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Abstract

We propose an efficient semiparametric estimator for the multivariate linear quantile regression model
in which the conditional joint distribution of errors given regressors is unknown. The procedure can
be used to estimate multiple conditional quantiles of the same regression relationship. The proposed
estimator is asymptotically as efficient as if the conditional distribution were known. Simulation results
suggest that the estimation procedure works well in practice and dominates an equation–by–equation
efficiency correction if the errors are dependent conditional on the regressors.
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1 Introduction

We propose an efficient semiparametric estimator for the multivariate linear quantile regression model in
which the conditional joint distribution of errors given regressors is unknown. The procedure can be used
to estimate multiple conditional quantiles of the same regression relationship. The proposed estimator is
asymptotically as efficient as if the conditional distribution were known. Simulation results suggest that the
estimation procedure works well in practice and dominates an equation–by–equation efficiency correction
if the errors are dependent conditional on the regressors.

The proposed method entails the nonparametric estimation of optimal instruments for a set of moment
conditions corresponding to the conditional quantiles of interest and subsequently using these estimated
optimal instruments to obtain the efficient quantile estimates. Two–step efficiency corrections like this go
back to at least Aitken (1935), but semiparametric corrections like ours have been around for a while, also.
Carroll (1982), Delgado (1992) and Robinson (1987) achieve full GLS1 asymptotic efficiency by estimating
the conditional error variance function nonparametrically. Newey (1990, 1993) proposes methods for esti-
mating optimal instruments nonparametrically, thereby allowing for multivariate regressions and ones with
endogenous regressors. Pinkse (2006) introduces a method which addresses the curse of dimensionality
associated with the nonparametric estimation of functions with many arguments. Finally, Zhao (2001),
Whang (200?) and Komunjer and Vuong (2005) propose efficiency corrections for the univariate median
regression model.

The multivariate quantile regression case is of interest for applied work for several reasons. First,
even absent dependence between errors and regressors quantile regression estimators tend to have greater
asymptotic variances than mean regression ones2 and efficiency improvements are hence more valuable.
Further, an optimal parametric correction in the mean regression model requires one to guess the correct
parametric form of the conditional variance function (matrix–valued in the multivariate case), which is
difficult since little reliable information may be available as to its shape. In the quantile case, one would
need to know the marginal conditional error densities at zero plus, in the multivariate case, the probability
for each pair of errors that both are negative, conditional on the regressors. It is even more unrealistic
for an empirical researcher to possess that much information; incorrect guesses will lead to inefficient
estimators, quite possibly to ones that have lesser asymptotic efficiency than uncorrected ones.3 Unless
the errors are independent conditional on the regressors and there are no cross–equation restrictions on
the regression coefficients, multivariate efficiency corrections are moreover generally more efficient than
univariate ones. Finally, with quantile estimation it is possible to estimate multiple quantiles of the same
regression relationship (i.e. the same dependent variable and the same regressors) simultaneously, which
would imply strong dependence between the corresponding errors and hence more scope for efficiency

1Generalized Least Squares
2The asymptotic relative efficiency for a median regression estimator versus a median regression estimator for a model

with normally distributed errors is 2/π. Please note that median and mean regression estimators typically estimate different
coefficients.

3In the univariate case it can be reasonable to assume that errors factor as the product of a function of regressors and some
error independent of the regressors, see e.g. Koenker (2005), section 5.3.2, and Koenker and Zhao (1994).
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improvements.
Like all of the above semiparametric estimators ours relies on the availability of a

√
n–consistent first

round estimator; a natural choice is the standard quantile regression estimator. A problem with such a
two–step procedure is that the first round estimation error, while asymptotically absent, can be such that
correction is not worthwhile in small samples. This is especially true when the number of regressors is large
due to the fact that nonparametric estimators of high–dimensional functions are notoriously inaccurate.
Please note however, that our correction does not require (nor do we establish) pointwise consistent esti-
mation of the optimal instruments and since the uncorrected estimates are special cases of the correction
procedure for particular values of the input parameters of the semiparametric procedure, the semipara-
metric procedure is in principle never worse irrespective of the sample size. Please note, however, that we
offer no procedure for the optimal selection of the input parameters; our simulation results indicate that
the performance is comparatively insensitive to their choice.

