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Abstract

In this paper we propose to estimate the value distribution of in-
dependently and identically repeated first-price auctions directly via
a semi-nonparametric integrated simulated moments sieve approach.
Given a candidate value distribution function in a sieve space, we simu-
late bids according to the equilibrium bid function involved. We take
the difference of the empirical characteristic functions of the actual
and simulated bids as the moment function. The objective function
is then the integral of the squared moment function over an inter-
val. Minimizing this integral to the distribution functions in the sieve
space involved and letting the sieve order increase to infinity with
the sample size then yield a uniformly consistent semi-nonparametric
estimator of the actual value distribution. Also, we propose an inte-
grated moment test for the validity of the first-price auction model,

∗Support for research within the Center for the Study of Auctions, Procurements, and
Competition Policy (CAPCP) at Penn State has been provided by a gift from the Human
Capital Foundation
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and an data-driven method for the choice of the sieve order. Finally,
we conduct a few numerical experiments to check the performance of
our approach.
JEL codes: C14, C15, C51, D44
Keywords : First-price auctions, Semi-nonparametric estimation, Sieve
estimation, Empirical characteristic functions, Simulated moments,
Legendre polynomials, Integrated moment test

1 Introduction

As Laffont and Vuong (1993) point out, the distribution of bids determines
the structural elements of auction models, provided identification is achieved.
In the first-price auction model with symmetric independent private values,
the structural element of interest is the value distribution. Much research has
been done on the identification and the estimation of the value distribution.
Donald and Paarsch (1996) apply ML estimation to first-price auctions and
Dutch auctions. They use a parametric specification for the value distribu-
tion to implement ML estimation. In particular, they assume in a numerical
example that the value distribution is a uniform distribution on the interval
[0, v] where v is a parametric function of auction-specific covariates. Since
in this case the support of the bid distribution involved depends on parame-
ters, the standard consistency proof of ML estimators does no longer apply.
Another difficulty with ML estimation of first-price auction models is that
the equilibrium bid function is highly non-linear in the value and its distrib-
ution, so that the computation of the ML estimators involved is challenging.
The same applies to descending price (Dutch) auctions, because they are
strategically equivalent to first-price auctions. Because of the difficulty of
ML estimation of these models, Laffont and Vuong (1993) suggest Simulated
Non-Linear Least Squares (SNLLS) estimation for first-price auction models
and Simulated Method of Moment (SMM) estimation for descending price
auction models with symmetric independent private values. Their SNLLS
approach requires to replace the expectation of the winning bid with a sim-
ulated one. They also suggest that the expectation of higher moments of
winning bids can be used for SMM estimation if the expectation of the win-
ning bids itself is not sufficient to identify all parameters. Both SNLLS and
SMM approaches require a parametric specification for the value distribu-
tion. Laffont et al. (1995) apply the SNLLS approach suggested by Laffont
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and Vuong (1993) to the egg plant auction, which is a descending price auc-
tion. They specify a log-normal value distribution conditional on covariates.
Li (2005) considers first-price auctions with entry and binding reserve price.
This auction consists of two stages. In the first stage the potential bidder
decides whether he or she enters the auction, with payment of entry cost. In
the second stage, the bidder gets to know his or her value and then decides
to bid according to the equilibrium bid function, which is the same function
as for the first-price auction model. Li (2005) proposes a SMM approach to
estimate the entry probability and the parameters of the value distribution.
One of the conditional moments is a function of the upper bound of the bid
support, which can be computed via the simulation approach in Laffont et
al. (1995). The other moment conditions are related to the number of active
bidders, i.e., potential bidders who decides to participate in the auction.
For general nonparametric identification results of first-price auctions

models with symmetric independent private values, see Guerre et al. (1995)
and Athey and Haile (2005). In particular, Guerre et al. (2000) show
the nonparametric identification of value distributions with bounded sup-
port [v, v], v < ∞, and propose an indirect nonparametric kernel estima-
tion approach. Their approach is based on the inverse bid function v =
b + (I − 1)−1 Λ(b)/λ(b), where I is the number of potential bidders, v is a
private value, b is a corresponding bid, and Λ (b) is the distribution func-
tion of bids with density λ (b). The latter two functions are estimated via
nonparametric kernel methods, as Λ̂(b) and λ̂(b), respectively. Using the

pseudo-private values eV = B + (I − 1)−1 Λ̂(B)/λ̂(B), where each B is an
observed bid, the density of the private value distribution can now be esti-
mated by kernel density estimation. However, the ratio Λ̂(b)/λ̂(b) may be an
unreliable estimate of Λ(b)/λ(b) near the boundary of the support of λ(b).
To solve this problem, Guerre et al. (2000) use a trimming procedure which

amounts to discarding pseudo-private values eV corresponding to bids B that
are too close to the boundary of the (known) support of the bid distribution.
Throughout this paper we confine our analysis to first-price sealed bid

auctions where values are independent, private and bidders are symmetric
and risk-neutral. Moreover, our asymptotic results are based on the as-
sumption that the observe the bids are generated by independently repeated
identical first-price auctions. Admittedly, this type of repeated auctions is
rare in practice. The reason for considering this case is to lay the ground-
work for the more realistic case of first-price auctions with auction-specific
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covariates and different numbers of potential bidders and reservation prices,
like the well-known US Forest Service timber auctions.
In this paper we propose a direct Semi-Nonparametric Integrated Sim-

ulated Moments (SNP-ISM) estimation approach, as an alternative to the
two-step nonparametric kernel estimation approach of Guerre et al. (2000).
This approach does not require that the support of the value distribution
is bounded. In stead of the latter, we require that the value distribution is
absolutely continuous with finite expectation. This condition implies that
the corresponding bids are bounded random variables.
Our SNP-ISM methodology is different from the SMM approach of Laf-

font and Vuong (1993) and Li (2005) in that the latter two approaches require
parametric specification for the value distribution whereas ours does not. In-
stead, we treat the unknown value distribution function itself as a parameter,
contained in a compact metric space F of absolutely continuous distribution
functions endowed with the ”sup” metric.
Based on the approach in Bierens (2007), we construct an increasing

sequence {Fn}∞n=0 (the sieve1) of subspaces of our ”parameter space” F,
where the distribution functions in each subspace Fn can be represented by
parametric functions of Legendre polynomials of order up to n. Given a
distribution function F ∈ Fn, we simulate bids according to the equilibrium
bid function involved. Motivated by the well-known fact that distributions
are equal if and only if their characteristic functions are identical, we take the
difference of the empirical characteristic functions of the actual and simulated
bids as the simulated moment function. Thus, our approach uses uncountable
many moment conditions whereas Laffont and Vuong (1993) and Li (2005)
use only a finite number of moment conditions. Since characteristic functions
of bounded random variables coincide everywhere if and only if they coincide
on an arbitrary interval around zero, we take the integral of the squared
simulated moment function over such an interval as our objective function,
similar to the Integrated Conditional Moment (ICM) test statistic of Bierens
(1982) and Bierens and Ploberger (1997). Minimizing this objective function
to the distribution functions in Fn and letting n increase with the sample size
N then yield a uniformly consistent SNP sieve estimator of the actual value
distribution. This approach yields as by-products an Integrated Moment
(IM) test of the validity of the first-price auction model, together with an

1A sequence {Fn}∞n=0 of subspaces of a metric space F is called a sieve if the closure
of ∪∞n=0Fn is equal to F . See for example Shen(1997) and Chen (2004).
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information criterion similar the information criteria of Hannan-Quinn (1979)
and Schwarz (1978) for likelihood models, which can be used to estimate the
sieve order n consistently if it is finite, and otherwise yields a data-driven
sequence nN for which the SNP sieve estimator is uniformly consistent as well.
Finally, we conduct a few numerical experiments to check the performance
of our SNP-ISM approach.
The paper is organized as follows. In section 2 we review the first-price

auction model and show that this model is nonparametrically identified as
long as the value distribution is absolutely continuous, and that the bids
are bounded random variables if the value distribution has a finite expecta-
tion. In section 3 we introduce our estimation methodology and we set forth
further conditions for the uniform strong consistency of the SNP-ISM sieve
estimator involved. In section 4 we show how to construct the metric space
F and corresponding sieve spaces Fn of absolutely continuous distribution
functions on (0,∞). In section 5 we propose a consistent integrated moment
(IM) test of the validity of the first-price auction model with symmetric in-
dependent values and risk neutrality. In section 6 we propose an information
criterion for the data-driven selection of the sieve order n, similar to the or-
der selection of autoregressions via the Hannan-Quinn (1979) and Schwarz
(1978) information criteria. In section 7 we show the performance of our pro-
posed SNP-SMM estimation and IM testing approach via a few numerical
experiments. In section 8 we make some concluding remarks. Most of the
proofs of our results are given in the Appendix (section 9).
Throughout the paper, we denote a random variable in upper-case and

a non-random variable in lower-case. The indicator function is denoted by
1(·).2 Almost sure (a.s.) convergence is denoted by Xn → X a.s.3 Similarly,
convergence in probability will be denoted byXn →p X or p limn→∞Xn = X,
and Xn →d X indicates that Xn converges in distribution to X . In the case
thatXn andX are random functions we use the notationXn ⇒ X to indicate
that Xn (·) converges weakly to X (·) . See for example Billingsley (1999) for
the meaning of the notion of weak convergence.

