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Abstract

We propose a powerful, fully automated, and numerically robust algorithm to com-
pute (inverse) equilibrium bid functions for asymmetric, Independent Private Values,
First-Price auctions. The algorithm relies upon a built-inalgebra of local Taylor-series
expansions in order to compute highly accurate solutions tothe set of differential
equations characterizing first order conditions. It offersan extensive user friendly
menu whereby one can assign commonly-used distributions tobidders and can also
create arbitrary (non-inclusive) coalitions. In additionto (inverse) bid functions, the
algorithm also computes a full range of auxiliary statistics of interest (expected rev-
enues, probabilities of winning, probability of retentionunder reserve pricing and, on
request, optimal reserve price). The algorithm also includes a built-in numerical pro-
cedure designed to automatically produce local Taylor-series expansions for any user-
supplied distribution, whether analytical or tabulated (empirical, parametric, semi- or
non-parametric). It provides a tool of unparalleled flexibility for the numerical investi-
gation of theoretical conjectures of interest and/or for easy implementation within any
numerical empirical inference procedure relying upon inverse bid functions.
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1 Introduction

In this paper, we propose a powerful numerical algorithm to solve first-price, single-object
auctions, where bidders draw Independent and Private Values (hereafter IPV) from hetero-
geneous distributions, allowing for subsets of bidders to collude and for a set reserve price.
We also provide operational univariate quadratures to evaluate probabilities of winning, as
well as expected revenues for the bidders and the auctioneer. The latter is used to compute
optimal reserves under asymmetric environments. This alsoenables us to provide insights
as to whether collusion among subsets of bidders is sustainable.

We first review some of the relevant literature. Much of the earlier auction literature as-
sumed that bidders draw their signals from a common underlying distribution. Pioneering
contributions include Riley and Samuelson (1981), Milgromand Weber (1982), Matthews
(1983), and Maskin and Riley (1984). Important theoreticalresults such as revenue equiva-
lence theorems obtain under symmetry. However, the assumption of symmetry is often far
too restrictive for many empirical applications.

Relaxing the symmetry assumption prevents analytical derivation of (first-price) bid
functions and, therefore, considerably complicates revenue comparisons. Nevertheless, im-
portant results have been derived under asymmetry. For example, existence and uniqueness
results under asymmetry can be found in Lebrun (1996, 1999, 2006) or Maskin and Riley
(2000a, 2000b). Furthermore, under stochastic dominance,Maskin and Riley (2000a) show
that the high-bid auction dominates the open-bid auction interms of seller revenue and that
the strong bidder (with the stochastically dominant distribution) shades his bid more than
the weak bidder. They also provide examples of situations where the seller revenue is
higher in open auctions than in high auctions. From a numerical perspective, a pioneering
contribution which lead to the present paper is found in Marshall et al (1994) (hereafter
MMRS). They proposed a numerical algorithm to compute first-price, equilibrium-bid
functions in a two (subgroups of) players asymmetric environment under uniform distri-
butions. Actually, the MMRS framework also implicitly assumes stochastic dominance.
Marshall and Schulenberg (1998) modified MMRS to accommodate reserve prices set by
the auctioneer.

Other numerical algorithms have been proposed in the literature. Of particular inter-
est is the program BIDCOMP2 by Li, Riley and Tang.1 The program is user-friendly but
restricted to (truncated) power and/or Normal density functions. It has allowed Riley and
Li (1997) to make several strong claims relative to a varietyof asymmetric scenarios. Two
quotes from the authors are relevant for the present paper: “Possibly there are other impor-
tant classes of distributions for which quite different conclusions may emerge. We strongly
encourage any suggestions along these lines;” and, “Because the differential equations
which define the equilibrium bid functions are very poorly behaved at the lower end-point,

1See Riley and Li (1997) for comments and applications. The program can be downloaded from the site
http://www.econ.ucla.edu/riley/bidcomp/.
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there are some quite complex technical issues which had to bedealt with before we could
develop such a program.” The algorithm we present here addresses these two key issues
at an unparalleled level of generality and provides, therefore, a powerful numerical tool
to reassess Riley and Li’s main findings in a much broader context. The illustrations pre-
sented below contribute a first step toward a more systematicanalysis, which goes beyond
the objectives of the present paper, but does belong to our research agenda.

Another relevant paper is that of Bajari (2001) who proposesseveral numerical meth-
ods to solve asymmetric auctions (and procurements) in order to compare competition and
collusion. The first algorithm is essentially that of Riley and Li (1997) which is found to
be often slow to converge, an issue of significant concern in applied work where it may
be necessary to evaluate the inverse bid functions a large number of times. A second al-
gorithm makes the initial guess that participants bid theirvalues and then iterates on the
best responses. This algorithm is faster than the first one but convergence is not guaran-
teed as pointed out by Bajari himself and confirmed by our own earlier experimentation
with iterated best responses. Athey (1997) confirms numerical instability within a similar
framework using discretized strategies and types spaces (though, as pointed out by Bajari,
the use of closed form derivatives - as available e.g., undernormality - can significantly al-
leviate, but not eliminate numerical instability). Bajari’s third algorithm assigns parametric
flexible functional forms to the bid functions (typically low order polynomials), and solves
for equilibrium within such constrained strategy spaces. It is closely related to the concept
of Constrained Strategic Equilibrium (CSE) proposed by Armantier and Richard (1997)
and will often produce accurate numerical approximations to the (unknown) equilibrium
bid functions in view of their typical smoothness. It is found to be fast, at least with good
starting values. It remains, however, an approximation whose accuracy needs to be care-
fully assessed. Armantier and Richard (1997) suggest comparison of the individual best
responses to CSE strategies, which can be numerically evaluated point by point. Note that
the algorithm we propose offer such verifications as an option.

To some extent, Bajari’s third algorithm is the one which is most closely related to ours
since both rely upon polynomial approximations. There is, however, a fundamental differ-
ence between the two. Bajari’s algorithm produces approximate solutions (as emphasized
by Bajari himself) based on a singleglobal polynomial approximation for each (inverse)
bid function. Ours relies upon a fine grid sequence oflocal polynomial approximations in
order to produce highly accurate and exact solutions to the first-order conditions. More-
over, as explained below, these local (Taylor-series) approximations can also be used for
highly accurate numerical evaluation of all related statistics of interest, such as expected
revenues and probabilities of winning, and the probabilityof retention under reserve pric-
ing. Bajari does not discuss the computation of such statistics, but does provide first-order
approximations for some in the context of a truncated normaldistribution example.

The paper by Athey (2001) presents powerful existence theorems for a broad class of
games of incomplete information under a single crossing condition. She relies upon infinite
sequences of increasingly finely discretized games and suggests that a similar approach
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could be used to compute equilibrium solutions. An earlier working paper, Athey (1997),
provides examples. However, as discussed above, convergence remains a critical issue
since the resulting sequence cannot be constructed into a global contraction mapping. As
Riley and Li (1997), as well as Athey (2001) emphasized, the pathological behavior of the
system of differential equations at the origin is important.

All in all, the literature clearly offers several innovative proposals for the numerical
evaluation of (inverse) bid functions for single object IPVfirst-price auctions. Neverthe-
less, there does not currently exist user-friendly, fully-automated algorithms of sufficient
generality either to allow broad investigations of theoretical issues of interest or, foremost,
to meet the needs of practitioners (uniform, power functions and/or normal distributions
are typically far too restrictive to provide adequate empirical characterizations of bidders’
value distributions). Riley and Li’s BIDCOMP2 software contributes a pioneering step to-
ward user-friendliness, but remains too restrictive in itsselection of distributions, nor can
it accommodate cartel formation (since the distributions it currently incorporates are not
closed form order statistics). The other algorithms we discussed require significant custom
programming by their potential users. The algorithm we propose in the present paper fills
that gap.

