the standard normal distribution florcti

DZBREN : Finds a zero of a real function that changes sign iivarginterval;

DBSNAK : Computes a “not-a-knot” spline knot sequence;

DBSINT : Computes a cubic spline interpolant with the “nelitreot” condition;

DBSCPP : Converts a spline in B-spline representation toepiese polynomial
representation;

DPPDER : Evaluates the derivatives of a piecewise polynbmia

A FORTRAN-90 program (source and/or executable) coveriitg@options described
in our paper can be obtained from the first author. See Selbtfona detailed user’s guide.
The executable version contains all the necessary compitetiles and does not require
access to the IMSL library. A user who plans to modify the sewnode will need access to
the IMSL library to compile the new source. This is particlylaelevant for the potential
addition of new baseline distributions in addition to thoserently offered Our program
is organized in such a way that adding a new baseline disimibis a straightforward oper-
ation. All it requires is the addition of a new subroutine ¢onpute its distribution function
(in the same calling format as DNORDF for the normal) plus aonmodification of the
input sequence to accommodate the new option (steps 9 toth& gequence as described
in Appendix D). Empirical CDFs are allowed as long as theysrietly monotone and,
therefore, invertible. The catch is that such additions redjuire a new compilation for
which access to IMSL is required. In general, we would beregtd in assisting in the
development of significant new extensions to our program.

2.4.6 Non-inclusive coalitions

It is not the objective of our paper to provide a theoretioakstigation of the stability of
non-inclusive coalitions within a first-price asymmetniarhework (which, in many cases,
would likely required repeated games concepts). Neversiselve can use our algorithm to
investigate numerically whether such non-inclusive ¢mais could potentially be incen-
tive compatible, and also, whether a strategic auctioneeidaeduce the profitability of
collusions. Pioneering examples of such computationsmudeante symmetric) uniform
distributions can be found in MMRS and Marshall and Schuteglf1998). See also Mar-
shall and Marx (2005) for an in-depth discussion of incentiempatible mechanisms for

2The current version of the program offers the following uisttions: two parameter Weibull, beta,
normal and lognormal. See Appendix D for details on how to loimie these into hybrid distributions in the
sense of formula (28) below.
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non-inclusive cartels, as well as an extensive list of eslaeferences.

Short of such theoretical analysis our algorithm can be tsadmerically evaluate bid
functions and expected revenues in the presence of nomsikel cartels, as long as one
treats such a cartel as a single representative bidder. Atienomm, such computations can
provide useful insight on potential incentives to defeal an the auctioneer’s capability
to reduce cartels’ profitability. For example, MMRS had atte illustrated the fact that
within an ex-ante (uniform) symmetric framework outsideesiefit more than insiders (on
a per capita basis) from the presence of a non-inclusivelc&@ne would not expect such
findings to generalize to asymmetric scenarios. In padricuihere exist numerous real-
life illustrations of the viability of non-inclusive cafeconsisting, for example, of better
informed players. One such situation was recently higldidghby the conviction of seven
leading stamp dealers and auctioneers who, for severas,ylead agreed not to compete
against one another at estate auctions of stamp collections

Specifically, in the context of our program, an arbitranytelconsisting oi= S ; ui
players, wheray; denotes the number of players of typds treated as a single player
drawing her signal from the corresponding highest ordeissizs CDF:

0 -Fiw)”
FEO-Fw

Taylor-series expansions for the inverseF6fare automatically produced by applica-
tion of the numerical procedure described in Section 2.4avea. It is also trivial to verify
that all probability and expected revenue calculationgdesd below remain valid under
such scenarios, with the only modification that the reverareputed represents the car-
tel's total expected revenue. As discussed above, we dasmigs allocation rules among
cartel’'s members and only provide per capita comparisotvgdas insiders and outsiders.

F%wzﬂLl[ (28)

3 Probabilities of Winning, Expected Revenues and Opti-
mal Reserve Price

Auxiliary statistics such as expected revenues, proliggsilof winning, and the probability
of retention under reserve pricing, are of critical impaga when discussing issues such
as the selection of the auction format by the auctioneemaptreserve pricing and, last
but not least, coalition formation. With respect to thedgttomparisons between bidders’
expected revenues under alternative (non-inclusiveyswi agreements provide key in-
sights on bidders’ willingness to collude. In particulas, @nfirmed further by example
3 below, one often finds that non-inclusive cartels are nogértive compatible in single-
object, IPV first-price auctions. This is not the case witbosal-price auctions. Marshall
and Marx (2005) provide in-depth analysis of bidder cobthmsi Such findings are critical
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components of the auctioneer’s selection of auction forwren collusion is suspected, a
rather common real life occurrence. They are also direefgvant for the selection of an
optimal reserve price as an effective tool to minimize thpawt of collusion.