21(True) = 1, 1(False) = 0.
3This means that P [limn→∞Xn = X] = 1.
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2 First-Price Auctions

A first price sealed bids auction (henceforth called first-price auction) is an
auction with I potential bidders, where the potential bidder’s values for the
item to be auctioned off are independent and private, and the bidders are
symmetric and risk neutral. The reservation price p0, if any, is announced in
advance and the number I ≥ 2 of potential bidders is known to each potential
bidder.

2.1 The Bid Distribution

As is well-known, the equilibrium bid function of a first-price auction takes
the form

β (v|F0) = v − 1

F0(v)I−1

Z v

p0

F0(x)
I−1dx for v > p0, (1)

if the reservation price p0 is binding, and

β (v|F0) = v − 1

F0(v)I−1

Z v

0

F0(x)
I−1dx for v > v, (2)

if the reservation price p0 is non-binding, where F0(v) is the value distribution
and v ≥ 0 is the lower bound of its support. See for example Riley and
Samuelson (1981) or Krishna (2002).
If p0 is binding, only potential bidders whose values are greater than p0

participate in the auction, and issue a bidB > p0. For notational convenience
we will assume that the other potential bidders issue a zero bid: B = 0. Then
the bid function involved becomes

β0 (v|F0) = v.1 (F0 (v) ≥ F0 (p0))

−
1 (F0 (v) ≥ F0 (p0))

R v
p0
F0(x)

I−1dx

(F0 (v) 1 (F0 (v) ≥ F0 (p0)) + F0 (p0) .1 (F0 (v) < F0 (p0)))I−1
,(3)

which applies to the non-binding reservation price case as well. Consequently,
if V is a random drawing from F0 then the corresponding (possibly zero) bid
B is

B = β0 (V |F0) = V.1 (F0 (V ) ≥ F0 (p0))

− 1 (F0 (V ) ≥ F0 (p0))
R V
p0
F0(x)I−1dx

(F (V0)1 (F (V0) ≥ F0 (p0)) + F0 (p0) .1 (F0 (V ) < F0 (p0)))I−1
. (4)
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It is well-known that if

Assumption 1. The true value distribution F0 is absolutely continuous,
with density f0

then, with V a random drawing from F0, U = F0 (V ) is uniformly [0, 1]
distributed. Moreover, if in addition F0 is invertible, i.e., for each u ∈ [0, 1]
there exists a unique v = F−10 (u) such that F0(v) = u, then (4) is distributed
as

B ∼ η (U |F0) , U ∼ Uniform [0, 1], (5)

with

η (u|F ) = F−1(u).1 (u ≥ α)− 1 (u ≥ α)
R F−1(u)
p0

F (x)I−1dx

(u.1 (u ≥ α) + α.1 (u < α))I−1

= F−1(u).1 (u ≥ α)

− 1 (u ≥ α) (F−1(u)− p0)
R 1
0
F (p0 + y (F

−1(u)− p0))I−1 dy
(u.1 (u ≥ α) + α.1 (u < α))I−1

(6)

α = F (p0) , u ∈ [0, 1] ,
where the second equality in (6) follows by substituting x = p0+y (F−1(u)− p0) .
However, invertibility of F0 is not necessary for (5), due to the following
lemma.

Lemma 1. Let F (v) be an absolutely continuous distribution function. If
V is a random drawing from F (v) then F (V ) is uniformly [0, 1] distributed.
Moreover, the set S of points u ∈ (0, 1) for which the solution vu of u = F (vu)
is not unique is either empty or countable. Hence, given a random drawing
U from the uniform [0, 1] distribution, the solution VU of F (VU) = U is a.s.
unique, and P [VU ≤ v] = F (v).

Proof : Although this is a known result, the proof will be given in the
Appendix.

2.2 Nonparametric Identification

There are two seminal papers on the identification of first-price auction mod-
els, namely Donald and Paarsch (1996) and Guerre et al. (2000). Of course,
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parametric identification has been established earlier, in particular by Laffont
et al. (1995). Donald and Paarsch (1996) show the nonparametric identifi-
cation of first-price auction models under the assumption that the support
of the distribution F (v) of the values is a known bounded interval [v, v], i.e.,
F (v) is absolutely continuous with density f such that f (v) > 0 on (v, v),
and F (v) = 0, F (v) = 1. They identify the value distribution and the risk
aversion parameter using the family of Hara utility functions. Particularly
they identify the distribution F (v) using a fixed upper bound.
As said before, Guerre et al. (2000) also show the nonparametric identifi-

cation of first-price auction models under the bounded support assumption,
via the inverse bid function.
In this subsection we will show that these identification results carry over

to general absolutely continuous value distributions.
If the reservation price p0 is binding, the number of actual bidders, I0

say, may be less than the number I of potential bidders. Then I − I0 is the
number of zero bids, which has a Binomial(I, F0 (p0)) distribution, hence

F0 (p0) = E [(I − I0) /I ] .
Since both I and I0 are observable, it follows therefore that α = F0 (p0) is
identified.
Now suppose that there exists another absolutely continuous value dis-

tribution F∗ with density f∗ satisfying α = F0 (p0) = F∗ (p0) such that with
U ∼ Uniform [0, 1], B ∼ η (U |F0) ∼ η (U |F∗) . Similar to S in Lemma 1, let
S∗ be the set of points u ∈ (0, 1) for which the solution v∗u of u = F∗(v∗u) is
not unique. Then it follows from (6) that for u ∈ (α, 1) \ (S ∪ S∗) ,

uI−1F−10 (u)−
Z F−10 (u)

p0

F0(x)
I−1dx = uI−1F−1∗ (u)−

Z F−1∗ (u)

p0

F∗(x)
I−1dx.

Since S ∪ S∗ is countable, it follows that both sides of this equation are
differentiable in every u ∈ (α, 1) \ (S ∪ S∗) , with derivatives

(I − 1)uI−2F−10 (u)
= (I − 1)uI−2F−10 (u) + uI−1

dF−10 (u)
du

− (F0(F−10 (u)))I−1
dF−10 (u)

du

= (I − 1)uI−2F−1∗ (u) + uI−1
dF−1∗ (u)
du

− (F∗(F−1∗ (u)))I−1
dF−1∗ (u)

du
= (I − 1)uI−2F−1∗ (u).
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Hence F−10 (u) = F−1∗ (u) on (α, 1) \ (S ∪ S∗) , which implies that

u = F0
¡
F−1∗ (u)

¢ ∈ (α, 1) \ (S ∪ S∗) (7)

Taking the derivative to u ∈ (α, 1) \ (S ∪ S∗) again, it follows from (7) that

1 =
dF0 (F−1∗ (u))

du
=
f0 (F−1∗ (u))

f∗
¡
F−1∗ (u)

¢
hence f0 (v) = f∗ (v) for v ∈ (p0,∞)∩ {v : F∗(v) /∈ S ∪ S∗} . It is now easy to
verify that the latter equality implies that F∗(v) = F0(v) for all v ∈ [p0,∞) .
The result for the non-binding reservation price case follows by letting

p0 = 0. Thus,

Lemma 2. Under Assumption 1 the value distribution F0 (v) is nonpara-
metrically identified on [p0,∞) if the reservation price p0 is binding, and on
[0,∞) in the non-binding case.

2.3 Nonparametric Identification via Characteristic Func-
tions

It follows trivially from (3) and Assumption 1 that4 limv→∞ β0 (v|F0) =
(I − 1) R∞

p0
x.F0 (x)

I−2 f0 (x) dx+ p0F (p0)I−1, which implies that

Lemma 3. Under Assumption 1, supv>0 β0 (v|F0) < ∞ if and only ifR∞
0
vf0 (v) dv <∞. 5

Since the boundedness of the bids plays a key-role in our semi-nonparametric
estimation approach, we will from now on assume that

Assumption 2. The true value distribution F0 has finite expectation.

The significance of the boundedness of an actual bid B is that the bid
distribution Λ0(b) = P [B ≤ b] is then completely determined by the shape

4See Laffont et al. (1995) and Guerre et al. (2000, Footnote 8).
5This result also follows from equation (6) in Li and Vuong (1997). Moreover, note that

under the conditions of Lemma 3 the expected revenue of the seller, I.
R∞
p0

β (v|F0) f0 (v) dv,
is finite too.
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of its characteristic function

ϕ0(t) = E [exp(i.t.B)] =

Z ∞

0

exp (i.t.b) dΛ0(b), i =
√−1, (8)

in an arbitrary neighborhood of t = 0. More formally:

Lemma 4. Let B be a bounded random variable with distribution function
Λ0(b) and characteristic function ϕ0(t). Let ψ (t) be the characteristic func-
tion of a distribution function Λ(b). Then Λ(b) = Λ0(b) for all b ∈ R if and
only if for an arbitrary κ > 0, ϕ0(t) = ψ (t) for all t ∈ (−κ,κ) .

This is a well-known result6, which is based on the fact that due to the bound-
edness condition ϕ0(t) can be written as ϕ0(t) =

P∞
m=0

im

m!
tmE [Bm] , hence

ϕ0(t) = ψ (t) on (−κ,κ) implies that i−m dmψ (t) / (dt)m|t=0 = i−mdmϕ (t) /
(dt)m|t=0 = E [Bm] for m = 0, 1, 2, ....., so that ψ(t) = ϕ0(t) =

P∞
m=0

im

m!
tm.