In the present paper, we generalize the MMRS algorithm to a much broader class of
first-price, asymmetric IPV auction and procurement problems, allowing for arbitrary num-
bers of (subgroups of) players independently drawing theirvaluations from arbitrary dis-
tributions. Common distributions (exponential, Weibull,beta, normal, lognormal,...) are
offered as options in the program. Additional distributions can easily be added by users
in the form of a subroutine. Our program takes care of constructing Taylor-series expan-
sions for these distributions. The only (standard) restriction is that these distributions have
common support. Stochastic dominance is not required. Thiswill enable us to investi-
gate whether existing results generalize when stochastic dominance no longer holds. As
in MMRS, we are actually computing numerical solutions to a system of Ordinary Differ-
ential Equations (ODEs) characterizing the first-order conditions for a Nash equilibrium.
The solution belongs to a class of two-point boundary value problems and is evaluated by
recursive application of (low order) Taylor-series expansions. As highlighted by previous
authors (Marshall et al. (1994), Riley and Li (1997), as wellas Athey (2001)) the problem
is ill-defined at the origin and requires backward extrapolation starting from the end-point.
Since the latter is unknown it needs to be determined by iteration. Uniqueness of this end-
point follows from Lebrun (2006) and is also proven by backward extrapolation. Based on
Lebrun’s derivation, the search for the end-point is very well-behaved, as we shall discuss
further below. We note that Bajari’s (2001) third algorithm, which relies upon global poly-
nomial approximation, does not require an explicit end-point search, but iterates instead on
individual best responses.

For ease of implementation, our algorithm currently reliesupon equal spacing subdivi-
sions of the support of the component distributions. While this has proved to be numerically
stable for most distributions, occasional pathologies (specifically, densities which are not
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bounded away from zero on their supports) would require smarter adaptive selection of step
size. Such robustification goes beyond the objective of the present paper and are currently
addressed by increasing the number of points in the grid as much as needed.

The key advantage offered by our algorithm relative to MMRS lies in its capability
to accommodate arbitrary distributions, providing us witha powerful tool to investigate
whether classic results (revenue equivalence, a.s.o.) extend to situations where symme-
try and/or stochastic dominance are no longer assumed. Thisfeature also provides broad
flexibility for the analysis of (sub)coalitions.

The paper is organized as follows. The baseline model and thesolution algorithm
are described in Section 2; expected revenue calculations are provided in Section 3 for
first-price auctions and in Section 4 for second-price auctions; numerical examples are
presented in Section 5; numerical accuracy is discussed in Section 6 ; Section 7 presents
the procurement version of the algorithm and Section 8 concludes.

2 The Algorithm

2.1 Baseline model

We consider here a single object IPV first-price auction. Bidders submit sealed bids, the
highest bidder wins and pays his bid. There areN potential bidders. Only those with
private valuations above the reserve priceR set by the auctioneer submit competitive bids.
Bidders are ex-ante heterogeneous. Each bidder belongs to one of n types. Each type is
characterized by a distribution functionFi on a common support[v, v]. There areki bidders
in groupi for a total ofN = ∑n

i=1ki (potential) bidders.
Bid functions are denoted by the Greekϕi , i = 1, · · ·n. Bidders are assumed to be

risk neutral with utility from winning the auction with a bidb given a typev defined as
Ui(v− b) = v− b. The generalization to constant risk aversion is fairly trivial and will
not be discussed here. Clearly, utility from winning the auction is increasing in the indi-
vidual’s signal. Under these assumptions, Proposition 5 ofMaskin and Riley (2000b) es-
tablishes the existence of a monotonic pure-strategy equilibrium in the standard first-price
auction. Indeed, Lebrun (1996) has shown that these bid functions are strictly monotone
and increasing, therefore, invertible. Inverse bid functions are denoted by the Greek letter
λi , i = 1, · · · ,n. Uniqueness of such equilibrium for the N player game has been derived by
Lebrun (1999), Maskin and Riley (2000b) and Bajari (2001).

Here we assume further thatFi is twice continuously differentiable with a densityfi
bounded away from zero on[v,v]. Whence, under these assumptions, Lebrun(1999) proves
that the equilibrium is unique, and that the inverse bid functions have a common support
[R, t∗], wheret∗ is the bid associated with the valuation ¯v, andR is the reserve price set by the
auctioneer. We show in this paper that this equilibrium is amenable to numerical analysis,
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and presents itself as a natural extension to the methods proposed in MMRS. As such, the
(numerical) determination oft∗ is a critical component of the problem to be solved.

2.2 The differential equations

Let t = ϕi(v) denote the equilibrium bid submitted by bidderi with private signalv∈ [v,v].
For the ease of notation, bidders with signals lower than thereserveR are assumed to bid
their signals, whenceϕi(v) = v for v≤ R. Let v = λi(t) denote inverse bid functions. Fol-
lowing Lebrun (1999), theλis share a common support[v, t∗]. For the ease of presentation,
we momentarily assume thatt∗ is known. Bidderi with signalv ∈ [R,v] submits a bidt,
which is solution of the optimization problem

t = arg max
u∈(R,v)

(v−u) · [Fi(λi(u))]ki−1Π j 6=i [Fj(λ j(u))]k j . (1)

The Ordinary Differential Equations (ODEs) defined by the First Order Conditions (FOCs)
are given by

Πn
s=1Fs(λs(t)) = (λi(t)− t) · [

n

∑
j=1

k∗i, j f j(λ j(t))λ′
j(t)Πs6= jFs(λs(t))], (2)

wherek∗i,i = ki −1 andk∗i, j = k j for j 6= i, i : 1→ n. Let ℓi(t) = Fi(λi(t)). Equation (2) is
rewritten as

1 = [F−1
i (ℓi(t))− t] ·

[

n

∑
j=1

k∗i, j
ℓ′j(t)

ℓ j(t)

]

, i = 1→ n. (3)

The boundary conditions forλi andℓi are given by

λi(R) = R, λi(t∗) = v, i : 1→ n, and (4)

ℓi(R) = Fi(R), ℓi(t∗) = 1, i : 1→ n, (5)

respectively. As noted by several authors and discussed in our introduction, the system
(3) of ODEs is ill-behaved at the lower boundary. If, for example, R= v then a recursive
application of l’Hospital’s rule fort → v+ produces the result that the right derivative ofℓi

at v is given by

lim
t→v+

ℓ′i(t) = fi(v) ·
N

N−1
, i : 1→ n, (6)

and, most importantly, that all higher-order right derivatives atv are zero. If insteadR> v,
then

lim
t→R+

ℓ′i(t) = +∞, i : 1→ n, (7)
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as in Marshall and Schulenberg (1998). Whence, following MMRS, we shall solve the
ODEs (3) backward starting from the right boundaryℓi(t∗) = 1, assuming momentarily
thatt∗ is known.

2.3 The baseline algorithm

Our algorithm amounts to constructing piecewise polynomial approximations to theℓis
from which (as discussed in Section 2.4 below) approximations for theλis andϕis immedi-
ately follow. Assuming we just computedxi,0 = ℓi(t0) wheret0 ∈ (R, t∗), we describe next
how to construct Taylor-series expansions for theℓis att0 which are then used to compute
xi,1 = ℓi(t1) at the next pointt1 = t0−∆t, where∆t denotes the selected step size.

Since equation (3) involves compositions, product, and sumof functions, brute force
Taylor-series expansions would be unnecessarily complicated (nor would it provide the
auxiliary expansions required below for expected revenuesand probability calculations).
Instead, we develop an algebra of Taylor-series expansionsby treating separately the in-
dividual operations required for equation (3). This amounts to introducing the following
auxiliary expansions:

ℓi(t) =
∞

∑
j=0

ai, j · (t− t0)
j , (8)

F−1
i (ℓi(t))− t =

∞

∑
j=0

pi, j(t − t0)
j , (9)

ℓ′i(t)/ℓi(t) =
∞

∑
j=0

bi, j · (t− t0)
j , (10)

F−1
i (x) =

∞

∑
j=0

di, j(x−x0)
j . (11)

Our algorithm takes as input the Taylor-series expansions of F−1
i (actually, the expansion

of all commonly used distributions are pre-programmed and,as discussed in Section 2.4.4,
our program also includes automated construction of Taylor-series expansion for arbitrary
distributions). The algorithm then iterates between equations (8), (9), and (10) in that order,
increasing the order of approximation by one unit at a time. The fact that equation (10)
includes a derivative provides the key to moving from orderJ−1 to orderJ. Specifically,
given{(ai j ,bi j , pi j ), j : 1→ J−1}, stepJ of our algorithm follows the sequence:

(1) Links equation (10) from stepJ−1 to equation (8) for stepJ through the identity
ℓ′i(t) = ℓi(t) · [ℓ′i(t)/ℓi(t)] in order to computeaiJ;

(2) Applies lemma 1 (composition) in Appendix A to computepiJ from equation (9);
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(3) Uses the ODE’s linking equations (9) and (10) to computebiJ.