This paper contains several theoretical innovations. While Newey (1990, 1993) allows for multiple equa-
tions to be estimated jointly, his results do not cover the current case because of the nondifferentiability of
the optimal instruments. Zhao (2001), Whang (200?) and Komunjer and Vuong (2005) propose estimators
for the single equation case. In the single equation case the nuisance function is just conditional error
density at zero instead of the product of a matrix and the inverse of another matrix, as is the case here.
Whang (200?) and Komunjer and Vuong (200?) achieve the semiparametric efficiency bound (the latter
for time series) by optimizing an objective function involving a series expansion of the nuisance function;
the nondifferentiability problems we solve do not arise then.

Our paper is closer to Zhao (2001) in that we use a nonparametric plugin estimator. The nondifferen-
tiability issue is only partly addressed by Zhao (2001); Zhao’s results rely on sample splitting. He requires
that the first step estimator used to estimate the weights for half the observations is computed using only
the other half and vice versa. Although sample splitting does not affect the asymptotic efficiency it is likely
to have an effect in samples of finite size and is more cumbersome. Our results obviate the need for sample
splitting with Zhao’s (2001) estimator, also, since his estimation problem is a special case of ours.

The new proof (contained in the last two lemmas of Appendix C and using L1 of Appendix A) entails
ratcheting up of the established uniform convergence rate of the feasible estimator of the moment condition
and the feasible estimator of the parameter vector of interest alternately. This method of proof has uses
that go well beyond the particular problem at hand or indeed differentiability problems or ones involving
nonparametric estimation.

To compute our estimates we use a procedure which involves a standard linear programming problem
followed by one or more Newton steps. The procedure is guaranteed to yield estimates satisfying our
constraints — we prove this — and does so fast; computing the nonparametric weights takes the most
time. The reason that computation here is simple, in contrast to e.g. Chernozhukov and Hansen’s (2006)
estimator, is that we have an initial easily computable

√
n–consistent but inefficient estimator at our

disposal, namely the standard least absolute deviations estimator. The Matlab code is available from the
authors on request.

The outline of the paper is as follows. In section 2 we introduce the setup and define our estimator.
Section 3 contains the theoretical results for our estimator, whose computation and performance are studied
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in sections 4 and 5, respectively. Section 6 concludes.

2 Model and Estimator

Let {yi, Xi} be an i.i.d. sequence for which

Q(yi|Xi) = X ′
iθ0 a.s., i = 1, . . . , n, (1)

or equivalently,
yi = X ′

iθ0 + ui, Q(ui|Xi) = 0 a.s., i = 1, . . . , n, (2)

where yi ∈ Rd, Xi ∈ RK×d and Q denotes the vector of quantiles of interest.
The formulations in (1) and (2) allow for several possibilities. The restriction that the regression

coefficients are the same in all regression equations is not restrictive because we can make the choices

Xi =

 xi1

. . .
xid

 , θ0 =

 θ01
...
θ0d

 ,
resulting in

yij = x′ijθ0j + uij , i = 1, . . . , n; j = 1, . . . , d. (3)

So (1) allows for arbitrary amounts of overlap between the vectors of regression coefficients across equations.
An assumption implicit in (1) is that the regressors in equation ` do not enter the conditional quantile
function in equation j 6= ` insofar the two regressor vectors do not overlap. This is where part of the
efficiency gain originates; it is akin to an orthogonality condition between regressors and errors across
equations in the mean regression case.4 It is possible to choose yij = yi`, xij = xi`, j 6= `, for all i in (3) if
different regression quantiles of the same regression relationship are desired. Assuming multiple quantiles
of the same relationship to all be linear, however, imposes strong restrictions on the types of dependence
between errors and regressors that can be accomodated and a procedure that exploits such restrictions will
likely work better in practice than the more general procedure proposed here; a more fruitful avenue would
be to estimate the median and mean jointly, a possibility not covered by our results.