E [Bm] for all t ∈ R. As is well-known, the latter implies that the two distri-
butions involved are identical.
Note that we do not need to assume from the outset that Λ(b) is a distri-

bution function of a bounded random variable. The condition ϕ0(t) = ψ (t)
on (−κ,κ) automatically implies boundedness of this distribution.
Now let F be an absolutely continuous distribution function on (0,∞)with

density and let U be a random drawing from the Uniform [0, 1] distribution.
Moreover, let eB (F ) = η (U |F ) (9)

[c.f. (6)]. Furthermore, let Λ (b|F ) = P
h eB (F ) ≤ bi and

ψ (t|F ) = E
h
exp

³
i.t. eB (F )´i . (10)

Then it follows from Assumptions 1-2 and Lemma 4 that ψ (t|F ) = ϕ0(t) for
all t ∈ (−κ,κ) , with κ > 0 arbitrary, if and only if Λ (b|F ) = Λ0 (b) for all
b, where Λ0 is now the actual bid distribution. In its turn it follows from
Lemma 2 that the latter implies that F (v) = F0 (v) for all v ∈ [p0,∞) if
the reservation price is binding, and F (v) = F0 (v) for all v ∈ [0,∞) if the
reservation price is non-binding. Thus:

6Usually stated for moment generating functions rather than characteristic functions.
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Lemma 5. Denote

Ψ(t|F ) = E [exp (i.t.B)]−E
h
exp

³
i.t. eB (F )´i (11)

where B is an actual bid corresponding to the true value distribution F0,
and eB (F ) is a simulated bid generated by (9). Let for an arbitrary constant
κ > 0,

Q(F ) =
1

2κ

Z κ

−κ
|Ψ(t|F )|2 dt (12)

Under Assumptions 1-2, Q (F ) = 0 if and only if F (v) = F0 (v) on [p0,∞)
if the reservation price p0 is binding, and F (v) = F0 (v) on [0,∞) if the
reservation price p0 is non-binding.

3 Integrated Simulated Moments Sieve Esti-

mation.

3.1 The Objective Function

As said before, in this paper we will consider the case where a first-price auc-
tion is repeated independently L times, with the same true value distribution
F0(v), the same fixed number of potential bidders I, and the same reserva-
tion price p0. The asymptotic results will be derived for L → ∞. Thus, we
observe N = I × L bids Bj generated independently from the distribution
(5).
Let F be a potential candidate (henceforth called a candidate value dis-

tribution) for the true value distribution F0, and let {Uj}Nj=1 be a random
sample drawn from the uniform [0, 1] distribution. Then similar to (9) we

can generate independent simulated bids eBj (F ) according toeBj (F ) = η (Uj |F ) , j = 1, 2, ...., N = I × L, (13)

where η(u|F ) is defined by (6).
Next, denote bΨ(t|F ) = bϕ0(t)− bψ(t|F ), t ∈ R, (14)

where

bϕ0(t) = 1

N

NX
j=1

exp(i.t.Bj) (15)
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is the empirical characteristic function of the actual bids and

bψ(t|F ) = 1

N

NX
j=1

exp
³
i.t. eBj (F )´ (16)

is the empirical characteristic function of the simulated bids, and let for an
arbitrary constant κ > 0,

bQ(F ) = 1

2κ

Z κ

−κ

¯̄̄ bΨ(t|F )¯̄̄2 dt (17)

By Kolmogorov’s strong law of large numbers for i.i.d. random variables,bΨ(t|F )→ Ψ(t|F ) a.s., pointwise in t and F, where Ψ(t|F ) is defined by (11)
in Lemma 5, hence by the bounded convergence theorem, bQ(F )→ Q(F ) a.s.,
pointwise in F,where Q(F ) is defined by (12) in Lemma 5. Now Lemma 5

suggests that F0 can be estimated consistently by minimizing bQ(F ) to F, in
some way to be discussed in the next subsection.
Note that the objective function bQ(F ) has the following closed form ex-

pression in terms of the actual bids Bj and the simulated bids eBj (F ):
bQ(F ) =

2

N 2

N−1X
j1=1

NX
j2=j1+1

sin (κ. (Bj1 −Bj2 (F )))
κ. (Bj1 −Bj2 (F ))

+
2

N 2

N−1X
j1=1

NX
j2=j1+1

sin
³
κ.
³ eBj1 (F ) − eBj2 (F )´´

κ.
³ eBj1 (F )− eBj2 (F )´

− 2

N2

NX
j1=1

NX
j2=1

sin
³
κ.
³
Bj1 − eBj2 (F )´´

κ.
³
Bj1 − eBj2 (F )´ . (18)

3.2 Conditions for Strong Consistency of Sieve Esti-
mators

The standard consistency proof for parameter estimators of nonlinear para-
metric models requires that the parameters are confined to a compact subset
of a Euclidean space. Since the true value distribution F0 plays now the role
of parameter, we need to construct a compact metric space F of absolutely
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continuous distribution functions F on (0,∞) containing the true value dis-
tribution F0: F0 ∈ F . Because F0 is unknown, the latter has to be assumed,
though. We will endow the space F with the ”sup” metric, i.e., the metric

||F1 − F2|| = sup
v>0

|F1 (v)− F2 (v)| (19)

if the reservation price p0 is non-binding, and

||F1 − F2|| = sup
v≥p0

|F1 (v)− F2 (v)| (20)

if the reservation price p0 is binding. Recall that in the latter case only
the shape of F0 on [p0,∞) matters, and the same holds for any candidate
distribution function F , so that without of loss of generality may declare
two candidate value distributions F1 and F2 ”equal” (or equivalent) if they
coincide on [p0,∞).
Suppose it were possible to computebF = argmin

F∈F
bQ(F ). (21)

Then it follows from Theorem 2 below that

|| bF − F0||→ 0 a.s. for N →∞ (22)

if
sup
F∈F

¯̄̄ bQ(F )−Q(F )¯̄̄→ 0 a.s. for N →∞ (23)

and
Q(F ) is continuous on F . (24)

A third condition is that F0 is unique: if F∗ = argminF∈F Q(F ) then ||F∗ −
F0|| = 0, but this condition follows from Lemma 5.
The uniform convergence condition (23) follows by bounded convergence

if pointwise in t ∈ (−τ, τ ) ,

sup
F∈F

¯̄̄bψ(t|F )− ψ(t|F )
¯̄̄
→ 0 a.s. for N →∞, (25)

where bψ(t|F ) is defined by (16) and ψ(t|F ) by (10). To prove (25), we need
the following generalization of Jennrich’s (1969) uniform strong law of large
numbers to random functions on compact metric spaces:
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Theorem 1. Let Θ be a compact metric space, and let µj(θ), j = 1, 2, ..., N, ....
be a sequence of real valued almost surely continuous i.i.d. random functions
on Θ. If in addition

E

∙
sup
θ∈Θ

|µ1(θ)|
¸
<∞ (26)

then for N →∞,

sup
θ∈Θ

¯̄̄̄
¯ 1N

NX
j=1

µj(θ)− µ(θ)
¯̄̄̄
¯→ 0 a.s., (27)

where µ(θ) = E [µ1(θ)] . 7 This result carries over to complex-valued random
functions µj(θ) if the conditions involved hold for Re [µj(θ)] and Im [µj(θ)] .

Proof : Appendix.

In our case (25), Θ is F , θ = F and µj(θ) = exp
³
i.t. eBj (F )´ for fixed

t. Since | exp(i.t. eBj(F ))| ≡ 1, condition (26) is trivially satisfied. Thus,

to conclude (25) from Theorem 1 it remains to show that eBj (F ) is a.s.
continuous in F , which will be done in Lemma 6 below. Given this continuity
condition, (24) then holds as well, and then (22 ) follows from the following
generalization of the consistency results in Jennrich’s (1969) for nonlinear
least squares estimators.

Theorem 2. Let bQN (θ) be a sequence of real valued random functions on a

compact metric space Θ with metric ρ(θ1, θ2), such that supθ∈Θ | bQN(θ)−Q(θ)|
→ 0 a.s., where Q(θ) is a continuous real function on Θ. Let bθN = argminθ∈ΘbQN(θ) and θ0 = argminθ∈ΘQ(θ). Then for N →∞,

Q(bθN)→ Q(θ0) a.s. (28)

If θ0 is unique then (28) implies ρ(bθN , θ0)→ 0 a.s.

Proof : Appendix.
Of course, in practice it is not possible to compute (21). The standard

approach to get around this problem is sieve estimation. The general consis-
tency result for sieve estimators is the following:

7Note that µ(θ) is continuous because µ1(θ) is a.s. continuous.
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Theorem 3. Let the conditions of Theorem 2 be satisfied, including the
uniqueness of θ0. Let {Θn}∞n=0 be an increasing sequence of compact subspaces
of Θ which is dense in Θ, i.e., Θ = ∪∞n=0Θn,

8 and for which the computation

of eθn,N = argminθ∈Θn bQN(θ) is feasible. Let nN be an arbitrary subsequence
of n satisfying limN→∞ nN =∞, and denote the sieve estimator involved byeθN = eθnN ,N . Then ρ(eθN , θ0)→ 0 a.s.

Proof : Appendix.
Thus, in our case we need construct an increasing sequence {Fn}∞n=0 of

compact subspaces of F which is dense in F, and for which the computation
of eFn = arg min

F∈Fn
bQ(F ) (29)

is feasible. Then for any subsequence nN of N satisfying limN→∞ nN = ∞
the sieve estimator eF = eFnN is strongly consistent: || eF − F0|| → 0 a.s. as
N →∞.