The relationships between these coefficients and that of other functions of interest, such
as theFi s (input) and theϕis (output), are discussed in Section 2.4. The details of the
computations we just outlined are given by equations (12) to(22) below.

• The computation of ai,J given {(ai, j ,bi, j); j < J}. The corresponding recurrence
relationship obtains from the identitiesℓ′i(t) = ℓi(t). ℓ′i(t)/ℓi(t) which together with
formulae (8) and (9) imply the identities

∞

∑
j=1

jai, j(t − t0)
j−1 =

[

∞

∑
r=0

ai,r(t− t0)
r

]

·
[

∞

∑
s=0

bi,s(t − t0)
s

]

. (12)

Equating the coefficients of orderJ−1 produces the following relationship

ai,J =
1
J

J−1

∑
r=0

ai,rbi,J−r−1, (i : 1→ n;J : 1→ JM), (13)

with initial conditions

ai,0 = ℓi(t0), bi,0 = ℓ′i(t0)/ℓi(t0), i : 1→ n. (14)

• The computation of pi,J given {(ai, j , di, j); j ≤ J}. The corresponding relationship
obtains by application of Lemma 1 in Appendix A to the composition of F−1

i (in-
put) andℓi (output from (13)), accounting for the additional factort = [t0+(t − t0)].
Whence we have

pi,J =
J

∑
r=1

di,rθi,r,J−zJ, (i : 1→ n;J : 1→ JM), (15)

θi,r,J =
J−r+1

∑
s=1

ai,sθi,r−1,J−s, (r : 1→ J), (16)

with z0 = z1 = 1,zJ = 0 for J > 1, and initial conditions

pi,0 = F−1
i (xi,0), θi,0,0 = 1 (i : 1→ n). (17)

• The computation of bi, j given {pi, j ; j ≤ J);(bi, j ; j < J)}. The corresponding rela-
tionships originate from the ODEs themselves. Substituting expansions (9) and (10)
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into equation (3) produces the identities

1 =

[

∞

∑
r=0

pi,r(t − t0)
r

][

n

∑
ℓ=1

k∗i,ℓ
∞

∑
s=0

bℓ,s(t − t0)
s

]

, (18)

for i : 1→ n andℓ : 1→ n Equation (18) can be rewritten as

1 =
∞

∑
j=0

[

n

∑
ℓ=1

k∗i,ℓ

(

j

∑
r=0

pi,rbℓ, j−r

)]

(t − t0)
j . (19)

Equating the coefficients of(t−t0)J to zero forJ > 1 and rearranging the correspond-
ing identities into matrix form produces the following vectorial recurrence relation-
ship

P0(In− ink′)bJ = cJ, (20)

whereP0 = diag(p1,0, · · · , pn,0), In is the identity matrix of ordern, i′n = (1· · ·1),k′ =
(k1, · · ·kn),b′J = (b1,J, · · · ,bn,J),c0 = −in and

cJ =







...
∑n

ℓ=1k∗i,ℓ
(

∑J
r=1bℓ,J−r

)

...






,J > 0. (21)

Standard formulae for partitioned matrices produce the following expressions for the
determinant and inverse of(In− ink′):

|In− ink′| = 1−N, (In− ink′)−1 = In−
ink′

N−1
. (22)

Formulae (12) to (22) forJ : 0 → JM define our baseline recurrences algorithm for
the evaluation of Taylor-series expansions at an arbitrarybase pointt0 ∈ (R, t∗), from
which function values at a new pointt1 = t0−∆t are approximated.

2.4 Additional details

A number of additional details need to be addressed in order to complete an operational
implementation of our baseline algorithm.
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2.4.1 Numerical search fort∗

With very few exceptions, one of which is found in Appendix A of MMRS, t∗ cannot
be found analytically. Instead, we shall rely on the uniqueness result in Lebrun (1999),
together with the initial conditions (5), to definet∗ as

t∗ = arg min
t f∈(R,v)

n

∑
i=0

[

ℓi(R|t f )−Fi(R)
]2

, (23)

whereℓi(·|t f ) denotes the solutions to the ODEs in (3) under a tentative terminal condition
ℓi(t f ) = 1. Note that since

lim
t→R+

[F−1
i (ℓi(t))− t] = 0, (24)

the coefficients(pi,0; i : 1 → n) should be zero fort0 = R. This prevents us from solv-
ing the system (20) att0 = R but we do not need to do so. Instead we computeℓi(R|·)
from the Taylor-series expansions att0 = R+∆t. Substituting these approximate values in
the objective function (23) suffices to produce very accurate estimates oft∗ for ∆t small
enough. Alternatively, once we have an estimate ofai,0 = ℓi(t0), we can also compute
pi,0 = F−1

i (xi,0)− t0 according to equation (9), and use the objective function∑n
i=1 p2

i,0.
As for the actual minimization, we rely upon the simplex subroutine AMOEBA which is
numerically very efficient for our problem.

2.4.2 Additional Taylor-series expansions

As described in Section 2.4.4 below, our algorithm constructs Taylor-series expansions of
F−1

i to compute those ofℓi, i : 1→ n. Very little work is required to reformulate it in terms
of the primitives of the problem, the distributionFi and the bid functionsϕi . First, note that
the inverse bid functionsλi are given by

λi(t) = t +
∞

∑
j=0

pi, j(t− t0)
j . (25)

Next, we can rely upon Lemma 2 in Appendix A to transform Taylor-series expansions of
Fi andλi into those ofF−1

i andϕi , respectively.

2.4.3 Support conditions

As expected from the formulation of equation (3), our algorithm can become numerically
unstable if theℓis get too close to zero. Our current program implementation requires
that tail areas of (very) low probability be truncated away.Note that such truncations are
commonly imposed in empirical applications since most estimation techniques for auction
models critically rely upon the invertibility of bid functions and lack robustness relative to
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tail area behavior of the latter. See e.g., Donald and Paarsch (1996), Laffont et al (1995)
or Florens et al (2004). See also Marshall et al (2005) for an empirical application where
truncation of an assumed Weibull distribution had to be imposed for estimation purposes.
Note, however, that many distributions of interest with tractable higher order statistics (e.g.,
exponential, Weibull or extreme value distribution) have unbounded support. In practice
any such distributionFi with unbounded support will be replaced by a truncated vesion
thereof

F∗
i (v) =

Fi(v)−Fi(v)
Fi(v)−Fi(v)

, v < v < v. (26)

Transforming the Taylor-series expansion ofF−1
i into that ofF∗−1

i follows by application
of Lemma 1 in Appendix to the following composite function

F∗−1
i (u) = F−1

i (Fi(v)+u[Fi(v)−Fi(v)]), 0≤ u≤ 1. (27)

Such transformations are automated in our computer programs.

2.4.4 Automated Taylor-series expansions

Analytical Taylor-series expansions for inverse CDFs are available for a number of stan-
dard distributions such as the extreme value distributionswhich are commonly assumed in
empirical applications. However, there are situations where this is not the case. One such
important situation is discussed in Section 2.4.5 below where we analyze non-inclusive
coalitions. Other important examples would be applications where empirical and/or non-
parametric CDFs have been numerically evaluated.

In order to accommodate such situations, our program includes a fully-automated nu-
merical procedure for the computation of (piecewise) Taylor-series expansions for the in-
verses of arbitrary CDFs. This procedure incorporates the following steps:

1. We construct an equally spaced grid{u j ; j : 1→ J} for the interval[0,1];

2. Using a standard root finder we compute the corresponding (unequally spaced) grid
for the inverse CDFF−1,{v j ;v j = F−1(u j); j : 1→ J};

3. Next, we construct aB-spline interpolator forF−1. Specifically, we invoke the IMSL
subroutines DBSNAK (to construct a knot sequence) and DBSINT (to computeB-
spline coefficients). See de Boor (1978) for numerical details.

4. Finally, we invoke the IMSL subroutine BSCPP to convert the B-spline interpolator
into a piecewise polynomial approximation, which providesthe Taylor series expan-
sion needed for our algorithm.
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2.4.5 IMSL subroutines

Our program relies upon the following (double precision) subroutines from the IMSL li-
brary, which we have found to be numerically very robust components of our algorithm:

DBETDF : Evaluates the beta probability distribution function;
DNORDF : Evaluates the standard normal distribution function;
DZBREN : Finds a zero of a real function that changes sign in a given interval;
DBSNAK : Computes a “not-a-knot” spline knot sequence;
DBSINT : Computes a cubic spline interpolant with the “not-a-knot” condition;
DBSCPP : Converts a spline in B-spline representation to piecewise polynomial

representation;
DPPDER : Evaluates the derivatives of a piecewise polynomial.