We now formulate an infeasible efficient estimation procedure for θ0. Let si(θ) = I(yi ≤ X ′
iθ) − τ ,

where τ is the vector indicating which quantiles are desired (a vector with values 0.5 in case of the median)
and I is the indicator function, where for any v ∈ Rdv , I(v) = [I(v1), . . . , I(vdv)]

′. Then the conditional
moment condition is (si = si(θ0))

E(si|Xi) = 0 a.s..

The corresponding optimal unconditional moment conditions are

E(Aisi) = 0, (4)
4It is possible to obtain efficiency improvements when the conditional quantiles do not depend on some but not all of the

regressors in another equation; this possibility can be accomodated in our setup by a judicious choice of y and X.
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where Ai = S′iT
−1
i with

Si = FiX
′
i, Fi =

 fui1|Xi
(0)

. . .
fuid|Xi

(0)

 , Ti = E(sis
′
i|Xi). (5)

The asymptotic variance of an infeasible estimator θ̂I based on (4) will later be shown to be V −1 with

V = E(A1s1s
′
1A

′
1) = E(S′1T

−1
1 S1). (6)

The proposed procedure yields a natural efficiency improvement over equation–by–equation estimation
when there is overlap between the regression coefficients across equations. Absent such overlap, the asymp-
totic variance of θ̂I1, the infeasible estimator of the first subvector θ01, is for d = 2 equal to

VI1 =
(
E[t11i f

2
i1xi1xi1′ ]− E[t12i fi1fi2xi1x

′
i2]

{
E[t22i f

2
i2xi2x

′
i2]

}−1
E[t12i fi1fi2xi2x

′
i1]

)−1
,

where fij = fuij |Xi
(0) and tj`i is the (j, `)–element of

T−1
i =

1
ti11ti22 − t2i12

[
ti22 −ti12
−ti12 ti11

]
; Ti =

[
ti11 ti12
ti12 ti22

]
.

The corresponding asymptotic variances for the inefficient and efficient single equation estimators are

VSI1 = τ1(1− τ1)
(
E[f̃i1xi1x

′
i1]

)−1
E(xi1x

′
i1)

(
E(f̃i1xi1x

′
i1)

)−1
, VSE1 = τ1(1− τ1)

(
E[f̃2

i1xi1x
′
i1]

)−1
,

where f̃i1 = fui1|xi1
(0). It is necessarily true that VI1 ≤ VSE1 ≤ VSI1; we now discuss when they are equal.

When f̃i1 does not depend on xi1, VSI1 = VSE1; otherwise equality only occurs in exceptional cases.
Using information from different equations is useful because one can exploit (i) the information that

regressors in equation 2 do not impact the conditional quantile of equation 1 and (ii) the fact that ui1

and ui2 are not necessarily independent conditional on Xi. Consideration (i) can be accomodated in the
single equation case (as in Zhao (2001)) by extending the conditioning set to regressors outside of the
equation being estimated; in the multivariate case the conditioning vector can likewise be extended (and
the efficiency thereby improved) by including variables from outside the system. But (ii) cannot be used
in the single equation setup.

So even if the regressors in both equations are the same and f̃i1 = fi1, there is still an efficiency gain
from our method unless ui1, ui2 are independent conditional on Xi,5 in which case t12i = ti12 = 0, or if
ui1, ui2 do not depend on Xi. Conversely, even if ui1, ui2 are independent of Xi there is still an efficiency
gain unless xi1 = xi2. All of this is similar to a SUR model with random regressors where no efficiency gain
obtains from joint estimation if the errors are uncorrelated conditional on the regressors or if the regressors

5Or more precisely: if I(ui1 ≤ 0) and I(ui2 ≤ 0) are independent conditional on Xi.
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are identical and independent of the errors.6 Table 1 in the appendix contains the full details of when
efficiency improvements obtain for the various estimators.