3.3 Continuity of Simulated Values and Bids in the
Candidate Value Distribution

The simulation procedure (13) can be conducted as follows. First,

Assumption 3. Given a sequence U1, ..., UN , ... of independent random
drawings from the uniform [0, 1] distribution, for each candidate value distri-

bution F the corresponding simulated values eVj (F ) = F−1 (Uj) are generated
by solving Uj = F

³eVj (F )´ for j = 1, ...., N .
Then it follows from (6) and (13) that the corresponding simulated bids can
be generated according to

eBj (F ) =

ÃeVj (F )− eVj (F )− p0
U I−1j

Z 1

0

F
³
p0 + y(eVj (F )− p0)´I−1 dy!

×1
³eVj (F ) > p0´ (30)

8The bar denotes the closure of the set involved. The condition Θ = ∪∞n=1Θn is
equivalent to the statement that for each θ ∈ Θ there exists a sequence θn ∈ Θn such that
limn→∞ ρ(θn, θ) = 0.
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if the reservation price p0 is binding, and

eBj (F ) = eVj (F )− eVj (F )
U I−1j

Z 1

0

F
³
y.eVj (F )´I−1 dy (31)

if the reservation price p0 is non-binding. The the integral involved can be
computed numerically or via Monte Carlo integration. However, the asymp-
totic theory in this paper will be based on the assumption that this integral
is computed exactly.
Note that to guarantee smoothness of the empirical characteristic functionbψ(t|F ) of the simulated bids eBj (F ) in t and F, the same sequence {Uk}Nk=1

of independent uniformly [0, 1] distributed random variables should be used
to generate the simulated bids for different candidate value distributions F .
An alternative approach to generate simulated values eVj (F ) from F is

the well-known accept-reject method. See for example Devroye (1986) or
Rubinstein (1981). However, the simulation procedure in Assumption 3 has
the advantage that it is easier to prove that the simulated values and bids
involved are continuous in F , in the following sense:

Lemma 6. Let Fn and F be candidate value distributions such that

lim
n→∞

||Fn − F || = 0 (32)

For a given random drawing U from the uniform [0, 1] distribution, let eV (Fn) =
F−1n (U) and eV (F ) = F−1 (U ) , with corresponding simulated bids eB (Fn) andeB (F ) , respectively. Then

P
h
lim
n→∞

eV (Fn) = eV (F )i = 1 (33)

and
P
h
lim
n→∞

eB (Fn) = eB (F )i = 1. (34)

Proof : Appendix.
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4 Construction of a Compact Metric Space of

Absolutely Continuous Distribution Func-

tions and Its Sieve Spaces

4.1 Representation of Distribution by Distribution on
the Unit Interval

Any absolutely continuous distribution function F (v) can be expressed as

F (v) = H(G(v)), (35)

where G(v) is a given absolutely continuous distribution function with con-
nected support9 containing the support of F , and H is an absolutely contin-
uous distribution function on the unit interval, namely H(u) = F (G−1(u)).
The density f (v) of F (v) then takes the form

f (v) = h(G(v))g(v), (36)

where g(v) is the density of G(v) and h(u) is the density of H(u), i.e.,

H(u) =

Z u

0

h(x)dx. (37)

Therefore, we can estimate f and F by estimating h given G.
In our case, where F is candidate value distribution, it is advisable to

choose for G a distribution function with support (0,∞), for example the
exponential distribution, because in general the support of F (v) is unknown.

4.2 Modeling Density Functions on the Unit Interval
via Legendre Polynomials

Following Bierens (2007), we now show how to approximate any density func-
tion h(u) on the unit interval arbitrary close by using orthonormal Legendre
polynomials.

9So that G(v) is invertible: v = G−1(u) for all u ∈ [0, 1], with support (v, v), where
v = limu↓0G−1(u) and v = limu↑1G−1(u).
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Legendre polynomials ρn(u) of order n ≥ 2 on the unit interval [0, 1] can
be constructed recursively by

ρn(u) =

√
2n− 1√2n+ 1

n
(2u− 1)ρn−1(u)− (n − 1)

√
2n+ 1

n
√
2n− 3 ρn−2(u)

starting from
ρ0(u) = 1, ρ1(u) =

√
3(2u− 1).

These polynomials are orthonormal, in the sense thatZ 1

0

ρm(u)ρk(u)du =

½
1 for m = k
0 otherwise

Theorem 1 in Bierens (2007) states that the Legendre polynomials ρk(u)
form a complete orthonormal basis for the Hilbert space L2B(0, 1) of square-
integrable Borel measurable real functions on [0, 1], endowed with the inner

product hf, gi = R 1
0
f(u)g(u)du and associated norm ||f ||2 =

phf, f i and
metric ||f − g||2. Hence, any square-integrable Borel measurable real func-
tion q(u) on [0, 1] can be represented as q(u) =

P∞
k=0 γkρk(u) a.e. on [0, 1]

where the γk’s are the Fourier coefficients: γk =
R 1
0
ρk(u)q(u)du, satisfyingP∞

k=0 γ
2
k <∞. Therefore, every density function h(u) on [0, 1] can be written

as h(u) = q(u)2 where q(u) ∈ L2B(0, 1), with
R 1
0
q(u)2du =

P∞
k=0 γ

2
k = 1.

Without loss of generality we may assume that γ0 ∈ (0, 1), because
given h(u) we may assume that q(u) =

p
h(u). Therefore, the restrictionP∞

k=0 γ
2
k = 1 can be imposed by reparametrizing the γk’s as

γ0 =
1p

1 +
P∞

k=1 δ
2
k

, γk =
δkp

1 +
P∞

k=1 δ
2
k

for k = 1, 2, 3, . . .

Thus, any density function h(u) on [0, 1] can be represented as

h(u) =
(1 +

P∞
k=1 δkρk(u))

2

1 +
P∞

k=1 δ
2
k

, where

∞X
k=1

δ2k <∞, (38)

and therefore any absolutely continuous distribution function H(u) on [0, 1]
takes the form (37), where h(u) is of the form (38).
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4.3 Compact Spaces of Density and Distribution Func-
tions

Since, indirectly, the density h in (36) plays the role of unknown parameter,
we will first construct a compact metric space of densities on the unit interval.
This can be done by imposing restrictions on the parameters δk in (38), as
follows.

Lemma 7. Let D (0, 1) be the space of density function h(u) on [0, 1] of the
form (38), where the parameters δk are restricted by the inequality

|δk| ≤ c
³
1 +
√
k ln k

´−1
, k = 1, 2, 3, .... (39)

for an a priori chosen constant c > 0. If we endow D (0, 1) with the L1
metric

||h1 − h2||1 =
Z 1

0

|h1(u)− h2(u)| du, (40)

then D (0, 1) is a compact metric space. Consequently, the corresponding
space of absolutely continuous distribution functions on [0, 1],

H (0, 1) =
½
H(u) =

Z u

0

h(x)dx, h ∈ D (0, 1)
¾
,

endowed with the ”sup” metric sup0≤u≤1 |H1(u)−H2(u)| , is a compact met-
ric space as well.

Proof : Bierens (2007, Theorem 8).
To construct compact spaces of densities and distribution functions on

(0,∞),

Assumption 4. Choose an absolutely continuous distribution function G(v)
with density g(v), finite expectation

R∞
0
vg(v)dv <∞, and support (0,∞), as

initial guess of the true value distribution F0.

The reason for requiring that
R∞
0
vg(v)dv < ∞ is that if the initial guess

G(v) of F0 (v) is right then
R∞
0
vdF0 (v) <∞. C.f. Assumption 2.

It follows now straightforwardly from Lemma 7 that:
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Lemma 8. With G(v) and g(v) as in Assumption 4, the space

D(G) = {f (v) = h(G(v))g(v), h ∈ D (0, 1)} (41)

of densities on (0,∞), endowed with the L1 metricZ ∞

0

|f1(v)− f2(v)| dv, (42)

is a compact metric space. Moreover, the corresponding space

F =
½
F (v) =

Z v

0

f(x)dx, f ∈ D(G)
¾

(43)

of absolutely continuous distribution functions on (0,∞), endowed with one
of the sup metrics (19) or (20), is a compact metric space as well.

Remark. The compactness of the spaces D(0, 1) and D(G) follows
from Bierens (2007, Lemmas A.1-A.3) and the fact that for metric spaces
compactness is equivalent to sequential compactness. See Royden (1968,
Corollary 14, p. 163). Sequential compactness means that any infinite se-
quence in the metric space has a convergent subsequence which converges
to an element in this space. Thus, since D (G) is compact, any sequence
fn ∈ D (G) has a further subsequence fnm such that for some f∗ ∈ D (G) ,
limm→∞

R∞
0
|fnm(v)− f∗(v)|dv = 0. Consequently, any sequence of distribu-

tion functions Fn(v) =
R v
0
fn(x)dx ∈ F has a further subsequence Fnm(v) =R v

0
fnm(x)dx such that, with F∗(v) =

R v
0
f∗(x)dx ∈ F ,

lim sup
m→∞

sup
v≥p0

|Fnm(v)− F∗(v)| ≤ lim sup
m→∞

sup
v>0

|Fnm(v)− F∗(v)|

≤ lim sup
m→∞

Z ∞

0

|fnm(v)− f∗(v)| dv = 0.