A FORTRAN-90 program (source and/or executable) covering all the options described
in our paper can be obtained from the first author. See SectionD for a detailed user’s guide.
The executable version contains all the necessary compiledmodules and does not require
access to the IMSL library. A user who plans to modify the source code will need access to
the IMSL library to compile the new source. This is particularly relevant for the potential
addition of new baseline distributions in addition to thosecurrently offered.2 Our program
is organized in such a way that adding a new baseline distribution is a straightforward oper-
ation. All it requires is the addition of a new subroutine to compute its distribution function
(in the same calling format as DNORDF for the normal) plus a minor modification of the
input sequence to accommodate the new option (steps 9 to 12 inthe sequence as described
in Appendix D). Empirical CDFs are allowed as long as they arestrictly monotone and,
therefore, invertible. The catch is that such additions will require a new compilation for
which access to IMSL is required. In general, we would be interested in assisting in the
development of significant new extensions to our program.

2.4.6 Non-inclusive coalitions

It is not the objective of our paper to provide a theoretical investigation of the stability of
non-inclusive coalitions within a first-price asymmetric framework (which, in many cases,
would likely required repeated games concepts). Nevertheless, we can use our algorithm to
investigate numerically whether such non-inclusive coalitions could potentially be incen-
tive compatible, and also, whether a strategic auctioneer could reduce the profitability of
collusions. Pioneering examples of such computations under (ex-ante symmetric) uniform
distributions can be found in MMRS and Marshall and Schulenberg (1998). See also Mar-
shall and Marx (2005) for an in-depth discussion of incentive compatible mechanisms for

2The current version of the program offers the following distributions: two parameter Weibull, beta,
normal and lognormal. See Appendix D for details on how to combine these into hybrid distributions in the
sense of formula (28) below.
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non-inclusive cartels, as well as an extensive list of related references.
Short of such theoretical analysis our algorithm can be usedto numerically evaluate bid

functions and expected revenues in the presence of non-inclusive cartels, as long as one
treats such a cartel as a single representative bidder. At a minimum, such computations can
provide useful insight on potential incentives to defect and on the auctioneer’s capability
to reduce cartels’ profitability. For example, MMRS had already illustrated the fact that
within an ex-ante (uniform) symmetric framework outsidersbenefit more than insiders (on
a per capita basis) from the presence of a non-inclusive cartel. One would not expect such
findings to generalize to asymmetric scenarios. In particular, there exist numerous real-
life illustrations of the viability of non-inclusive cartels consisting, for example, of better
informed players. One such situation was recently highlighted by the conviction of seven
leading stamp dealers and auctioneers who, for several years, had agreed not to compete
against one another at estate auctions of stamp collections.

Specifically, in the context of our program, an arbitrary cartel consisting ofu = ∑n
i=1ui

players, whereui denotes the number of players of typei, is treated as a single player
drawing her signal from the corresponding highest order statistics CDF:

F∗(v) = Πn
j=1

[

Fj(v)−Fj(v)

Fj(v)−Fj(v)

]u j

. (28)

Taylor-series expansions for the inverse ofF∗ are automatically produced by applica-
tion of the numerical procedure described in Section 2.4.4 above. It is also trivial to verify
that all probability and expected revenue calculations described below remain valid under
such scenarios, with the only modification that the revenue computed represents the car-
tel’s total expected revenue. As discussed above, we do not discuss allocation rules among
cartel’s members and only provide per capita comparisons between insiders and outsiders.

3 Probabilities of Winning, Expected Revenues and Opti-
mal Reserve Price

Auxiliary statistics such as expected revenues, probabilities of winning, and the probability
of retention under reserve pricing, are of critical importance when discussing issues such
as the selection of the auction format by the auctioneer, optimal reserve pricing and, last
but not least, coalition formation. With respect to the latter, comparisons between bidders’
expected revenues under alternative (non-inclusive) collusive agreements provide key in-
sights on bidders’ willingness to collude. In particular, as confirmed further by example
3 below, one often finds that non-inclusive cartels are not incentive compatible in single-
object, IPV first-price auctions. This is not the case with second-price auctions. Marshall
and Marx (2005) provide in-depth analysis of bidder collusion. Such findings are critical
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components of the auctioneer’s selection of auction formatwhen collusion is suspected, a
rather common real life occurrence. They are also directly relevant for the selection of an
optimal reserve price as an effective tool to minimize the impact of collusion.

In this section we provide expressions for expected revenues and probabilities of win-
ning when the auctioneer sets a reserve price R, in the form ofsimple integrals (quadra-
tures). Moreover, the the integrands are products of auxiliary functions evaluated by our
algorithm over the interval(R, t∗), wheret∗ itself is an implicit function ofR. All the proofs
are regrouped in Appendix B.

The probability that groupi wins the object under reserve R is given by

Pi(R) = ki

∫ t∗

R

ℓ′i(t)
ℓi(t)

·Πn
j=1 [ℓ j(t)]

k jdt. (29)

Note that
n

∑
i=1

Pi(R) = 1−Πn
j=1

[

Fj(R)
]k j ,

confirming the obvious result that the probability that the auctioneer retains the item is
given by

P0(R) = Πn
j=1

[

Fj(R)
]k j . (30)

Groupi’s expected revenue is given by

Vi(R) = ki

∫ t∗

R

[

F−1
i (ℓi(t))− t

]

· ℓ
′
i(t)

ℓi(t)
·Πn

j=1

[

ℓ j(t)
]k j . (31)

Per capita expected revenue within groupi, accounting for subcoalitions(ui ≥ 1), is then
given byVi(R)/(ki ·ui). Finally, assuming that the auctioneer receives a fixed percentage of
all winning bids, her revenue is proportional to

Va(R) = t∗−RΠn
j=1

[

Fj(R)
]k j −

∫ t∗

R
Πn

j=1

[

ℓ j(t)
]k j dt. (32)

Note that formulae (29), (31) and (32) all depend upon univariate integrals of products of
the functions which are being evaluated by our algorithm over a fine grid of values oft in
(R, t∗). Therefore, these integrals can be evaluated by univariatequadrature as immediate
byproducts of our algorithm. As we typically use grids with anywhere fromN = 500 to
N = 10,000 equally spaced points, we can rely upon the extended Simpson’s rule with
remainder proportional toN−4 to numerically compute highly accurate estimates of all
relevant probabilities and expected revenues.3

Moreover, the use of a fixed number of equally spaced grid points implies that these

3See Press et al (1986, Chapter 4) or Abramowitz and Segun (1968, Chapter 25) for discussions on the
numerical accuracy of the extended Simpson’s rule.
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numerical integrals will be continuous functions ofR. Whence numerical simplex maxi-
mization ofVa(R) with respect toR will itself be numerically very accurate. Note thatt∗ in
formulae (29) to (32) is an implicit function ofR so that our algorithm has to be rerun for
each value ofRselected by AMOEBA.

4 Asymmetric Second-Price Auctions

One of the immediate intended uses of our new algorithm is that of running comparisons
between first- and second-price auctions under a variety of asymmetric environments. In or-
der to do so we need to derive operational expressions for expected revenues under second-
price auctions. While Vickrey’s logic still applies, whereby bidders bid their private values,
expected revenue calculations are more complex than under first-price due to a wider range
of scenarios for the price paid by the winner.

The expected revenues and the probabilities of winning in the second-price auction
environment are given as follows:4

Pi(R) = ki

∫ v

R
fi(v)Πn

j=1

[

Fj(v)
]k∗i, j dv, (33)

P0(R) = Πn
j=1

[

Fj(R)
]k j , (34)

Va(R) = v−RP0(R)−
∫ v

R
Πn

j=1

[

Fj(v)
]k j dv

−
n

∑
i=1

ki

∫ v

R
[1−Fi(v)]Πn

j=1

[

Fj(v)
]k∗i, j dv, (35)

Vi(R) = ki

∫ v

R
[1−Fi(v)]Πn

j=1[Fj(v)]
k∗i, j dv. (36)

As above, per capita expected revenue in groupi is given byVi(R)/(ki ·ui).
As was the case for the first-price auction, formulae (33), (35) and (36) are numerically

evaluated by quadrature. All probabilities and expected revenue calculations for first-price
and second-price auctions have been incorporated in our algorithm allowing for automated
comparisons between first and second-price auctions under awide variety of asymmetric
scenarios. Examples are provided below.