In this section we provide expressions for expected reveand probabilities of win-
ning when the auctioneer sets a reserve price R, in the forsmgfle integrals (quadra-
tures). Moreover, the the integrands are products of auyiliunctions evaluated by our
algorithm over the intervelR, t.), wheret, itself is an implicit function oR. All the proofs
are regrouped in Appendix B.

The probability that groupwins the object under reserve R is given by

b 4i(t)
R Li(t)

R(R) =k My [65(1)]9dt. (29)

Note that N
k.
Y PRI =1- M [Fi(R)",
1=
confirming the obvious result that the probability that theteoneer retains the item is

given by
Po(R) = M7y [F(R)]. (30)

Groupi’s expected revenue is given by
Z/( ) n _ ki

Per capita expected revenue within graupccounting for subcoalition@; > 1), is then
given byVi(R)/ (ki - u;). Finally, assuming that the auctioneer receives a fixedspeage of
all winning bids, her revenue is proportional to

Va(R) =t. — RN"_ / Ny [¢5(t))9 dt. (32)

Note that formulae (29), (31) and (32) all depend upon urat@integrals of products of
the functions which are being evaluated by our algorithnr avéne grid of values of in
(R;t,). Therefore, these integrals can be evaluated by univagisidrature as immediate
byproducts of our algorithm. As we typically use grids withyavhere fromN = 500 to
N = 10,000 equally spaced points, we can rely upon the extendeds®mgrule with
remainder proportional tdl—* to numerically compute highly accurate estimates of all
relevant probabilities and expected reverfiies.

Moreover, the use of a fixed number of equally spaced gridtpamplies that these

3See Press et al (1986, Chapter 4) or Abramowitz and Segui8(C3pter 25) for discussions on the
numerical accuracy of the extended Simpson'’s rule.
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numerical integrals will be continuous functionsiRf Whence numerical simplex maxi-
mization ofVa(R) with respect tdR will itself be numerically very accurate. Note thain
formulae (29) to (32) is an implicit function & so that our algorithm has to be rerun for
each value oR selected by AMOEBA.

4  Asymmetric Second-Price Auctions

One of the immediate intended uses of our new algorithm isdhaeunning comparisons
between first- and second-price auctions under a varietgyohmetric environments. In or-
der to do so we need to derive operational expressions faotgg@ revenues under second-
price auctions. While Vickrey’s logic still applies, whésebidders bid their private values,
expected revenue calculations are more complex than umskepfice due to a wider range
of scenarios for the price paid by the winner.

The expected revenues and the probabilities of winning enstiicond-price auction
environment are given as follovs:

PR =k [ 6005 [F(] % dv (33
Po(R) = Ma [Fi(R)], (34)

Va(R) = V— RRy(R) — Rvn';_l IFi(v)] dv
DLIAELULNCITREY (35
V(R =k [ 11— RNy F () (36

As above, per capita expected revenue in griasmiven byV;(R) / (ki - u;).

As was the case for the first-price auction, formulae (33) éhd (36) are numerically
evaluated by quadrature. All probabilities and expectgdnae calculations for first-price
and second-price auctions have been incorporated in ooritilign allowing for automated
comparisons between first and second-price auctions undafeavariety of asymmetric
scenarios. Examples are provided below.

4The details of these calculations are found in Appendix C.
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5 Examples

In this section, we present three numerical illustratioithe capabilities of our program.
The parameters and, in particular, the truncation rgmgewere selected to produce graph-
ically well-separated bid functions. For the first two exadesp all type distributions are
truncated Weibull of the form given in formula (26) togetheth

F(v) = 1—exp|—(v/a)? . (37)

As mentioned above, our program then automatically progltiem Taylor-series expansion
for the inverse truncated distribution functiﬁiﬁfl as given by equation (27).

5.1 Example 1 (3 individual bidders)

We first consider 3 individual bidders (low, high, mediandgpand compute their first-
price asymmetric bid functions without reserve, as well &k wptimal reserve. We also
compute bidders’ (per capita) expected revenues, bidgeodabilities of winning, the
auctioneer’s expected surplus, and probability of ret@rthe item under reserve pricing.
The same statistics are also computed for second-priceasctThe graphs of the first-
price asymmetric bid functions with and without reservefamvided in Figure 1. Relevant
statistics are presented in Table 1. We note that the repeice impacts the bidders dif-
ferently, the larger impact being obviously felt by the higpe bidder. We also note that
in the absence of reserve, first-price is more profitablelfeructioneer (by about 5%) but
that the ordering is reversed under optimal reserve. Thie-tyige bidder always prefers
second-price, especially in the absence of a reserve.