Therefore, F is sequentially compact and thus compact, regardless whether
we endow F with the metric (19) or the metric (20).
Now F is the ”parameter” space of candidate value distributions F, pro-

vided that

Assumption 5. The constant c > 0 in (39) is chosen so large that the
density f0 of the true value distribution F0 is contained in D(G).
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Note that not all the densities in D(G) will have finite expectations. The
reason is that it is always possible to select a sequence fn ∈ D(G) with finite
expectations such that for a density f ∈ D(G) with infinite expectation,
limn→∞

R∞
0
|fn(v)− f(v)|dv = 0. However, this is of no consequence, as long

as the true value distribution F0 has finite expectation and Assumption 5
holds, because then the true bid distribution Λ0(b) has bounded support, so
that Lemma 4 is applicable10 for all bid distributions Λ(b) corresponding to
an F ∈ F .

4.4 The Sieve Spaces and the Uniform Strong Consis-
tency of the Sieve Estimator

For a density function h(u) in (38) and its associated parameter sequence
{δk}∞k=1, let

hn(u) = h(u|δn) = (1 +
Pn

k=1 δkρk(u))
2

1 +
Pn

k=1 δ
2
k

, where δn = (δ1, . . . , δn)
0, (44)

be the n-th order truncation of h(u). The case n = 0 corresponds to the
uniform density: h0(u) = 1. Following Gallant and Nychka (1987) we will
call this truncated density a SNP density function. It has been shown by
Bierens (2007) that

lim
n→∞

Z 1

0

|hn(u)− h(u)| du = 0. (45)

Thus, defining the space of n-th order truncations of h(u) by

Dn (0, 1) (46)

=

½
hn(u) =

(1 +
Pn

k=1 δkρk(u))
2

1 +
Pn

k=1 δ
2
k

, |δk| ≤ c
³
1 +
√
k ln k

´−1
, k ≥ 1

¾
,

it follows that for each h ∈ D (0, 1) there exists a sequence hn ∈ Dn (0, 1) of
SNP densities such that (45) holds. Consequently, defining

Hn (0, 1) =

½
Hn(u) =

Z u

0

hn(v)du, hn ∈ Dn (0, 1)
¾

(47)

10Recall that Lemma 4 does not require that the other bid distribution Λ(b) has bounded
support.
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it follows that for each distribution function H ∈ H (0, 1) there exists a
sequence of SNP distribution functions Hn ∈ Hn (0, 1) such that

lim
n→∞

sup
0≤u≤1

|Hn(u)−H(u)| = 0. (48)

Note that the SNP distribution functions Hn(u) can be computed as a
ratio of two quadratic forms in δn = (δ1, . . . , δn)0, using the approach in
Bierens (2007).
The densities hn ∈ Dn (0, 1) will be used to construct SNP densities

fn(v) = hn(G(v))g(v) of candidate value distributions, where G and its den-
sity g are chosen in advance according to Assumption 4. The latter implies
thatZ ∞

0

vfn(v)dv =

Z ∞

0

vhn(G(v))g(v)dv ≤ sup
0≤u≤1

hn(u)

Z ∞

0

vg(v)dv <∞

because each hn(u) ∈ Dn is a squared polynomial of order n with bounded
coefficients and is therefore uniformly bounded,

hn = sup
hn∈Dn

sup
0≤u≤1

hn(u) <∞,

although it is possible that limn→∞ hn =∞.
Similar to (41) and (43), define the increasing sets

Dn(G) = {fn(v) = hn(G(v))g(v), hn ∈ Dn (0, 1)} , (49)

Fn = {Fn(v) = Hn(G(v)), Hn ∈ Hn (0, 1)} . (50)

Then

Lemma 9. Choose G as in Assumption 4. Then all the densities fn ∈
Dn(G) have finite expectation. Moreover, for each density f ∈ D(G) there
exists a sequence of densities fn ∈ Dn(G) such that limn→∞

R∞
0
|fn(v) −

f(v)|dv = 0, and for each distribution function F ∈ F there exists a sequence
of distribution functions Fn ∈ Fn such that limn→∞ supv>0 |Fn(v)−F (v)| = 0.
Consequently, {Dn(G)}∞n=0 is dense in D(G), and {Fn}∞n=0 is dense in F .

The sequence of spaces Fn now forms the sieve. Since the distribution
functions in Fn are parametric, with parameters δn = (δ1, . . . , δn)0, the com-
putation of bFn = argminF∈Fn bQ(F ) is feasible. In particular, bFn can be
computed via the simplex method of Nelder and Mead (1965).
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Summarizing, it has been shown that,

Theorem 4. With F defined by (43) with sieve spaces Fn defined by (50), it
follows from Assumptions 1-5 that for an arbitrary subsequence nN satisfying
limN→∞ nN =∞ the SNP-ISM sieve estimatoreF = arg min

F∈FnN
bQ(F )

is uniformly strongly consistent. In particular, supv≥p0 | eF (v) − F0 (v) | → 0

a.s. if the reservation price p0 is binding, and supv≥0 | eF (v) − F0 (v) | → 0
a.s. if not.

5 An Integrated Moment Test of the Validity

of the First-Price Auction Model

5.1 The Test

If the independent private values paradigm and/or the risk neutrality as-
sumption do not hold, the bid functions (1) and (2) no longer apply to the
actual bids. Since the simulated bids are derived from these bid functions,
we then have, by Lemma 4, thatbQ( eF )→ inf

F∈F
Q(F ) > 0 a.s., (51)

where eF is the sieve estimator. This suggests to use bQ( eF ) as a basis for a
consistent integrated moment (IM) test of the null hypothesis that

H0: the actual bids come from a first-price sealed bid auction where values
are independent, private and bidders are symmetric and risk-neutral,

against the general alternative that

H1: the null hypothesis H0 is false.

The IM test we will propose is based on the fact that similar to the
results in Bierens (1990) and Bierens and Ploberger (1997) for the Integrated
Conditional Moment (ICM) test, the following result holds.
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Theorem 5. Under H0 and Assumptions 1-2,

cWN(t) =
1√
N

NX
j=1

³
exp

³
i.t. eBj (F0)´− exp (i.t.Bj)´⇒ W (t)

on [−κ,κ], where W (t) is a complex-valued zero-mean Gaussian process on
[−κ,κ] with covariance function11

Γ(t1, t2) = E
h
W (t1)W (t2)

i
= E

hcWN(t1)cWN (t2)
i
.

Hence12

N. bQ(F0) = 1

2κ

Z κ

−κ

¯̄̄cWN (t)
¯̄̄2
dt→d

1

2κ

Z κ

−κ
|W (t)|2 dt.

Note that this result does not imply that N . bQ( eF ) →d
1
2κ

R κ

−κ |W (t)|2dt,
because this requires that

√
N
³bψ(t| eF )− bψ(t|F0)´ →d 0, which in view of

the proof of Lemma 6 (see the Appendix) requires that the subsequence nN

in Theorem 4 is chosen such that || eF − F0|| = op ³1/√N´ . However, if
Assumption 6. The true value distribution F0 is of the SNP type itself :
F0 ∈ ∪∞n=1Fn,

then there exists a smallest natural number n0 such that F0 ∈ Fn0, so that
N. bQ( eF ) ≤ N. bQ(F0) for nN ≥ n0.

This suggests that upper bounds of the critical values of the test can be
based on the limiting distribution of N. bQ(F0). The consistency of this IM
tests then follows from (51).
The result under H0 follows from the fact that

Lemma 10. Under H0 and Assumptions 1-2 the process cWN (.) is tight
13

on [−κ,κ].

Proof : Appendix.

11Now the bar denotes the complex conjugate: a+ i.b = a− i.b.
12By the continuous mapping theorem.
13See Billingsley (1999) for the definition of tightness.
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5.2 Bootstrap Critical Values

The problem in approximating the limiting processW (t) by bootstrapping is
two-fold, namely that we cannot increase N →∞ because the Bj’s are only
observable for j = 1, ...,N , and F0 is unknown. To overcome these prob-
lems, generate for large M simulated bids eBj , j = 1, 2, ....., 2.M, from the

bid distribution corresponding to the sieve estimator eF of F0, according to
the approach in Assumption 2. Thus, draw Uj , j = 1, 2, ....., 2.M, indepen-
dently from the uniform [0, 1] distribution, and generate the corresponding

simulated bids eBj by eBj = η
³
Uj | eF´. C.f. (6). Denote

fWM

³
t| eF´ =

1√
M

MX
j=1

exp
³
i.t. eBj´− 1√

M

2MX
j=M+1

exp
³
i.t. eBj´

=
1√
M

MX
j=1

exp
³
i.t.η

³
Uj | eF´´− 1√

M

2MX
j=M+1

exp
³
i.t.η

³
Uj| eF´´ .

Then similar to Lemma 10, fWM

³
t| eF´ is tight on [−κ,κ], conditional on eF.