4The details of these calculations are found in Appendix C.
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5 Examples

In this section, we present three numerical illustrations of the capabilities of our program.
The parameters and, in particular, the truncation range[v,v] were selected to produce graph-
ically well-separated bid functions. For the first two examples, all type distributions are
truncated Weibull of the form given in formula (26) togetherwith

Fi(v) = 1−exp
[

−(v/ai)
bi

]

. (37)

As mentioned above, our program then automatically produces the Taylor-series expansion
for the inverse truncated distribution functionF∗−1

i as given by equation (27).

5.1 Example 1 (3 individual bidders)

We first consider 3 individual bidders (low, high, median types) and compute their first-
price asymmetric bid functions without reserve, as well as with optimal reserve. We also
compute bidders’ (per capita) expected revenues, bidders’probabilities of winning, the
auctioneer’s expected surplus, and probability of retaining the item under reserve pricing.
The same statistics are also computed for second-price auctions. The graphs of the first-
price asymmetric bid functions with and without reserve areprovided in Figure 1. Relevant
statistics are presented in Table 1. We note that the reserveprice impacts the bidders dif-
ferently, the larger impact being obviously felt by the high-type bidder. We also note that
in the absence of reserve, first-price is more profitable for the auctioneer (by about 5%) but
that the ordering is reversed under optimal reserve. The high-type bidder always prefers
second-price, especially in the absence of a reserve.

5.2 Example 2 (2 individiual bidders)

This example illustrates the fact that asymmetric bid functions can cross one another once
stochastic dominance no longer applies. Hazard functions are monotone for Weibull distri-
butions. Our choice of shape parameters for this example implies that the hazard function
of bidder 1 is increasing(b1 = 1.5) and that of bidder 2 is decreasing (b2 = 0.5). With
means close to one another it implies that the distribution functions cross one another at
v = 1.45. It also implies that, as illustrated by Figure 2, the two bid functions cross one
another atv = 1.7. Expected revenues and surpluses, together with probabilities of win-
ning, with and without reserve prices, are reported in Table2. We note that first-price
and second-price auctions are virtually revenue equivalent even though, in the absence of
reserve, second-price favors bidder 1. A systematic numerical investigation of whether rev-
enue equivalence holds under a particular asymmetric scenario goes beyond the objectives
of the present paper but belongs to our research agenda.
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5.3 Example 3 (non-inclusive cartels)

MMRS offer a numerical investigation of incentive compatibility within subcoalitions when
individual bidders all draw their valuations from a common uniform distribution. Within
this (single-object) framework, they find that bidders outside the coalitions benefit more
than those inside. Here we consider instead an asymmetric scenario where high type bid-
ders collude together in order to protect their informational advantage over low type bid-
ders.

This example is inspired by a recent court case where a group of prominent stamp
auctioneers and dealers were found guilty of collusion at estate auctions. While their cartel
operated for several years, our example illustrates the fact that such non-inclusive cartels
could be incentive compatible even within a single object framework (ignoring, however,
proxy defections as analyzed by Marshall and Marx (2005)). We consider two bidders of
high type (H) against four (non collusive) bidders of low type (L). Signals are lognormally
distributed with a common standard deviation 0.35 and means1.35 and 0.75, respectively.
The common support for signals is the interval [1.5, 6.0]. Results for the non collusive
benchmark scenario are reported in Table 3. Graphs of the corresponding bid functions with
and without optimal reserves are provided in Figure 3. Results for subcoalitions{H,H} and
{H,H,L} are reported in Table 4, and Figures 4 and 5.

The impact of the collusion among high types is greatest under second-price auction.
Under first-price, low types also benefit from the presence ofthe cartel (even more than
high types percentage wise). Reserve is most effective under second-price (and would be
even more effective if items kept by the auctioneer had a resale value). In the future, we
plan to investigate whether the effectiveness of optimal reserve requires precise knowledge
of the cartel composition by the auctioneer.

6 Numerical Accuracy and Computational Time

Accuracy of the numerical approximations of the equilibrium bid functions depends pri-
marily on two variables. The first is how fine a grid is chosen onwhich to evaluate the
component distributions. A finer grid leads to higher accuracy of the numerical approxi-
mations. The second variable is the order of the Taylor-series approximations chosen to
approximate these distributions. A higher order Taylor-series expansion does not necessar-
ily lead to higher accuracy. Indeed, an order of approximation that is too high can lead to
significant numerical pathologies.

A reliable method for evaluating accuracy consists of computing pointwise best re-
sponses for each individual bidder and comparing them to theNE strategies. Given bidder
i’s signal, his best response depends on the distribution functions and (inverse) bid func-
tions of his competitors. His best response function does not depend on his own distribu-
tion function. This is seen clearly in equation (3). Thus, given his competitors’ equilibrium
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strategies and distribution functions, we can use equation(3) to compute pointwise the best
response of bidderi. His best response function can then be matched against the equilib-
rium function computed by the algorithm and the difference between these two functions
provides a measure of the accuracy of the algorithm. A reasonable metric, and the one we
use in this paper, is the root of the mean squared deviation (RMSE) between the equilibrium
bid function and the best response function.

An important illustration of the usefulness of such comparisons is provided by example
3. Figure 5 reveals a curious “blip” in the bid function of thecoalition. The bid function
dips down between private values of 2.0 and 2.5. This gives rise to the question of whether
this blip is the result of a numerical error, or if it is a rational response by the collusion to the
strategies of the outsiders. This question can be answered by the method of verification we
just described. Figure 6 reproduces the equilibrium bid function of the coalition and also
plots the best response of the coalition computed as described in Section 5. The reaction
function (bold dotted line) coincides exactly with the computed bid function (solid line).
This confirms that the blip is indeed an equilibrium reactionby the coalition to the strategies
of its competitors.

Higher accuracy of the numerical approximations to the equilibrium bid functions comes
at the cost of increased computational time. For a small number of types of bidders, one
can be liberal with the size of the grid and the order of the Taylor-series expansions. How-
ever, for models with a large number of types of bidders, the potential computational time
increases significantly. Though this is not a significant obstacle in our current applications,
computational time can quickly become a problem in others. An important example is
that of empirical applications where the algorithm would beinstrumental in the estimation
of the underlying private values distributions. In this case, the model would have to be
solved for each trial value of the vector of parameters of theprivate values distributions,
and one might have to be conservative with the size of the chosen grid. In this section, we
present a small study of the trade off between accuracy and speed as controlled by these
two variables.

Table 5 reports the computational time and the RMSE between the equilibrium bids and
reaction functions of two bidders. The first panel fixes the order of Taylor-series expansions
to 5, and evaluates these statistics for the number of grid points being 500, 1000, 1500, and
2000. The table reveals that the computational time increases linearly with the number of
grid points. The computational time increases by 0.11 seconds with a one point increase
in the number of grid points. The RMSE for each bidder is decreasing and concave in the
number of grid points. Indeed, the decrease in the RMSE is very small for large increases in
the number of grid points. This suggests that there is not a lot to gain in terms of accuracy
by increasing the number of grid points. A relative small number of grid points like 500
provides almost the same numerical accuracy as a larger number of grid points like 2000.

The second panel of Table 5 fixes the number of grid points to 500 and increases order
of Taylor-series expansions incrementally from 2 to 5. The computational time increases
linearly by approximately 7 seconds with each increase in the order of the Taylor-series
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expansions. Interestingly, the numerical accuracy of the bid functions are invariant to the
order of Taylor-series expansion. The third panel of Table 5bolsters this conclusion. The
modest local curvature of the Weibull distribution function could possibly explain the in-
variance of the accuracy of the program to the order of the Taylor-series expansion.

The conclusion of this exercise is that the investigator looses very little in terms of nu-
merical accuracy by using a relatively small number of grid points and a low order Taylor-
series expansion. The time savings is, however, significant.