5.2 Example 2 (2 individiual bidders)

This example illustrates the fact that asymmetric bid fioms can cross one another once
stochastic dominance no longer applies. Hazard functimmmanotone for Weibull distri-
butions. Our choice of shape parameters for this exampléamihat the hazard function
of bidder 1 is increasingb; = 1.5) and that of bidder 2 is decreasinigp (= 0.5). With
means close to one another it implies that the distributimctions cross one another at
v =1.45. It also implies that, as illustrated by Figure 2, the tvie flanctions cross one
another atv = 1.7. Expected revenues and surpluses, together with pratiegf win-
ning, with and without reserve prices, are reported in TableNe note that first-price
and second-price auctions are virtually revenue equivaesn though, in the absence of
reserve, second-price favors bidder 1. A systematic nwalenvestigation of whether rev-
enue equivalence holds under a particular asymmetric Boeg@es beyond the objectives
of the present paper but belongs to our research agenda.
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5.3 Example 3 (non-inclusive cartels)

MMRS offer a numerical investigation of incentive compdiiipwithin subcoalitions when
individual bidders all draw their valuations from a commanfarm distribution. Within
this (single-object) framework, they find that bidders algsthe coalitions benefit more
than those inside. Here we consider instead an asymmegm@aso where high type bid-
ders collude together in order to protect their informaticadvantage over low type bid-
ders.

This example is inspired by a recent court case where a groypominent stamp
auctioneers and dealers were found guilty of collusion@tesuctions. While their cartel
operated for several years, our example illustrates thetfiat such non-inclusive cartels
could be incentive compatible even within a single objeatrfework (ignoring, however,
proxy defections as analyzed by Marshall and Marx (2005)%. ddhsider two bidders of
high type (H) against four (non collusive) bidders of loweayfh). Signals are lognormally
distributed with a common standard deviation 0.35 and méa&8%sand 0.75, respectively.
The common support for signals is the interval [1.5, 6.0].siRes for the non collusive
benchmark scenario are reported in Table 3. Graphs of thesmonding bid functions with
and without optimal reserves are provided in Figure 3. Res$ol subcoalitiongH,H} and
{H,H,L} are reported in Table 4, and Figures 4 and 5.

The impact of the collusion among high types is greatest useleond-price auction.
Under first-price, low types also benefit from the presencthefcartel (even more than
high types percentage wise). Reserve is most effectiversat®nd-price (and would be
even more effective if items kept by the auctioneer had deesdue). In the future, we
plan to investigate whether the effectiveness of optinsgmnee requires precise knowledge
of the cartel composition by the auctioneer.

6 Numerical Accuracy and Computational Time

Accuracy of the numerical approximations of the equilibribid functions depends pri-
marily on two variables. The first is how fine a grid is choserwgnich to evaluate the
component distributions. A finer grid leads to higher accyraf the numerical approxi-
mations. The second variable is the order of the Tayloeseapproximations chosen to
approximate these distributions. A higher order Taylateseexpansion does not necessar-
ily lead to higher accuracy. Indeed, an order of approxiamathat is too high can lead to
significant numerical pathologies.

A reliable method for evaluating accuracy consists of cotimgupointwise best re-
sponses for each individual bidder and comparing them tdlEhstrategies. Given bidder
i's signal, his best response depends on the distributioctiturs and (inverse) bid func-
tions of his competitors. His best response function do¢slepend on his own distribu-
tion function. This is seen clearly in equation (3). Thusgegihis competitors’ equilibrium
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strategies and distribution functions, we can use equéBipto compute pointwise the best
response of bidder His best response function can then be matched againstytiiée
rium function computed by the algorithm and the differeneenzen these two functions
provides a measure of the accuracy of the algorithm. A redemmetric, and the one we
use in this paper, is the root of the mean squared deviatiblSR) between the equilibrium
bid function and the best response function.

An important illustration of the usefulness of such comgams is provided by example
3. Figure 5 reveals a curious “blip” in the bid function of tbealition. The bid function
dips down between private values of 2.0 and 2.5. This giwestd the question of whether
this blip is the result of a numerical error, or if it is a ratad response by the collusion to the
strategies of the outsiders. This question can be answegretkbmethod of verification we
just described. Figure 6 reproduces the equilibrium bidtiom of the coalition and also
plots the best response of the coalition computed as desciibSection 5. The reaction
function (bold dotted line) coincides exactly with the camgxd bid function (solid line).
This confirms that the blip is indeed an equilibrium reactgrihe coalition to the strategies
of its competitors.