Hence for M →∞,

fWM

³
.| eF´⇒W

³
.| eF´ on [−κ,κ], conditional on eF

whereW
³
.| eF´ is a complex-valued zero-mean Gaussian process with condi-

tional covariance function

eΓ(t1, t2| eF ) = E ∙fWM

³
t1| eF´fWM

³
t2| eF´¯̄̄̄ eF¸

Lemma 11. Under H0 and the conditions of Theorem 4,

sup
(t1,t2)∈[−κ,κ]×[−κ,κ]

¯̄̄eΓ(t1, t2| eF )− Γ (t1, t2)
¯̄̄
→ 0a.s. (52)

as N →∞, and consequently
1

2κ

Z κ

−κ

¯̄̄
W
³
t| eF´¯̄̄2 dt→d

1

2κ

Z κ

−κ
|W (t)|2 dt. (53)

25



Hence, for M →∞ first, and then N →∞,
1

2κ

Z κ

−κ

¯̄̄fWM

³
t| eF´¯̄̄2 dt→d

1

2κ

Z κ

−κ
|W (t)|2 dt. (54)

Proof : Appendix
Therefore, bootstrap critical values of 1

2κ

R κ

−κ |W (t)|2 dt can be computed as
follows. First, choose a large M , say M = 1000. Next, generate eTk =
1
2κ

R κ

−κ

¯̄̄fWM

³
t| eF´¯̄̄2 dt independently for k = 1, ...,K , say K = 500, and sort

the statistics eTk in increasing order. The α × 100% bootstrap critical value
is then eT(1−α)K .
5.3 Critical Values Based on a Further Upper Bound

It has been shown by Bierens and Ploberger (1997) that

1
2κ

R κ

−κ |W (t)|2 dt
1
2κ

R κ

−κ Γ(t, t)dt
≤ sup 1

m

mX
k=1

ε2j = T,

say, where the εj ’s are independently N(0, 1) distributed. Therefore, withbΓ(t, t) a consistent estimator of Γ(t, t), we have
eT = N. bQ( eF )

1
2κ

R κ

−κ
bΓ(t, t)dt ≤ N. bQ(F0)

1
2κ

R κ

−κ
bΓ(t, t)dt →d

1
2κ

R κ

−κ |W (t)|2 dt
1
2κ

R κ

−κ Γ(t, t)dt
≤ T .

The 5% and 10% critical values based on T with are 4.26 and 3.23, respec-
tively.
As to the choice of bΓ(t, t), note that

Lemma 12. Γ(t, t) = 2− 2|ϕ(t)|2, where ϕ(t) is the characteristic function

of the actual bid distribution. Then bΓ(t, t) = 2 − 2|bϕ0(t)|2 → Γ(t, t) a.s.,
pointwise in t, where bϕ0(t) is the empirical characteristic function of the
observed bids.
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6 Determination of the Sieve Order Via an

Information Criterion

Recall that under Assumption 6 there exists a smallest natural number n0
such that F0 ∈ Fn0 . The question now arises how to estimate n0 consistently.
For nested likelihood models this can be done via information criteria, for

example the Hannan-Quinn (1979) or Schwarz (1978) information criteria.
These information criteria are of the form

CN(n) =
−2
N
ln (LN (n)) + n.

φ(N)

N

where LN(n) is the maximum likelihood of a model with n parameters, with
φ(N) = ln (N) for the Schwarz criterion and φ(N ) = 2. ln(ln(N)) for the
Hannan-Quinn criterion. Then for 2 ≤ n ≤ n0,

p lim
N→∞

(CN (n)− CN (n− 1)) = p lim
N→∞

2

N
ln (LN (n− 1))

− p lim
N→∞

2

N
ln (LN (n)) < 0

whereas for n > n0, −2 (ln (LN(n0))− ln (LN (n)))→d χ
2
n−n0 , hence

p lim
N→∞

N

φ(N)
(CN (n)− CN(n0)) = n− n0

Note that the latter result only hinges on −2 (ln (LN(n0))− ln (LN (n))) =
Op(1).
Since by Theorem 5,

N

µ
inf
F∈Fn

bQ(F )− inf
F∈Fn0

bQ(F )¶ = Op(1) if n > n0,
whereas for 2 ≤ n ≤ n0,

p lim
N→∞

µ
inf
F∈Fn

bQ(F )− inf
F∈Fn−1

bQ(F )¶ < 0
it seems that in our case we may replace −2

N
ln (LN (n)) by infF∈Fn bQ(F ):

bCN (n) = inf
F∈Fn(G)

bQ(F ) + n.φ(N)
N

,
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and estimate n0 by bnN = argmin bCN (n). Asymptotically that will work:
limN→∞ P [bnN = n0] = 1. However, in practice it will not, due to the fact

that bQ(F ) is bounded: supF bQ(F ) ≤ 4, and that infF∈Fn bQ(F ) will be close
to zero if n < n0 but not too far away from n0, so that in small samples the
penalty term n.φ(N )/N may dominate infF∈Fn bQ(F ) too much. Therefore,
we propose the following modification of bCN(n):eCN (n) = inf

F∈Fn
bQ(F ) + Φ(n).

φ(N)

N
, (55)

φ(N) = o(N ), lim
N→∞

φ(N ) =∞.
where Φ(n) is an increasing but bounded function of n. For example, let for
some α ∈ (0, 1),

Φ(n) = 1− (n+ 1)−α. (56)

Then similar to the Hannan-Quinn and Schwarz information criteria we have:

Theorem 6. Let enN = maxs.t. eCN (n)≤ eCN (n−1) n and eF = argminF∈FenN (G) bQ(F ).
Under Assumption 6, limN→∞ P [enN = n0] = 1, hence || eF − F0||→ 0 a.s. If

Assumption 6 is not true then p limN→∞ enN = ∞, hence p limN→∞ || eF −
F0|| = 0.

Proof : Appendix.

7 Some Numerical Experiments

In this section we check the performance of the IM test of the validity of
the first-price auction model, and the fit of SNP-ISM density estimator with
estimated the truncation order enN , via a few numerical experiments. In all
experiments we use the exponential distribution

G(v) = 1− exp(−v/3), g(v) = 1
3
exp(−v/3) (57)

as the initial guess for the value distribution, and the truncation order enN is
determined via the approach in Theorem 6, with information criterion

eCN(n) = inf
F∈Fn

bQ(F ) + ¡1− (n + 1)−1/3¢ . ln(ln(N ))
N

. (58)

The 5% and 10% bootstrap critical values of the IM test will be based on
K = 500 bootstrap samples.
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7.1 The IM Test

In this subsection we check the performance of the IM test by two numer-
ical examples. The first is the case where then null hypothesis that the
observed bids can be rationalized by the first-price sealed bid auction model
with independent private values (IPV) is false, and the second case is where
this null hypothesis is true. In both cases we have generated bids from 500
identical and independent auctions, each with two sealed bids and no reser-
vation price. In both cases the true value distribution is exponential, which
is different from the initial guess (57), namely

F0(v) = 1− exp(−v), f0(v) = exp(−v).

In the first case the observed bids come from a second price auction
with IPV and two symmetric, risk-neutral bidders. As is well known, in a
second price auction, it is a weakly dominant strategy to bid the true value.
See Krishna (2002). Therefore, the actual bids are drawn directly from the
value distribution F0(v). As to the results, the estimate of the truncation
order is enN = 4, and the value of the corresponding IM test statistic iseT = 3.0531. The 5% and 10% bootstrap critical values are eT0.95K = 1.1882
and eT0.90K = 0.9447, respectively.14 Consequently, the null hypothesis is
firmly rejected at the 5% significance level, as expected.
The second example is a first-price auction with risk-averse bidders. Again,

we have generated bids from 500 auctions, where each auction has two risk-
averse bidders, with utility function U (x) = x1/2. In this case the equilib-
rium bid function has a closed form. See example 4.1 in Krishna (2002).
But, as is pointed out by Krishna (2002), a first-price auction with two risk-
averse bidders and a value distribution F0(v) is observationally equivalent to
a first-price auction with two risk-neutral bidders with the value distribution
F0(v)2.15 Therefore, in this case we may expect that our IM test will not reject
the null hypothesis. Note however that in this case Assumption 6 does not
hold. Nevertheless, the IM test statistic now takes the value eT = 0.0004, with
5% and 10% bootstrap critical values eT0.95K = 0.3630 and eT0.90K = 0.2661,
respectively, based on the estimated truncation order enN = 2. Thus, the
(true) null hypothesis is not rejected, which is the anticipated result.

14Thus, under the null hypothesis, P (eT ≥ 1.1882) = 0.05 and P (eT ≥ 0.9447) = 0.1.
15This holds when the utility function is a constant relative risk aversion (CRRA) utility

function, U(x) = xα with 0 < α < 1 and U(0) = 0. See example 4.1 in Krishna (2002).
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7.2 The Fit

In the previous experiments the estimated truncation orders enN = 4 andenN = 2 are small, so the question arises whether for such a small truncation
order the value density can be adequately approximated. In this section
we check this for three cases. In each case we generate independently 200
auctions without a reservation price, where each auction consists of 5 bids
whose private values come from a chi-square distribution, so in each case we
have a sample of 1000 i.i.d. bids. The three cases only differ with respect
to the degrees of freedom r of the chi-square distribution, namely r = 3, 4, 5,
respectively.
In these cases the true value densities f0(v) are quite different from the

density g(v) of the initial guess (57), in particular the left tails, as shown in
Figure 1:

Insert Figure 1 here
Figure 1: g(v) = exp(−v/3)/3 compared with the χ2r densities for r = 3, 4, 5
Thus, the SNP density hn(u) needs to convert the exponential density g(v)
into an approximation fn(v) = hn (G(v)) g(v) of a χ2r density, so that hn(u)
needs to bend down the left tail of g(v) towards zero. This seems challenging.
However, it appears that the SNP density hn(u) has no problem doing that,
even for small values of n. First, the estimated truncation orders are small:enN = 4, 2, 4 for r = 3, 4, 5, respectively. To see whether these truncation
orders are too small or not, we compare in Figures 2-4 the SNP sieve density
estimators fenN (v) = henN (G(v)) g(v) with the true χ2r value densities f0(v)
for r = 3, 4, 5.