7 Procurements

Our algorithm can also be applied to procurements. The necessary modifications are minor
and are described briefly in this section. For the procurements problem, bidderi with signal
v∈ [v,R] submits a bidt which is solution of the optimization problem

t = arg max
u∈(v,R)

(u−v) · [Hi(λi(u))]ki−1Π j 6=i [H j(λ j(u))]k j , (38)

whereHi(x) = 1−Fi(x). The Ordinary Differential Equations (ODEs) resulting from the
First Order Conditions (FOCs) are given by

−1 = [H−1
i (ℓi(t))− t] ·

[

n

∑
j=1

k∗i, j
ℓ′j(t)

ℓ j(t)

]

, i = 1→ n, (39)

whereℓi(t) = Hi(λi(t)). The boundary conditions forλi andℓi are given by

λi(R) = R, λi(t∗) = v, i : 1→ n, and (40)

ℓi(R) = Hi(R), ℓi(t∗) = 1, i : 1→ n, (41)

respectively. Under this setup, the algorithm to compute equilibrium bids here mimics ex-
actly the one derived in Section 2 to compute equilibrium bids in the auction environment,
except for two changes. The first is that the RHS of equation (21) is nowin instead of−in.
The second is that the recursion on the grid oft is a forward iteration instead of a backward
iteration. The probabilities of winning and expected revenues in the low-price procurement
environment, are given as follows:

Pi(R) = −ki

∫ R

t∗

ℓ′i(t)
ℓi(t)

·Πn
j=1 [ℓ j(t)]

k j dt, (42)

P0(R) = Πn
j=1

[

H j(R)
]k j , (43)
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Vi(R) = −ki

∫ R

t∗

[

H−1
i (ℓi(t))− t

]

· ℓ
′
i(t)

ℓi(t)
·Πn

j=1

[

ℓ j(t)
]k j , (44)

Va(R) = t∗−RΠn
j=1

[

H j(R)
]k j +

∫ R

t∗
Πn

j=1

[

ℓ j(t)
]k j dt. (45)

The corresponding probabilities of winning and expected revenues in the second-price,
procurement environment, are given as follows:

Pi(R) = −ki

∫ R

t∗

ℓ′i(t)
ℓi(t)

·Πn
j=1 [ℓ j(t)]

k j dt, (46)

P0(R) = Πn
j=1

[

H j(R)
]k j , (47)

Va(R) = v−RP0(R)+
∫ R

v
Πn

j=1

[

H j(v)
]k j dv

+
n

∑
i=1

ki

∫ R

v
[1−Hi(v)]Πn

j=1

[

H j(v)
]k∗i, j dv, (48)

Vi(R) = ki

∫ R

v
[1−Hi(v)]Πn

j=1[H j(v)]
k∗i, j dv. (49)

8 Conclusion

In this paper, we developed a new, powerful and fully-automated numerical algorithm to
solve single-object, asymmetric IPV, first-price auctions. The algorithm allows for a wide
variety of (non-inclusive) coalitions, as well as, for the auctioneer to set a reserve price.
We provide operational univariate quadratures to evaluateprobabilities of winning, the
probability that the auctioneer retains the object, as wellas the expected revenues to the
bidders and the auctioneer. The expected revenue to the auctioneer is maximized with
respect to the reserve price to obtain the auctioneer’s optimal reserve price.

The paper also provides operational expressions for expected revenues and probabilities
of winning for corresponding second-price auctions. As in the asymmetric first-price auc-
tions environment, these expressions only require univariate integration of functions evalu-
ated by the program. This results in high numerical accuracy, which is essential when com-
paring first-price to second-price auctions, as the differences in expected revenues across
these environments may be small in many cases. Furthermore,all of the options and quan-
tities that the algorithm provide for the first- and second-price auction environments are
replicated for first- and second-price procurements.

Pointwise best responses for each bidder type, given the equilibrium bid of all other
types are also calculated by the program. This provides a convenient check of the numerical
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accuracy of the algorithm, since the best responses function should coincide with their
corresponding equilibrium bid functions. This check of accuracy is particularly important
in cases where the densities of the private value distribution functions are close to zero at
the support points. Our experience with the program is that,in many of these cases, the
algorithm still converges. However, due to the possible instability of the algorithm at the
support points, the solution may not be accurate. The best response functions therefore
provide a convenient and important check of the accuracy of the solution in these cases.

The algorithm proposed in this paper relies on accurate piecewise Taylor-series expan-
sions of the inverse of the private values CDFs. While analytical Taylor-series expansions
for the inverse CDFs are available for some distributions, there are many situations in which
this is not the case. Relying on analytical Taylor-series expansions would therefore limit
the variety of CDFs that could be employed. We avoid this restriction by including in the
program a fully-automated numerical procedure for the computation of piecewise Taylor-
series expansions for the inverse of arbitrary CDFs. This numerical procedure currently re-
lies B-spline interpolators and piecewise polynomial approximations taken from the IMSL
libraries. Readers using the executable version of our program do not need access to the
IMSL library. Modifications to the source program will require recompilation with access
to IMSL. We can provide assistance for significant new extensions of our program.

Appendix

A Lemmas on Taylor-series expansions

We prove here two lemmas which are used in the paper to evaluate Taylor series expansions
for composite and inverse functions. Lemma 1 is taken from MMRS but is included here
for the ease of reference.

Lemma A.1. Let

f (u) =
∞

∑
j=0

f j(u−u0)
j , g(t) =

∞

∑
j=0

g j(t− t0)
j , (A1)

together with u0 = g(t0). Then

( f ◦g)(t) =
∞

∑
j=0

a j(t − t0)
j , (A2)
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where a0 = f0 and for j≥ 1

a j =
j

∑
k=1

fkθk, j , (A3)

and where theθs are evaluated recursively as follows

θk, j =
j−k+1

∑
s=1

gsθk−1, j−s, 1≤ k≤ j, (A4)

with θ0,0 = 1.

Proof: We have

( f ◦g)(t) =
∞

∑
k=0

fk

[

∞

∑
s=1

gs(t− t0)
s

]k

. (A5)

Whencea j is given by formula (A3) whereθk, j denotes the coefficient of(t − t0) j in the
k-th power of the factor in brackets. Formula (A4) follows from the identity

∞

∑
j=k

θk, j(t− t0)
j =

[

∞

∑
r=k−1

θk−1,r(t− t0)
r

]

·
[

∞

∑
s=1

gs(t− t0)
s

]

. (A6)

Lemma A.2. Let f−1 denote the inverse of f

f−1(x) =
∞

∑
j=0

h j(x−x0)
j , (A7)

with x0 = f (t0). Then
h0 = x0, h1 = f−1

1 , (A8)

h j = − f− j
1 ·

[

j−1

∑
k=1

hkθk, j

]

. (A9)

Proof: We apply Lemma 1 together withg = f−1, whence

(g−1◦g)(t) = t = t0+(t− t0).

This implies thata0 = a1 = 1 anda j = 0 for j > 1 in Formula (A3). The proof follows
from formulae (A3) and (A4), with the latter implying thatθ j , j = f g

1 .
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B Derivation of expected revenues and the probability of
winning in the first-price IPV auctions

The following conditions have to be met for a bidder from group i to win

R< vi < v and v j < λ j(λ−1
i (vi)) for j 6= i. (B1)

Whence the probability that groupi wins is given by

Pi(R) = ki

∫ v

R
fi(v)Πn

j=1[Fj(λ j(λ−1
i (v)))]k

∗
i, j dv, (B2)

wherek∗i,i = ki −1 andk∗i, j = k j for j 6= i, as in Section 2 above. Introducing the change of

variablet = λ−1
i (v) and rearranging terms yields the following operational expression

Pi(R) = ki

∫ t∗

R

ℓ′i(t)
ℓi(t)

·Πn
j=1 [ℓ j(t)]

k jdt. (B3)

Summing over groups gives

n

∑
i=1

Pi(R) =

∫ t∗

i=1
kiℓ

′
i(t)Π

n
j=1[ℓ j(t)]

k∗i, j

=
∫ t∗

R

[

Πn
j=1

[

ℓ j(t)
]k j
]′

dt = 1−Πn
j=1

[

Fj(R)
]k j , (B4)

Groupi’s expected revenue is given by

Vi(R) = ki

∫ v

R
[v−ϕi(v)] · fi(v) ·Πn

j=1

[

Fj(λ j(λ−1
i (v)))

]k∗i, j
dv, (B5)

which can be rewritten as

Vi(R) = ki

∫ t∗

R

[

F−1
i (ℓi(t))− t

]

· ℓ
′
i(t)

ℓi(t)
·Πn

j=1

[

ℓ j(t)
]k j . (B6)

The auctioneer’s revenue is proportional to

Va(R) =
n

∑
i=1

ki

∫ v

R
ϕi(v) fi(v)Πn

j=1

[

Fj(λ j(λ−1
i (v)))

]k∗i, j
dv (B7)

=
∫ t∗

R
t ·
[

Πn
j=1

[

ℓ j(t)
]k j
]′

dt. (B8)
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Integration by parts produces the following expression

Va(R) = t∗−RΠn
j=1

[

Fj(R)
]k j −

∫ t∗

R
Πn

j=1

[

ℓ j(t)
]k j dt. (B9)

C Derivation of expected revenues and the probability of
winning in the second-price IPV auctions

Several pricing scenarios need to be considered. Focusing our attention on groupi, let
v1 > v2 denote the two highest order statistics in groupi (implicitly assuming thatki > 1,
but one verifies that the formulae derived below also apply for ki = 1) and letw j denote the
highest order statistic in groupj ( j 6= i). The following pricing scenarios are relevant:

Ei,R : price isR; i.e.,v1 > R, v2 < R, w j < R, for j 6= i;

Ei,i : price isv2; i.e.,v2 > R, v2 > w j , for j 6= i; and

Ei, j : price isw j ; i.e.,w j > R, w j > v2, w j > wℓ, for ℓ 6= j, i.