Higher accuracy of the numerical approximations to theldayium bid functions comes
at the cost of increased computational time. For a small murabtypes of bidders, one
can be liberal with the size of the grid and the order of thddrageries expansions. How-
ever, for models with a large number of types of bidders, thtemqtial computational time
increases significantly. Though this is not a significantatie in our current applications,
computational time can quickly become a problem in others. ilAportant example is
that of empirical applications where the algorithm wouldrsrumental in the estimation
of the underlying private values distributions. In this @athe model would have to be
solved for each trial value of the vector of parameters ofptireate values distributions,
and one might have to be conservative with the size of theezhgsd. In this section, we
present a small study of the trade off between accuracy aeeldsas controlled by these
two variables.

Table 5 reports the computational time and the RMSE betweeaduilibrium bids and
reaction functions of two bidders. The first panel fixes thdeoof Taylor-series expansions
to 5, and evaluates these statistics for the number of giidgbeing 500, 1000, 1500, and
2000. The table reveals that the computational time ineselsearly with the number of
grid points. The computational time increases by 0.11 sgésenth a one point increase
in the number of grid points. The RMSE for each bidder is desireg and concave in the
number of grid points. Indeed, the decrease in the RMSE issraall for large increases in
the number of grid points. This suggests that there is nott@Igain in terms of accuracy
by increasing the number of grid points. A relative small twemof grid points like 500
provides almost the same numerical accuracy as a largererurhrid points like 2000.

The second panel of Table 5 fixes the number of grid points @ogs@l increases order
of Taylor-series expansions incrementally from 2 to 5. Toeputational time increases
linearly by approximately 7 seconds with each increase énditder of the Taylor-series
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expansions. Interestingly, the numerical accuracy of tbdunctions are invariant to the
order of Taylor-series expansion. The third panel of Tabb®Isters this conclusion. The
modest local curvature of the Weibull distribution functioould possibly explain the in-
variance of the accuracy of the program to the order of théofegeries expansion.

The conclusion of this exercise is that the investigatosésovery little in terms of nu-
merical accuracy by using a relatively small number of gothfs and a low order Taylor-
series expansion. The time savings is, however, significant

7/ Procurements

Our algorithm can also be applied to procurements. The sacgmodifications are minor
and are described briefly in this section. For the procurésq@oblem, bidderwith signal
v € [v, R] submits a bid which is solution of the optimization problem

t=arg max(u—Vv) - [Hi(Ai(u)] 4 Hi( ()], (38)

ue(v,R)

whereH;(x) = 1— F(x). The Ordinary Differential Equations (ODESs) resultingrfrahe
First Order Conditions (FOCs) are given by

—1=[H 1) —t]- [i K E/J—E:;] ,i=1—n, (39
=1 j
where/;(t) = Hi(Ai(t)). The boundary conditions fav and/; are given by
AR =R, Aj(ty)=v, i:1—n,and (40)
4(R)=Hi(R), /i(t)=1 i:1—n, (41)

respectively. Under this setup, the algorithm to computelégium bids here mimics ex-
actly the one derived in Section 2 to compute equilibriunshidthe auction environment,
except for two changes. The first is that the RHS of equati@hi€nowi, instead of—i.
The second is that the recursion on the gritlisfa forward iteration instead of a backward
iteration. The probabilities of winning and expected rexesnin the low-price procurement
environment, are given as follows:

R4

AR =k . 4i(t)

My [65(0)]9dt, (42)

Po(R) = Ny [Hj(R)]Y, (43)
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Rr o / K
Vi(R) ==k | A1) —t] - sy [ 0], (44)

t.
Va(R) =t, —RM"_, [Hj(R)]kj—i—/t* 7 [65(6)]9 dt. (45)

The corresponding probabilities of winning and expectaemees in the second-price,
procurement environment, are given as follows:

R4

R(R) =~k t, Li(t)

My [65(0)]9dt, (46)

8 Conclusion

In this paper, we developed a new, powerful and fully-autehaumerical algorithm to
solve single-object, asymmetric IPV, first-price auctiombe algorithm allows for a wide
variety of (non-inclusive) coalitions, as well as, for thecaoneer to set a reserve price.
We provide operational univariate quadratures to evalpatbabilities of winning, the
probability that the auctioneer retains the object, as aglthe expected revenues to the
bidders and the auctioneer. The expected revenue to thmeet is maximized with
respect to the reserve price to obtain the auctioneer’sngptieserve price.