Insert Figures 2, 3 and 4 here
Figure 2: fenN (v) (dashed curve) compared with the true χ23 density f0(v)
Figure 3: fenN (v) (dashed curve) compared with the true χ24 density f0(v)
Figure 4: fenN (v) (dashed curve) compared with the true χ25 density f0(v)
These figures show that our SNP-ISM estimation approach works remarkably
well, certainly in view of the bad choice of the initial guess g(v) for f0(v) (see
Figure 1) and the small truncation orders. On the other hand, it seems from
Figure 3 that the truncation order enN = 2 is somewhat too small, as the fit
of fenN (v) for enN = 4 in Figures 2 and 4 looks better than in Figure 3.
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8 Concluding Remarks

In this paper we have proposed a new semi-nonparametric estimation method
for the value distribution of a first-price auction, based on a comparison of
the empirical characteristic functions of the actual bids and simulated bids.
Our approach differs fundamentally from the nonparametric estimation ap-
proaches in the literature in that we estimate the value distribution directly,
whereas in the nonparametric auction literature, the value distribution is es-
timated indirectly via kernel estimation of the inverse bid function. Another
novelty of our approach is that it yields as by-product an integrated moment
test for the validity of the first-price auction model.
The approach in this paper can be extended to Dutch auctions and auc-

tions with auction-specific heterogeneity. As to the latter, we have already
made a start with this. See Bierens and Song (2007).

9 Appendix

9.1 Proof of Lemma 1

Let F be a continuous distribution function with support contained in (v, v),
where v = argminF (v)>0 v and v = argmaxF (v)<1 v. Suppose first that F is
invertible on (v, v), i.e., for each u ∈ (0, 1) there exists a unique v ∈ (v, v)
such that u = F (v). It is a standard textbook exercise to verify that then for
a random drawing V from F,

F (V ) ∼ Uniform[0, 1]. (59)

If F is not invertible then there exists a u ∈ (0, 1) such that F (v) = u for
more than one v ∈ (v, v). In particular, for such a u let

v1 (u) = inf
u=F (v)

v, v2 (u) = sup
u=F (v)

v. (60)

Note that by the continuity of F (v), F (v1 (u)) = F (v2 (u)) = u, hence
F (v) = u for all v ∈ [v1 (u) , v2 (u)]. Consequently, dF (v) /dv = 0 for all
v ∈ (v1 (u) , v2 (u)) . Moreover, F (v) < u for v ∈ (v, v1 (u)) and F (v) > u for
v ∈ (v2 (u) , v). Then for such a u,

P [F (V ) ≤ u] = E [1 (F (V ) ≤ u)]
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=

Z v1(u)

v

1 (F (v) ≤ u) dF (v) +
Z v2(u)

v1(u)

1 (F (v) ≤ u) dF (v)

+

Z v

v2(u)

1 (F (v) ≤ u) dF (v)

=

Z v1(u)

v

dF (v) +

Z v2(u)

v1(u)

dF (v) = F (v1 (u)) = u,

where 1 (.) is the indicator function. Since this result also holds if v1 (u) =
v2 (u) , it follows that for all u ∈ (0, 1) ,

P [F (V ) ≤ u] = u.
Thus, the only requirement for (59) is that F is absolutely continuous.
To prove that, with U a random drawing from the uniform [0, 1] distrib-

ution, the solution VU of U = F (VU ) is a.s. unique, it suffices to prove that
the set S = {u ∈ (0, 1) : v1 (u) < v2 (u)} has Lebesgue measure zero. The
latter follows from the fact that for any pair u1, u2 ∈ S, u1 6= u2, the inter-
vals (v1 (u1) , v2 (u1)) and (v1 (u2) , v2 (u2)) are disjoint, which implies that S
is countable because any collection of disjoint open intervals is countable. In
particular, it is easy to verify that S is either empty or takes the form of a
finite or countable infinite number of increasingly ordered points uj in (0, 1):

S = ∪j∈J {uj} , 0 < uj < uj+1 < 1 for all j ∈ J
where J is a subset of the space Z of integers.
Finally, P [U ∈ S] = 0 implies that
P [VU ≤ v] = P [VU ≤ v and U ∈ S] + P [VU ≤ v and U /∈ S]

= P [VU ≤ v and U /∈ S]
= P [F (VU ) ≤ F (v) and U /∈ S]
= P [U ≤ F (v) and U /∈ S]
= P [U ≤ F (v) and U ∈ S] + P [U ≤ F (v) and U /∈ S]
= P [U ≤ F (v)] = F (v) .

9.2 Proof of Theorem 1

Originally this uniform strong law was derived by Jennrich (1969, Theo-
rem 2) for the case that Θ is a compact subset of a Euclidean space and
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µj(θ) = µ(Xj, θ), where Xj is an i.i.d. sequence of random vectors in a
Euclidean space with support X , µ(x, θ) is Borel measurable in x for each
θ ∈ Θ, and µ(x, θ) is continuous in θ for each x ∈ X . However, it is not
hard to verify from the more detailed proof in Bierens (2004, Appendix to
Chapter 6) of Jennrich’s result that this law carries over to a.s. continu-
ous random functions on a compact metric space Θ with metric ρ(θ1, θ2),
provided that for each θ0 ∈ Θ and arbitrary δ > 0, supθ∈Θ,ρ(θ,θ0)≤δ µj(θ)
and infθ∈Θ,ρ(θ,θ0)≤δ µj(θ) are measurable, because then by the a.s. continuity
condition,

lim
δ↓0

Ã
E

"
sup

θ∈Θ,ρ(θ,θ0)≤δ
µj(θ)

#
− E

∙
inf

θ∈Θ,ρ(θ,θ0)≤δ
µj(θ)

¸!
= 0,

lim
δ↓0

Ã
sup

θ∈Θ,ρ(θ,θ0)≤δ
E [µj(θ)]− inf

θ∈Θ,ρ(θ,θ0)≤δ
E [µj(θ)]

!
= 0,

where the expectations are well-defined. These results play a key-role in the
proof.
To prove the measurability of supθ∈Θ,ρ(θ,θ0)≤δ µj(θ) and infθ∈Θ,ρ(θ,θ0)≤δ µj(θ)

along the lines of the proof of Lemma 2 of Jennrich(1969), we first establish
the existence of an increasing sequence of finite subsets Θn of Θ which is
dense in Θ, i.e., Θ is the closure of ∪∞n=1Θn. These sets Θn can be constructed
as follows. For each θ ∈ Θ and n, let Un (θ) = {θ∗ ∈ Θ : ρ (θ, θ∗) < 1/n} .
Then ∪θ∈ΘUn (θ) is a open covering of Θ hence by the definition of com-
pactness there exists a finite set Θn = {θ1,n, ...., θMn,n} such that Θ ⊂S

θ∈Θn Un(θ). To show that
S∞
n=1Θn is dense in Θ, pick an arbitrary θ ∈ Θ,

and observe that for each n there exists an θn ∈ Θn such that ρ (θ, θn) < 1/n.
Therefore, for each θ ∈ Θ there exists a sequence {θn} in ∪∞n=1Θn such that
limn→∞ ρ (θ, θn) , hence ∪∞n=1Θn is dense in Θ. Consequently

sup
θ∈Θ

µ1(θ) = lim sup
n→∞

sup
θ∈Θn

µ1(θ) = lim sup
n→∞

max
θ∈Θn

µ1(θ).

Since Θn is finite, maxθ∈Θn µ1(θ) is measurable, hence supθ∈Θ µ1(θ) is mea-
surable. The same holds for the ”inf” case, and for supθ∈Θ,ρ(θ,θ0)≤δ µj(θ) and
infθ∈Θ,ρ(θ,θ0)≤δ µj(θ), because the sets {θ ∈ Θ, ρ (θ, θ0) ≤ δ} are compact.
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9.3 Proof of Theorem 2

The key of the proof of Theorem 2 is the easy inequality

0 ≤ Q
³bθN´−Q (θ0) ≤ Q³bθN´− bQN ³bθN´+ bQN (θ0) −Q (θ0)

≤ 2 sup
θ∈Θ

¯̄̄ bQN(θ)−Q(θ)¯̄̄ ,
so that

Q
³bθN´→ Q (θ0) a.s. (61)

The rest of the proof is now similar to the case where Θ is a compact subset
of a Euclidean space. See Jennrich (1969) or the proof of Theorem 6.14 in
Bierens (2004, p. 174).