If the errors are known to be independent of the regressors, then no nonparametric correction is needed
since only the joint distribution of I(uij ≤ 0) with I(ui` ≤ 0) for all j, ` is needed, and this distribution
entails only d(d − 1)/2 unknowns. The types of dependence between errors and regressors that lead to
efficiency improvements is different from the mean regression case. In the mean regression case efficiency
improvements obtain only if Σ(Xi) = V (ui|Xi) varies with Xi whereas in the quantile regression case
improvements obtain if the conditional error densities at zero vary with Xi or if P (uij ≤ 0, ui` ≤ 0|Xi)
varies with Xi for some j, `. Neither situation implies the other, except in special models like

ui =
(
Σ(Xi)

)1/2
ei, (7)

where the elements of ei are independent with unit variances and Σi = Σ(Xi) is some positive definite
matrix. The problem with (7) is that quantiles are generally not invariant to linear transformations, e.g.
Med(a+ b) 6= Med(a) + Med(b). If the ei’s are mean zero normal, however, then so are the ui’s and their
conditional median is zero.7 With (7), fui|Xi

(0) = fei(0)/
√
|Σi| and hence varies with Xi unless Σi is

constant.
We now proceed with the formulation of our estimators. We begin with the infeasible estimator θ̂I

which is defined as any estimator satisfying

mn(θ̂I) = op(n−1/2), where mn(θ) = n−1
n∑

i=1

Aisi(θ). (8)

We do not set mn equal to zero in (8) because no value of θ may exist that satisfies mn(θ) = 0 since si

involves an indicator function. mn converges to m with

m(θ) = E
[
A1s1(θ)

]
.

θ̂I is infeasible since the Ai’s in (8) are unknown. We will estimate them and using their estimates Âi we

can define ˆ̂
θ as any value satisfying

m̂n(ˆ̂θ) = op(n−1/2), where m̂n(θ) = n−1
n∑

i=1

Âisi(θ). (9)

The only remaining question is how to estimate Ai. Let θ̂ be any
√
n–consistent first stage estimator of

θ0, e.g. based on single equation quantile estimation. We estimate Ti, Si separately using KNN estimators

T̂i = n−1
n∑

j=1

wij ŝj ŝ
′
j , Ŝi = n−1

n∑
j=1

wijF̂jX
′
i, (10)

6In the classical SUR model errors are assumed independent of the regressors, in which case no efficiency gain arises when
the regressors are identical or the errors are uncorrelated.

7This holds for any class of multivariate distributions that is closed to linear transformations and which are element–wise
even.
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where ŝi = I(ûi ≤ 0)−τ , F̂i = diag
(
I(|ûi| ≤ βnι)/(2βn)

)
with ι a vector of ones, βn a bandwidth parameter,

ûi = yi −X ′
iθ̂ and wij a KNN weight,8 setting Âi = Ŝ′iT̂

−1
i .

The KNN weights are all nonnegative and wij is positive only if observation is among observation i
kn closest neighbors in terms of the distance between Xi and Xj ; ties only occur when all regressors are
discrete and can be resolved by randomizing among the tying observations. The only other constraints
we impose are upper and lower bounds to their values and conditions on the rate at which the number of
neighbors should increase.

3 Results

We now discuss our main result, formulated in T3, which shows that the feasible estimator ˆ̂
θ has a limiting

normal distribution with variance V −1. For our main result, we need the following assumptions.9

A1 θ0 is an interior point of the compact parameter space Θ.

A2 For some CT > 0, P
(
λmin(T1) ≥ CT

)
= 1.

A3 E(X1X
′
1) > 0.

A4 For some 0 < Cf < ∞, and all j = 1, . . . , d, P
(
fu1j |X1

(0) ≥ 1/Cf

)
> 0, P

(
fu1j |X1

(0) ≤ Cf

)
= 1,

P
(
supt

∣∣f ′u1j |X1
(t)

∣∣ ≤ Cf

)
= 1 and P

(
supt

∣∣f ′′u1j |X1
(t)

∣∣ ≤ Cf

)
= 1.

A5 ∀θ ∈ Θ : m(θ) = 0 ⇔ θ = θ0.

A6 The weights wij are nonnegative and all kn nonzero weights take values in the range [1/(Cwkn);Cw/kn].

A7 Let for any p > 0, ζnpT = n1/px−1/2 +n1/pk
−1/2
n and ζnpS = n1/pxk

−1/2
n β

1/px−1
n +n1/pxβ2

n +n1/2k−1
n βn.