The paper also provides operational expressions for eggeetvenues and probabilities
of winning for corresponding second-price auctions. Adigasymmetric first-price auc-
tions environment, these expressions only require urgt@ntegration of functions evalu-
ated by the program. This results in high numerical accyrabich is essential when com-
paring first-price to second-price auctions, as the diffees in expected revenues across
these environments may be small in many cases. Furtheralboé the options and quan-
tities that the algorithm provide for the first- and secomdg auction environments are
replicated for first- and second-price procurements.

Pointwise best responses for each bidder type, given thiéilbeaqum bid of all other
types are also calculated by the program. This providesecoent check of the numerical
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accuracy of the algorithm, since the best responses fumstiould coincide with their
corresponding equilibrium bid functions. This check of@ecy is particularly important
in cases where the densities of the private value distohutinctions are close to zero at
the support points. Our experience with the program is thatyjany of these cases, the
algorithm still converges. However, due to the possibl¢ainisity of the algorithm at the
support points, the solution may not be accurate. The bepbrese functions therefore
provide a convenient and important check of the accuracles$olution in these cases.

The algorithm proposed in this paper relies on accurateepise Taylor-series expan-
sions of the inverse of the private values CDFs. While arayTaylor-series expansions
for the inverse CDFs are available for some distributidmeg are many situations in which
this is not the case. Relying on analytical Taylor-serigsa@sions would therefore limit
the variety of CDFs that could be employed. We avoid thigiagin by including in the
program a fully-automated numerical procedure for the aatadjon of piecewise Taylor-
series expansions for the inverse of arbitrary CDFs. Thisarical procedure currently re-
lies B-spline interpolators and piecewise polynomial agpnations taken from the IMSL
libraries. Readers using the executable version of ourrproglo not need access to the
IMSL library. Modifications to the source program will regaiirecompilation with access
to IMSL. We can provide assistance for significant new extarssof our program.

Appendix

A Lemmas on Taylor-series expansions

We prove here two lemmas which are used in the paper to eealagtor series expansions
for composite and inverse functions. Lemma 1 is taken fromR8but is included here
for the ease of reference.

Lemma A.1. Let

00

W= filu-w)l, gt)= gt—to), (A1)
2,1t 2,

together with g = g(tp). Then

[oe]

(fog)(t %a, t—to)] (A2)
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where g = fpand for j> 1

J.
aj = Z fiBk j, (A3)
K=1
and where th@s are evaluated recursively as follows
j—k+1
Bkj= > OBk-1j-s, 1<k<], (A4)
$=1

with 9070 =1

Proof: We have )
S

fo = 00f S s(t — .
(fog)(t) kZOkL;Q(t to)]

Whencea; is given by formula (A3) wher®, j denotes the coefficient ¢f —to)! in the
k-th power of the factor in brackets. Formula (A4) followsrfrahe identity

(AS)

[ee] [ee]

iem(t—to)j = [ 9k—17r(t—to)r] ' [Z gs(t—to)s] : (A6)
= r=k—1 s=1

Lemma A.2. Let 1 denote the inverse of f

[ee]

f~1x) = Y hj(x—xo), (A7)
,; j
with xo = f(tg). Then
ho =X, hi=f1 (A8)
i1
hj=—f1 [Z hkekv,-]. (A9)
k=1

Proof: We apply Lemma 1 together with= f 1, whence

(g tog)(t) =t=to+(t—to).

This implies thatag = a; = 1 andaj = 0 for j > 1 in Formula (A3). The proof follows
from formulae (A3) and (A4), with the latter implying th@f ; = flg.
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B Derivation of expected revenues and the probability of
winning in the first-price IPV auctions

The following conditions have to be met for a bidder from groto win
R<vi<v and vj <Aj(A; L)) for j#i. (B1)

Whence the probability that groupvins is given by

=k [ BN (8 v ) o (B2

whereki; = ki —1 andk;ij =kj for j #1i, as in Section 2 above. Introducing the change of
variablet = A(l(v) and rearranging terms yields the following operationalregpion

A

n k
AR =k [ o Ml )dt (B3)
Summing over groups gives
ZP | w DMy (650"
_/ L[4 dt_l N, [F(R]Y, (B4)
Groupi’s expected revenue is given by
n K
—k [ v V)M [FOGATH W) dv (B5)
which can be rewritten as
P b -1 E{(t) n ) Kj
_K/R i TORLEIGICIAS (B6)

The auctioneer’s revenue is proportional to

ZK/ i) M [F (2] v (87)
= [t [l 0]9) a (B9

23



Integration by parts produces the following expression

Va(R) =t, — RN"_; [Fj(R)]" —/:n?_l [¢;®)]9 dt. (B9)

C Derivation of expected revenues and the probability of
winning in the second-price IPV auctions