9.4 Proof of Theorem 3

It suffices to show that Q(eθN) → Q(θ0) a.s., because then the rest of the
proof is the same as for Theorem 2.
We can choose a sequence θn ∈ Θn such that

lim
n→∞

ρ(θn, θ0). (62)

Then

0 ≤ Q(eθN )−Q(θ0) = Q(eθN )− bQN (eθN ) + bQN (eθN )−Q(θ0)
≤ sup

θ∈ΘnN

¯̄̄ bQN(θ)−Q(θ)¯̄̄+ bQN (θnN )−Q(θnN ) +Q(θnN )−Q(θ0)
≤ 2 sup

θ∈ΘnN

¯̄̄ bQN(θ)−Q(θ)¯̄̄+Q(θnN )−Q(θ0)
≤ 2 sup

θ∈Θ

¯̄̄ bQN (θ)−Q(θ)¯̄̄+Q(θnN )−Q(θ0)→ 0 a.s.

because supθ∈Θ | bQN(θ)−Q(θ)|→ 0 a.s. by the conditions of Theorem 2, and
limN→∞Q(θnN ) = Q(θ0) by (62) and the continuity of Q(θ) on Θ.

9.5 Proof of Lemma 6

We only consider the binding reservation price case. First, we show that

lim
n→∞

eB (Fn) = 0 if and only if eB (F ) = 0 (63)
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as follows. Suppose that eB (F ) = 0, which is equivalent to F (p0) < U, and
lim supn→∞ eB (Fn) ≥ p0. The latter implies that there exists a subsequence
nm such that eB (Fnm) ≥ p0 for m = 1, 2, 3, .....,which by (6) implies that
U ≤ Fnm (p0) for m = 1, 2, 3, ..... However, this is not possible because then
by (19), ||Fnm − F || > U − F (p0) for m = 1, 2, 3, ....., whereas (32) implies

that limm→∞ ||Fnm − F || = 0. Thus, eB (F ) = 0 implies limn→∞ eB (Fn) = 0.
Similarly, limn→∞ eB (Fn) = 0 implies eB (F ) = 0.
Next we show that (33) is true, by contradiction. Suppose that lim supn→∞eV (Fn) > eV (F ), and note that eV (F ) is a.s. a continuity point of F .

Then there exists a subsequence nm and an ε > 0 such that for all m,eV (Fnm) > eV (F ) + ε. But then U = F
³eV (F )´ < F ³eV (F ) + ε

´
a.s. and

U = Fnm

³eV (Fnm)´ ≥ Fnm ³eV (F ) + ε
´
→ F

³eV (F ) + ε
´
a.s.

so that
U = F

³eV (F )´ < F ³eV (F ) + ε
´
≤ U a.s.,

which is impossible. Thus, lim supn→∞ eV (Fn) ≤ eV (F ). Similarly, it follows
that lim infn→∞ eV (Fn) ≤ eV (F ) . Thus (33) is true.
Finally, it follows straightforwardly from (32) and (33) that

lim
n→∞

Z 1

0

Fn

³
p0 + u(eV (Fn)− p0)´I−1 du = Z 1

0

F
³
p0 + u(eV (F )− p0)´I−1 du.

(64)
The result (34) now follows from (33), (63) and (64).

9.6 Proof of Lemma 10

Similar to the proof of Lemma 4 in Bierens (1990), we need to show that the
following two conditions hold (see also Billingsley 1999):
(i) For each δ > 0 and an arbitrary t0 ∈ [−κ,κ], there exists an ε such that

sup
N
P
³cWN (t0) > ε

´
≤ δ

(ii) For each δ > 0 and ε > 0, there exists an ξ > 0 such that for t1, t2 ∈
[−κ,κ] ,

sup
N
P

Ã
sup

|t1−t2|<ξ
|cWN (t1)−cWN(t2)| ≥ ε

!
≤ δ.
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Condition (i) follows from the fact that for arbitrary t ∈ [−κ,κ],³
Re
hcWN (t)

i
, Im

hcWN (t)
i´0

converges in distribution to a bivariate normal distribution. Condition (ii)
follows from Chebishev’s inequality for first moments:

P

Ã
sup

|t1−t2|<ξ
|cWN(t1)−cWN (t2)| ≥ ε

!
≤ ε−1E

"
sup

|t1−t2|<ξ
|cWN (t1)−cWN (t2)|

#
and the fact that, with bBj = eBj (F0) ,

E

"
sup

|t1−t2|<ξ
|ŴN(t1)− ŴN(t2)|

#
≤ E

"
sup

|t1−t2|<ξ
|exp (i.t1B1)− exp (i.t2B1)|

#

+ E

"
sup

|t1−t2|<ξ

¯̄̄
exp

³
i.t1 bB1´− exp³i.t2 bB1´¯̄̄#

= 2.E

"
sup

|t1−t2|<ξ
|exp (i.t1B1)− exp (i.t2B1)|

#
≤ 2.ξ.b

where b is the upper bound of the support of B1. Thus, condition (ii) holds
for ξ = δ.ε/

¡
2.b
¢
.

9.7 Proof of Lemma 11

Part (52) of Lemma 11 follows from

eΓ(t1, t2| eF ) = (65)

E

"Ã
1√
M

MX
j=1

³
exp

³
i.t1.η

³eUj| eF´´− exp³i.t1.η ³eUj+M | eF´´´!

×
Ã

1√
M

MX
j=1

³
exp

³
−i.t2.η

³eUj| eF´´− exp³−i.t2.η ³eUj+M | eF´´´!
¯̄̄̄
¯ eF
#

=
1

M

MX
j=1

E
h³
exp

³
i.t1.η

³eUj| eF´´− exp³i.t1.η ³eUj+M | eF´´´
×
³
exp

³
−i.t2.η

³eUj | eF´´− exp³−i.t2.η ³eUj+M | eF´´´¯̄̄ eFi
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= 2

Z 1

0

exp
³
i. (t1 − t2) .η

³
u| eF´´ du

−2
Z 1

0

exp
³
i.t1.η

³
u| eF´´ duZ 1

0

exp
³
−i.t2.η

³
u| eF´´ du

= 2.

Z 1

0

cos
³
(t1 − t2) .η

³
u| eF´´ du+ 2.i. Z 1

0

sin
³
(t1 − t2) .η

³
u| eF´´ du

−2
µZ 1

0

cos
³
t1.η

³
u| eF´´ du+ i.Z 1

0

sin
³
t1.η

³
u| eF´´ du¶

×
µZ 1

0

cos
³
t2.η

³
u| eF´´ du− i. Z 1

0

sin
³
t2.η

³
u| eF´´ du¶ ,

the fact that similar to Lemma 6, η
³
u| eF´ → η (u|F0) a.s. pointwise in

u ∈ [0, 1], and by the bounded convergence theorem. The results (53) and
(54) follow now from the continuous mapping theorem and the fact that
zero-mean Gaussian processes are completely determined by their covariance
functions.

9.8 Proof of Lemma 12

Similar to (65) it follows that

Γ(t, t) = 2− 2 (E [cos (t.B1)] + i.E [sin (t.B1)])
× (E [cos (t.B1)]− i.E [sin (t.B1)])

= 2− 2 (E [cos (t.B1)])2 − 2 (E [sin (t.B1)])2
= 2− 2 |ϕ (t)|2

where ϕ (t) is the characteristic function of B1. Therefore, bΓ(t, t) = 2 −
2 |bϕ (t)|2 is a consistent estimator of Γ(t, t).
9.9 Proof of Theorem 6

The event enN = n0 is equivalent to
max
1≤n≤n0

³ eCN (n)− eCN(n − 1)´ ≤ 0 and eCN (n0 + 1)− eCN (n0) > 0.
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so that

P [enN 6= n0] ≤ P

∙
max
1≤n≤n0

³ eCN (n)− eCN (n− 1)´ > 0¸ (66)

+P
h eCN (n0 + 1)− eCN(n0) ≤ 0i

For fixed n ≤ n0,eCN(n)− eCN (n− 1)→ inf
F∈Fn(G)

Q(F )− inf
F∈Fn−1(G)

Q(F ) ≤ 0 a.s.

hence

lim
N→∞

P

∙
max
1≤n≤n0

³ eCN(n) − eCN (n− 1)´ > 0¸ = 0. (67)

For n = n0 + 1,¯̄̄
N
³ eCN (n0 + 1)− eCN(n0)´− φ(N) (Φ(n0 + 1)− Φ(n0))

¯̄̄
= N

µ
inf

F∈Fn0
bQ(F )− inf

F∈Fn0+1
bQ(F )¶

≤ N
µ
inf

F∈Fn0
bQ(F ) + inf

F∈Fn0+1
bQ(F )¶ ≤ 2.N. bQ(F0)

so that with probability 1,

N

φ(N)

³ eCN (n0 + 1)− eCN(n0)´ ≥ Φ(n0 + 1)− Φ(n0)− 2.N.
bQ(F0)

φ(N )

Therefore,

lim
N→∞

P
h eCN (n0 + 1)− eCN (n0) ≤ 0i

≤ lim
N→∞

P

"
N. bQ(F0)
φ(N)

≥ 1
2
(Φ(n0 + 1)− Φ(n0))

#
= 0 (68)

because N. bQ(F0)/φ(N) = Op (1/φ(N)) = op(1). It follows now from (66),
(67) and (68) that limN→∞ P [enN = n0] = 1.
In the case n0 =∞ it follows from (67) that for any n ≥ 1,

lim
N→∞

P [enN ≥ n] = 1,
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which implies that p limN→∞ enN = ∞. Since for each n we can choose an
Fn ∈ Fn such that limn→∞ ||Fn − F0|| = 0, it follows that for this sequence
Fn, p limN→∞ ||FenN − F0|| = 0. Hence

p lim
N→∞

Q (FenN ) = Q (F0)
The result in Theorem 6 for the case n0 =∞ now follows from the proof of
Theorem 3, adapted to the ”plim” case.
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