Probabilities and expected revenues are indexed conformably. The relevant densities are

ki(v1,v2) = ki(ki −1) fi(v1) fi(v2) [Fi(v2)]
ki−2 ,v1 > v2, (C1)

k j(w) = k j f j(w)
[

Fj(w)
]k j−1

. (C2)

Note that by relying upon thek∗i, j notation introduced in formula (2), a common treatment
applies to scenarioEi,i andEi, j( j 6= i). The probability that groupi wins and pays eitherv2

or w j is given by

n

∑
j=1

Pi, j(R) = ki

{

n

∑
j=1

k∗i, j

∫ v

R
fi(v1) ·

{

∫ v1

R
f j(v) ·

[

Fj(v)
]k∗i, j−1

Πℓ6= j [Fℓ(v)]
k∗i,ℓdv

}

dv1

}

, (C3)

wherev denotesv2 for j = i andw j for j 6= i. As in Appendix B above, we first apply inte-
gration by parts to the outer integral and regroup terms to obtain the following expression

n

∑
j=1

Pi, j(R) = ki ·
∫ v

R
[1−Fi(v)] ·

[

Πn
j=1[Fj(v)]

k∗i, j
]′

dv. (C4)
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A second integration by parts produces

n

∑
j=1

Pi, j(R) = ki

∫ v

R
fi(v)Πn

j=1

[

Fj(v)
]k∗i, j dv

−ki [1−Fi(R)]Πn
j=1

[

Fj(R)
]k∗i, j . (C5)

Note that the second term in the right hand side of formula (C5) representsPi,R(R). Whence
the probability that groupi wins is given by

Pi(R) = Pi,R(R)+
n

∑
j=1

Pi, j(R) = ki

∫ v

R
fi(v)Πn

j=1

[

Fj(v)
]k∗i, j dv. (C6)

Note that

n

∑
i=1

Pi(R) =

∫ v

R

(

Πn
j=1

[

Fj(v)
]k j
)′

dv= 1−Πn
j=1

[

Fj(R)
]k j = 1−P0(R). (C7)

Next, we derive the auctioneer expected revenue which is given by

Va(R) =
n

∑
i=1

{

Pi,R(R)+ki

{

n

∑
j=1

k∗i, j

∫ v

R
fi(v)1

[

∫ v1

R
v f j(v)

[

Fj(v)
]k∗i, j−1 Πℓ6= j [Fℓ(v)]

k∗i,ℓ dv
]

dv1

}}

. (C8)

The same integration by parts sequence as for the probability produces the following ex-
pression paralleling formula (C6)

Va(R) = −
n

∑
i=1

ki

∫ v

R
(v[1−Fi(v)])

′Πn
j=1[Fj(v)]

k∗i, j dv (C9)

=
∫ v

R
v
(

Πn
j=1

[

Fj(v)
]k j
)′

dv−
n

∑
i=1

ki

∫ v

R
[1−Fi(v)]Πn

j=1

[

Fj(v)
]k∗i, j dv, (C10)

or equivalently, after a third integration by parts,

Va(R) = v−RP0(R)−
∫ v

R
Πn

j=1

[

Fj(v)
]k j dv

−
n

∑
i=1

ki

∫ v

R
[1−Fi(v)]Πn

j=1

[

Fj(v)
]k∗i, j dv. (C11)
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The expected revenue for groupi is derived in the same way. We first have

Vi(R) = ki

{[

∫ v

R
(v−R) fi(v)dv

]

Πn
j=1

[

Fj(R)
]k∗i, j

+
n

∑
j=1

k∗i, j

∫ v

R
fi(v1)

[

∫ v1

R
(v1−v) f j(v)

[

Fj(v)
]k∗i, j−1 Πℓ6= j [Fℓ(v)]

k∗i,ℓ dv

]

dv1

}

. (C12)

Integration by parts of the first integral inv and of the outer integral inv1 produces the
simpler expression

Vi(R) = ki

{[

(v−R)−
∫ v

R
Fi(v)dv

]

Πn
j=1

[

Fj(R)
]k∗i, j
}

+

∫ v

R
(v−v)

(

Πn
j=1

[

Fj(v)
]k∗i, j
)′

dv+

∫ v

R
Fi(v)

[

Πn
j [Fj(v)]

k∗i, j −Πn
j [Fj(R)]k

∗
i, j

]

dv

}

. (C13)

Integration by parts of the second factor in the right hand side of formula (C13) and cance-
lations produce the following operational expression forVi

Vi(R) = ki

∫ v

R
[1−Fi(v)]Πn

j=1[Fj(v)]
k∗i, j dv. (C14)

D User’s Guide

Our FORTRAN-90 Program includes all the options described in the paper. It currently
includes the following four options for the (baseline) private-values CDFs: two parameter
Weibull, beta, normal and lognormal. The most powerful feature of our program is that
it allows for combining these baseline CDFs into hybrid ones, in the sense of formula
(28). Such hybrid CDFs can be used to characterize coalitions or individual players. As
explained in section 2.5, coalitions are treated as single players for the computation of
equilibrium bids. The only difference is that in the case of coalitions, expected revenues
are those of the coalition, since we have not hypothesized distribution mechanisms.

In order to eliminate any confusion, we shall use the prefixesb- and h- to distinguish
between baseline and hybrid. In order to illustrate the fullflexibility of the program we
provide below the actual input sequence (in italics), together with clarifying comments, for
example 3. Multiple inputs are separated by a space. In this example there are two b-types
(H, L) each characterized by a lognormal b-CDF and two h-types ((2H, 1L), (1L)) each
characterized by the corresponding h-CDF obtained by application of formula (28).
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(1) Enter 1 for auctions, or 2 for procurements:1

(2) Enter number of h-types:2

These are the hybrid types (2H, 1L) and (1L) which will be defined in steps (5) below.

(3) Enter the order of Taylor-series expansion:5

We recommend orders between 2 and 5. Theoretically, higher orders produce better ap-
proximations, but numerically the computation of higher orders derivatives can have the
opposite effect.

(4) Enter the number of grid-points:2000

Generally, increasing the number of grid-points increasesnumerical accuracy. As sug-
gested by Table 5, gains in accuracy are typically small beyond 500 grid-points but can,
nevertheless, be important when comparing expected revenues across auctions, as these
can be very close to one another.

(5) Enter the number of players of each h-type:1 3

As mentioned above, we have one single player (coalition) ofh-type (2H, 1L) and three
players of h-type (1L).

(6) Enter the (common) lower bound of the support of the private-values CDFs:1.5

(7) Enter the (common) upper bound of the support of the private-values CDFs:6.0

These are the boundsv andv in equation (28).

(8) Enter a reserve price:1.5

R should be betweenv andv. Setting R equal tov amounts to no reserve. If one subse-
quently requests the computation of an optimal reserve (step (14) below), then the search
algorithm uses the value entered here as initial value.

The b-CDFs, along with their parameterizations are (see, e.g, Johnson et.al. (1994)):
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1. Two parameter Weibull :F(x) = 1−exp
(

−
( u

α
)β
)

;

2. Beta :F(x) =
∫ 1

0
uα−1(1−u)β−1

∫ 1
0 uα−1(1−u)β−1du

du;

3. Normal :F(x) =
∫ x
−∞

1
σ
√

2π
exp
(

−1
2

(u−µ
σ
)2
)

du;

4. Lognormal :F(x) =
∫ x
−∞

1
u σ

√
2π

exp

(

−1
2

(

lnu−µ
σ

)2
)

du.