Several pricing scenarios need to be considered. Focusingttention on group, let
V1 > Vo denote the two highest order statistics in grogpnplicitly assuming thak; > 1,
but one verifies that the formulae derived below also appi¥ife- 1) and letw; denote the
highest order statistic in groujp(j # i). The following pricing scenarios are relevant:

Eir: priceisR; i.e.,vi >R v» <R, wj <R, for j #1i;
Eiji: priceisvy; i.e.,vo >R, vo > wj, for j #i; and
Eij: price iswj;i.e.,wj >R, wj > vo, wj > wy, for £ # |,i.
Probabilities and expected revenues are indexed confdymEie relevant densities are

ki (V1,V2) = ki (k — 1) fi (V) fi (V) [R (v2)] 72 v1 > v, (C1)

ki (w) = kj £ (w) [F(w)] 9. (C2)

Note that by relying upon thg’; notation introduced in formula (2), a common treatment
applies to scenarig; ; andE; j(j # i). The probability that groupwins and pays eithen
or wj is given by

.lealJ(R) =k {jzlkiﬁj /Rv fi(vl) . {/RVl fj(v> . [Fj (Vﬂkifjfl

J

MesilFe)Sedvh dwi } (C3)

wherev denotes/, for j =i andwj for j #i. As in Appendix B above, we first apply inte-
gration by parts to the outer integral and regroup terms tainbhe following expression

élp'yj(R) =k ‘/RV [1-FK(v)]- [I_I?Zl[Fj (V)]Iqi]/dv. (ca)
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A second integration by parts produces

i PR / VA", [F(v)]5 dv

j=1
—ki[1—R(R] M)y [Fi(R)] . (C5)
Note that the second term in the right hand side of formulg (Garesent® r(R). Whence
the probability that groupwins is given by
R(R)=PR(R)+ =k [ )M [F ] v (c8)
Note that

3 AR = [ (Mo [FW]) v= 1N R R -1-R®. (©7)

Next, we derive the auctioneer expected revenue which engiy

Va(R) = .i{HR(R) +k {ilki*vj /RV fi(v)1 {/R"lvfj (V)
i= j=

R e (RS dv] da } . (c8)

The same integration by parts sequence as for the prolygmibduces the following ex-
pression paralleling formula (C6)

__.iki/RV(V[l— V)))' M [Fy (v)] S (C9)

- [ v ) av- 5 k (AR R co

or equivalently, after a third integration by parts,

—_im =R [F W] v 1y
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The expected revenue for grous derived in the same way. We first have

*

Mi(R) =k { {/RV(V— R)fi (v)dv} N [F(R)]

+élkifi /RV fi(vy) {/va(vl_v)fj(v) [Fj (V>}I‘i*7j_1 My [Fé(v)]"f‘.zf dv} dvl}. (C12)

Integration by parts of the first integral inand of the outer integral im; produces the
simpler expression

ViR =k { R [ vFu(V)dV] 7 (R}

[ (M R0 ) ave [ R [ @) - R @i e €19

Integration by parts of the second factor in the rlght hade sif formula (C13) and cance-
lations produce the following operational expressiorMor

— ki [ = ROIMAlF () (c14)

D User’'s Guide

Our FORTRAN-90 Program includes all the options descrilvethe paper. It currently
includes the following four options for the (baseline) pitiz-values CDFs: two parameter
Weibull, beta, normal and lognormal. The most powerful deatof our program is that
it allows for combining these baseline CDFs into hybrid griasthe sense of formula
(28). Such hybrid CDFs can be used to characterize coaitonndividual players. As
explained in section 2.5, coalitions are treated as sinfgigeps for the computation of
equilibrium bids. The only difference is that in the case @éldions, expected revenues
are those of the coalition, since we have not hypothesizgdlalition mechanisms.

In order to eliminate any confusion, we shall use the prefixeand h- to distinguish
between baseline and hybrid. In order to illustrate the ftakibility of the program we
provide below the actual input sequence (in italics), togewith clarifying comments, for
example 3. Multiple inputs are separated by a space. In xaisi\ple there are two b-types
(H, L) each characterized by a lognormal b-CDF and two hgy{2H, 1L), (1L)) each
characterized by the corresponding h-CDF obtained by egijpin of formula (28).
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(1) Enter 1 for auctions, or 2 for procurements:

(2) Enter number of h-type2

These are the hybrid types (2H, 1L) and (1L) which will be dediin steps (5) below.

(3) Enter the order of Taylor-series expansidn:

We recommend orders between 2 and 5. Theoretically, higlier® produce better ap-
proximations, but numerically the computation of highedess derivatives can have the
opposite effect.