Then for some p <∞,
√
nζ2

npT → 0,
√
nζnpT ζnpS → 0 and kn/n→ 0, as n→∞.

A1 and A3 are standard. A2 essentially says that Corr
[
I(ui1 ≤ 0), I(ui2 ≤ 0)|Xi

]
should be a.s. bounded

away from ±1; this is reasonable and similar to a condition used in Pinkse (2006). The assumption (A4)
that the conditional error densities have two uniformly bounded derivatives excludes distributions like the
Laplace distribution, but is otherwise reasonable within the context of nonparametric estimation.10 The
assumption that the conditional densities at zero are bounded away from zero with positive probability
is needed for the invertibility of V . Further, A6 is not a restriction on the model, but rather on how to
choose the nearest neighbor weights and is hence innocuous.

8See Newey and Powell (1990) for a similar use of F̂i.
9We have not separated the assumptions by theorem since we are mostly concerned with T3.

10The Laplace distribution could be accomodated since its density has bounded first left and right derivatives at zero, but
this would come at the expense of longer proofs, stronger conditions on the value of px and more restrictive choices of {kn}.
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That leaves A5 and A7. A5 is not primitive. It is a necessary and sufficient condition to ensure
identification. In the univariate case A5 is implied by A2, A3 and A4, but we have failed to find a natural
and primitive sufficient condition in the multivariate case. Finally, A7 deals with the rate at which kn

increases. As long as a sequence exists that satisfies the restrictions, A7 is merely a prescription on how to
choose kn. A7 is for instance satisfied when px = 6, βn ∼ k

−3/17
n and kn ∼ n35/36. It can be shown that A7

can only be satisfied for values of px greater than 3+
√

8. However, if an expansion taken in L21 and L22 in
the appendix is taken beyond the second order the requirements would improve but would never be better
than

√
nζo

npT → 0,
√
nζo−1

npT ζnpS → 0 where o denotes the order of the expansion. Since with cross–sectional
data fat regressor tails are rarely an issue and the extension would merely involve a repetition of the same
arguments, we have omitted it in the interest of brevity.

The assumptions above are stronger than those required for Zhao’s (2001) estimator for several reasons.
First, the model is more general; the above conditions would be weaker in the single–equation case or if
the Ti–matrices are known. We need some further conditions to avoid his sample splitting procedure.

We now state our theorems.

T1 For any estimator θ̂I satisfying (8), θ̂I
p→ θ0.

T2 For any estimator θ̂I satisfying (8),
√
n(θ̂I − θ0)

d→ N(0, V −1).

T3 For any estimator ˆ̂
θ satisfying (9),

√
n(ˆ̂θ − θ0)

d→ N(0, V −1).

For the purpose of hypothesis testing the matrix V needs to be estimated. The assumptions made are
amply sufficient to guarantee convergence of our estimator V̂ of V .

T4 V̂ = n−1
∑n

i=1 ÂiŜi
p→ V .

4 Computation

The computation of estimates ˆ̂
θ that satisfy (9) is straightforward. We are helped by the availability of a√

n–consistent inefficient estimator θ̂ = θ̂(0), which is absent in the much harder procedure for computing
quantile instrumental variables estimates; see Chernozhukov and Hansen (2006). We use the well–known
procedure of taking one or more Newton steps in the direction of the ‘minimum,’ where the objective
function is given by ||m̂n|| and the ‘gradient’ and ‘Hessian’ by m̂n and V̂ . So

θ̂(1) = θ̂(0) − V̂ −1(θ̂(0))m̂n(θ̂(0)),

satisfies (9), but we use a general Newtonian optimization procedure with starting value θ̂(0); doing so will
necessarily give an ||m̂n|| value no worse than ||m̂n(θ̂(1))|| and hence also satisfies (9).

The only complication is that m̂n is nondifferentiable, but all fundamental results to deal with the
nondifferentiability issue were established in the proofs to earlier theorems.