Here is a menu of b-CDFs to choose from (see user’s guide for parameterizations):
1 - two parameter Weibull;
2 - beta;
3 - normal;
4 - lognormal.

(9) Enter the number of b-CDFs:2

These will be the two lognormals characterizing the b-typesH and L, respectively.

(10) Enter the index of each b-CDF :4 4

In this example we use two lognormals.

(11) Enter mu and sigma:1.35 0.35

Enter mu and sigma:0.75 0.35

There is one step (11) for each b-CDFs.

(12) Enter the exponents of the b-CDF for h-type 1:2 1

Enter the exponents of the b-CDF for h-type 2:0 1

These are theui exponents in formula (28) for each h-type. h-types can coincide with
b-types, which is the case here for h-type 2 which is also b-type L. After step (12), the
program produces the following statistics for each h-type:

MEAN : mean of the truncated distribution;
ST. DEV : standard deviation of the truncated distribution;
LPDF : density function at the lower boundv;
UPDF : density function at the upper boundv;
CRIT : lower bound of CDF.

The truncated mean and the standard deviation are evaluatedover the support (v andv).
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LPDF and UPDF allow the user to verify that the densities are (numerically) bounded away
from zero as required for uniqueness (Lebrun, 1999). Valueslower than 0.10D-13 (double
precision) are likely to create problems. Since inverse CDFs are critical components of
the algorithm, inversion could fail on very low values of theCDF. Based upon repeated
experiences, values of CRIT lower than 010.D-07 could destabilize the algorithm.

The output for the current example is as follows:

TYPE MEAN ST. DEV LPDF UPDF CRIT
1 4.37929 0.85630 0.45D-12 0.19D+00 0.32D-11
2 2.43531 0.72407 0.56D+00 0.27D-02 0.13D-02

Uniqueness is not guaranteed if any LPDF or UPDF is less than 0.10D-13. The program
is numerically unstable and might even crash for values of CRIT less than 0.10D-07. If any
of these conditions is violated you might consider shortening the support and/or adjusting
the parameters of the b-distributions using the following options:

(13) Enter 1 to continue, 2 to adjust the parameters
and/or support (return to step 6) or 3 to exit:1

(14) Enter 1 if you wish to compute the optimal reserve.
Enter 2 if you wish to keep the reserve entered in step 8:1

(15) Enter an output file name:illustration.txt

The output file will contain the grid of private values together with the corresponding equi-
librium bids for each h-type.

Time taken: 190.7404s
Writing grid points and bids to file: illustration.txt

(16) Enter 1 to compute expected revenues, and probabilities of winning.
Enter 2 otherwise:1

If 1 is entered, the program computes expected revenues, probabilities of winning and prob-
abilities of retention by the auctioneer.

(17) Enter a revenue file name:rillustration.txt

This step is skipped if 2 is entered at step 16.
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(18) Enter 1 to compute individual best responses. Enter 2 otherwise:1

If 1 is entered, the program computes a best response for eachh-type by solving equations
(1) point-wise under the equilibrium bid functions for all rival players. Note, in particular
that if there areki > 1 players with h-type i, thenki −1 rivals are assigned their equilib-
rium function l i(t). Comparisons between equilibrium bid functions and individual best
responses provide immediate verification of the numerical accuracy of the former. In the
present example, the equilibrium bid functions are very accurate in spite of a critical CRIT
value of 0.32D-11 for h-type 1.

(19) Enter a best response file name:brillustration.txt

This step is skipped if 2 is entered at step 18.
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Table 1: 3 bidders (median, low, high).

Fi(v) = 1−e−( v
ai

)bi
, truncated on[0,5].

Type Auctioneer
1 2 3

ki 1 1 1
ui 1 1 1
ai 2.0 1.0 3.39
bi 1.0 1.0 2.20
mean 1.55 0.966 2.71
std. dev. 1.25 0.911 1.15
First-price, no reserve
E(revenue) 0.344 0.111 0.912 1.65
Prob ‘win’ 0.29 0.13 0.58 —-
First-price, optimal reserve=2.016
E(revenue) 0.225 0.061 0.622 1.851
Prob ‘win’ 0.22 0.08 0.51 0.18
Second-price, no reserve
E(revenue) 0.246 0.069 1.16 1.57
Prob ‘win’ 0.22 0.08 0.70 —-
Second-price, optimal reserve=2.016
E(revenue) 0.181 0.045 0.692 1.858
Prob ‘win’ 0.18 0.06 0.58 0.18
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Table 2: 2 bidders.
Fi(v) = 1−e

−( v
ai

)bi
, truncated on[0,4].

Type Auctioneer
1 2

hazard increasing decreasing
ki 1 1
ui 1 1
ai 1.11 1.50
bi 1.50 0.50
mean 1.00 0.84
std. dev. 0.67 1.01
First-price, no reserve
E(revenue) 0.481 0.463 0.440
Prob ‘win’ 0.58 0.42 —-
First-price, optimal reserve=0.98
E(revenue) 0.211 0.297 0.656
Prob ‘win’ 0.33 0.28 0.39
Second-price, no reserve
E(revenue) 0.55 0.40 0.44
Prob ‘win’ 0.64 0.36 —-
Second-price, optimal reserve=0.93
E(revenue) 0.230 0.303 0.660
Prob ‘win’ 0.37 0.27 0.36
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Table 3: No collusion, 2 high types (H) and 4 Low types (L)
vH

i ∼ LN(1.35,0.35),vL
i ∼ LN(0.75,0.35) truncated on[1.5,6].

First-price Second-price
Mean Std. dev. Prob. Rev. Res. Prob. Rev. Res.

H 3.756 1.030 0.393 0.385 0.415 0.413
L 2.435 0.724 0.053 0.031 0.042 0.025
Auc. 0.000 3.557 0.000 3.536
H 3.756 1.030 0.394 0.386 0.415 0.411
L 2.435 0.724 0.053 0.031 0.042 0.024
Auc. 0.000 3.558 2.170 0.001 3.537 2.395

Table 4: Collusion exercise between 2 high types (H) and 4 Lowtypes (L)
vH

i ∼ LN(1.35,0.35),vL
i ∼ LN(0.75,0.35) truncated on[1.5,6].

First-Price Second-price
Mean Std. dev. Prob. Rev. Res. Prob. Rev. Res.

HH 4.346 0.880 0.668 0.906 0.832 1.227
L 2.435 0.724 0.083 0.050 0.042 0.025
Auc. 0.000 3.287 0.000 3.135
HH 4.346 0.880 0.675 0.857 0.801 0.998
L 2.435 0.724 0.073 0.044 0.038 0.021
Auc. 0.026 3.297 2.972 0.048 3.237 3.134
HHL 4.379 0.856 0.706 1.019 0.874 1.398
L 2.435 0.724 0.098 0.060 0.042 0.025
Auc. 0.000 3.181 0.000 2.989
HHL 4.379 0.856 0.709 0.902 0.815 0.977
L 2.435 0.724 0.077 0.045 0.035 0.020
Auc. 0.048 3.225 3.134 0.079 3.185 3.300
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Table 5: Study of the trade off between numerical accuracy and computational.
F1(v) = 1−e−v,F2(v) = 1−e−( v

3.39)2.2
, truncated on[0,5].

Order of Expansion, J=5
Grid Time (sec.) RMSE 1 RMSE 2
500 37.1880 0.4000 0.0882
1000 95.3590 0.3988 0.0868
1500 146.1250 0.3984 0.0864
2000 202.2500 0.3982 0.0862

Number of grid points = 500
J Time (sec.) RMSE 1 RMSE 2
2 18.1880 0.4000 0.0882
3 32.2810 0.4000 0.0882
4 38.7030 0.4000 0.0882
5 46.4690 0.4000 0.0882

Number of grid points = 2000
J Time (sec.) RMSE 1 RMSE 2
2 93.4530 0.3982 0.0862
3 139.4530 0.3982 0.0862
4 173.8120 0.3982 0.0862
5 202.2500 0.3982 0.0862
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Figure 1: Three Bidders
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Figure 2: Three Bidders
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Figure 3: No collusion
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Figure 4: Two high types colluding
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Figure 5: Two high types and one low type colluding
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Figure 6: Comparison of equilibrium bid function and reaction function
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