(4) Enter the number of grid-point2000

Generally, increasing the number of grid-points increas@serical accuracy. As sug-
gested by Table 5, gains in accuracy are typically small bey®00 grid-points but can,
nevertheless, be important when comparing expected regeacross auctions, as these
can be very close to one another.

(5) Enter the number of players of each h-type3

As mentioned above, we have one single player (coalitiorf)-tyfpe (2H, 1L) and three
players of h-type (1L).

(6) Enter the (common) lower bound of the support of the pervalues CDFs1.5

(7) Enter the (common) upper bound of the support of the privalues CDFs6.0

These are the boungsandv in equation (28).

(8) Enter a reserve pricel.5

R should be betweemandv. Setting R equal to/ amounts to no reserve. If one subse-
guently requests the computation of an optimal reserve (4i4) below), then the search

algorithm uses the value entered here as initial value.

The b-CDFs, along with their parameterizations are (sge,JJehnson et.al. (1994)):
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1. Two parameter Weibull F(x) =1— exp(— (g)B)
2. Beta F(x) = [F AP g
: ' 0 flye-t1—uB-idu X
3. Normal F(x) = ffooo—\}ﬁ exp(—% =) )du;
U 2
4. Lognormal FX) = [ e yovmm exp(—% < " u) du.

Here is a menu of b-CDFs to choose from (see user’s guide f@anpaterizations):
1 - two parameter Weibull,
2 - beta;
3 - normal;
4 - lognormal.
(9) Enter the number of b-CDF2
These will be the two lognormals characterizing the b-typesd L, respectively.
(10) Enter the index of each b-CDH:4
In this example we use two lognormals.
(11) Enter mu and sigmet.35 0.35
Enter mu and sigmad.75 0.35
There is one step (11) for each b-CDFs.
(12) Enter the exponents of the b-CDF for h-type&1t
Enter the exponents of the b-CDF for h-typed2t
These are the; exponents in formula (28) for each h-type. h-types can ¢denwith

b-types, which is the case here for h-type 2 which is alsope-ty. After step (12), the
program produces the following statistics for each h-type:

MEAN : mean of the truncated distribution;

ST. DEV : standard deviation of the truncated distribution;
LPDF - density function at the lower bourg

UPDF . density function at the upper bouwid

CRIT : lower bound of CDF.

The truncated mean and the standard deviation are evaloagéedhe supportv andv).
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LPDF and UPDF allow the user to verify that the densities avenerically) bounded away
from zero as required for uniqueness (Lebrun, 1999). Vdmesr than 0.10D-13 (double
precision) are likely to create problems. Since inverse €£Bfe critical components of
the algorithm, inversion could fail on very low values of t6®F. Based upon repeated
experiences, values of CRIT lower than 010.D-07 could ddsta the algorithm.

The output for the current example is as follows:

TYPE MEAN ST.DEV  LPDF UPDF CRIT
1 4.37929 0.85630 0.45D-12 0.19D+00 0.32D-11
2 2.43531 0.72407 0.56D+00 0.27D-02 0.13D-02

Uniqueness is not guaranteed if any LPDF or UPDF is less thd®D-13. The program
is numerically unstable and might even crash for values diff@&ss than 0.10D-07. If any
of these conditions is violated you might consider shonigihe support and/or adjusting
the parameters of the b-distributions using the followipgans:

(13) Enter 1 to continue, 2 to adjust the parameters
and/or support (return to step 6) or 3 to exit:

(14) Enter 1 if you wish to compute the optimal reserve.
Enter 2 if you wish to keep the reserve entered in step 8:

(15) Enter an output file nameiustration.txt

The output file will contain the grid of private values togathvith the corresponding equi-
librium bids for each h-type.

Time taken: 190.7404s
Writing grid points and bids to file: illustration.txt

(16) Enter 1 to compute expected revenues, and probabibfigvinning.
Enter 2 otherwisel

If 1 is entered, the program computes expected revenudslpitities of winning and prob-
abilities of retention by the auctioneer.

(17) Enter a revenue file namallustration.txt

This step is skipped if 2 is entered at step 16.
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(18) Enter 1 to compute individual best responses. Enteh@ratise: 1

If 1 is entered, the program computes a best response forhelygde by solving equations
(1) point-wise under the equilibrium bid functions for altal players. Note, in particular
that if there arek; > 1 players with h-type i, thek — 1 rivals are assigned their equilib-
rium functionl;(t). Comparisons between equilibrium bid functions and irdiial best
responses provide immediate verification of the numericalieacy of the former. In the
present example, the equilibrium bid functions are veryieate in spite of a critical CRIT
value of 0.32D-11 for h-type 1.

(19) Enter a best response file nanteillustration.txt

This step is skipped if 2 is entered at step 18.
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Table 1: 3 bidders (median, low, high).
V \bj
F(v)=1- e (&) ,truncated on0, 5].

Type Auctioneer
1 2 3
ki 1 1 1
Uj 1 1 1
a 2.0 1.0 3.39
b; 1.0 1.0 220
mean 155 0.966 2.71

std. dev. 1.25 0.911 1.15

First-price, no reserve

E(revenue) 0.344 0.111 0.912 1.65
Prob ‘win’ 0.29 0.13 0.58 —
First-price, optimal reserve=2.016

E(revenue) 0.225 0.061 0.622 1.851
Prob ‘win’ 0.22 0.08 0.51 0.18
Second-price, no reserve

E(revenue) 0.246 0.069 1.16 1.57
Prob‘win” 0.22 0.08 0.70 —
Second-price, optimal reserve=2.016
E(revenue) 0.181 0.045 0.692 1.858
Prob ‘win’ 0.18 0.06 0.58 0.18
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Table 2: 2 bidders.

\'

F(v)=1- e @) i,truncated on0, 4.

Type Auctioneer

1 2
hazard increasing decreasing
ki 1 1
Ui 1 1
a 1.11 1.50
b; 1.50 0.50
mean 1.00 0.84
std. dev. 0.67 1.01
First-price, no reserve
E(revenue) 0.481 0.463 0.440
Prob ‘win’ 0.58 0.42 —
First-price, optimal reserve=0.98
E(revenue) 0.211 0.297 0.656
Prob ‘win’ 0.33 0.28 0.39
Second-price, no reserve
E(revenue) 0.55 0.40 0.44
Prob ‘win’ 0.64 0.36 —
Second-price, optimal reserve=0.93
E(revenue) 0.230 0.303 0.660
Prob ‘win’ 0.37 0.27 0.36
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Table 3: No collusion, 2 high types (H) and 4 Low types (L)
v ~ LN(1.35,0.35), v+ ~ LN(0.75,0.35) truncated orj1.5, ).

First-price Second-price
Mean Std.dev. Prob. Rev. Res. Prob. Rev. Res.
H 3.756 1.030 0.393 0.385 0.415 0.413
L 2435 0.724 0.053 0.031 0.042 0.025
Auc. 0.000 3.557 0.000 3.536
H 3.756 1.030 0.394 0.386 0.415 0.411
L 2435 0.724 0.053 0.031 0.042 0.024
Auc. 0.000 3.558 2.170 0.001 3.537 2.395

Table 4: Collusion exercise between 2 high types (H) and 4 typas (L)
v ~ LN(1.35,0.35), V- ~ LN(0.75,0.35) truncated orj1.5, ).

First-Price Second-price
Mean Std.dev. Prob. Rev. Res. Prob. Rev. Res.
HH 4.346 0.880 0.668 0.906 0.832 1.227
L 2.435 0.724 0.083 0.050 0.042 0.025
Auc. 0.000 3.287 0.000 3.135
HH 4346 0.880 0.675 0.857 0.801 0.998
L 2435 0.724 0.073 0.044 0.038 0.021
Auc. 0.026 3.297 2.972 0.048 3.237 3.134
HHL 4.379 0.856 0.706 1.019 0.874 1.398
L 2435 0.724 0.098 0.060 0.042 0.025
Auc. 0.000 3.181 0.000 2.989
HHL 4.379 0.856 0.709 0.902 0.815 0.977
L 2435 0.724 0.077 0.045 0.035 0.020
Auc. 0.048 3.225 3.134 0.079 3.185 3.300
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Table 5: Study of the trade off between numerical accuradycamputational.
Fi(v) = 1— eV, F(v) = 1— e (2%)*? truncated orf0, 5.
Order of Expansion, J=5

Grid Time(sec.) RMSE1l RMSE 2

500 37.1880 0.4000 0.0882

1000 95.3590 0.3988  0.0868

1500 146.1250 0.3984 0.0864

2000 202.2500 0.3982  0.0862

Number of grid points = 500

J Time (sec.) RMSE1 RMSE 2

2 18.1880 0.4000 0.0882
3 32.2810 0.4000 0.0882
4
5

38.7030 0.4000 0.0882
46.4690 0.4000 0.0882
Number of grid points = 2000
J Time (sec.) RMSE1 RMSE 2
2 93.4530 0.3982  0.0862
3 139.4530 0.3982 0.0862
4
5

173.8120 0.3982  0.0862
202.2500 0.3982  0.0862
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Figure 4: Two high types colluding
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Figure 5: Two high types and one low type colluding
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Figure 6: Comparison of equilibrium bid function and reantfunction
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