T5 θ̂(1) solves (9).
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5 Simulations

6 Conclusions
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Appendices

A Infeasible Estimator

Proof of T1: Consider the following class of functions:

F ≡
{
c′A1s1(θ) =

d∑
j=1

c′A1js1j(θ) : θ ∈ Θ ⊂ RD
}
,

where c = [c1, c2, ..., cd]
′ is an arbitrary vector and A1j is the jth column vector of A1. Since Gj ≡ {1(y1j ≤

X ′
1jθ) : θ ∈ Θ ⊂ Rp} is a Vapnik Červonenkis subgraph class (or simply VČ class),11 it follows that

Fj ≡ {c′A1js1j(θ) : θ ∈ Θ ⊂ Rp} is also a VČ class by lemma 2.6.18 of van der Vaart and Wellner (1996).
Since a VČ class is Euclidean for every envelope function (Pakes and Pollard (PP), 1989, lemma 2.12),
we know that Fj is Euclidean with envelope function Ej = c′A1j . Therefore, by lemma 2.14 of PP, F is
Euclidean with envelope function E =

∑n
j=1 Ej . Since E(E) <∞ by A3 and A4, it follows from lemma 2.8

of PP that
sup
θ∈Θ

∣∣c′mn(θ)− c′m(θ)
∣∣ = op(1).

Since c is arbitrary, we have supθ∈Θ

∣∣∣∣mn(θ)−m(θ)
∣∣∣∣ = op(1). Now, by the triangle inequality

||m(θ̂I)|| ≤ ||mn(θ̂I)||+ ||m(θ)−mn(θ)|| = op(n−1/2) + op(1) = op(1).

Hence, by assumptions A1, A4 and A5, θ̂I − θ0 = op(1). �

L1 For any positive sequence {rn} and a consistent estimator θn, mn(θn) = op(rn) implies ||θn − θ0|| =
Op(n−1/2) + op(rn).
Proof: Let {δn} be a sequence such that P

(
||θn− θ0|| > δn

)
= o(1). Then, recalling that Aisi(θ) is VČ,

||m(θn)||
triangle
≤ ||mn(θn)−m(θn)||+ ||mn(θn)|| . sup

||θ−θ0||<δn

||mn(θ)−m(θ)||+ op(rn)

≤ sup
||θ−θ0||<δn

||mn(θ)−m(θ)−mn(θ0) +m(θ0)||+ ||mn(θ0)||+ op(rn)

= op(n−1/2) +Op(n−1/2) + op(rn). (11)

A2, A3 and A4 imply that
m(θ) = V (θ − θ0) + o(||θ − θ0||). (12)

Hence
λmin(V )||θn − θ0|| ≤ ||V (θn − θ0)|| ≤ ||m(θn)||+ op(||θn − θ0)||,

11See problem 14 on page 152 of van der Vaart and Wellner (1996).
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which, together with the consistency of θn, implies that(
λmin(V )− op(1)

)
||θn − θ0|| ≤ ||m(θn)|| = Op(n−1/2) + op(rn).

Since V is positive definite, ||θn − θ0|| = Op(n−1/2) + op(rn). �

Proof of T2: First, recall that F is a Euclidean class with envelope function E =
∑d

j=1 Ej =
∑d

j=1 c
′A1j .

Note also that E
(
E2

)
= c′{

∑d
j=1

∑d
t=1E

(
A1jA

′
1t

)
}c < ∞. Therefore, it follows from lemma 2.17 of PP

that
sup

||θ−θ0||<δn

∣∣√n(c′mn(θ)− c′m(θ))−
√
n(c′mn(θ0)− c′m(θ0))

∣∣ = op(1)

for any sequence {δn} with δn = o(1). Since c is arbitrary, it implies that

sup
||θ−θ0||<δn

∣∣∣∣√n(mn(θ)−m(θ))−
√
n(mn(θ0)−m(θ0))

∣∣∣∣ = op(1)

The asserted result now follows from theorem 3.3 of PP. Specifically, note that by lemma L1, θ̂I − θ0 =
Op(n−1/2). Using derivations similar to those in (11) and (12) we have

op(n−1/2) = mn(θ̂I) =
(
mn(θ̂I)−m(θ̂I)−mn(θ0) +m(θ0)

)
+m(θ̂I) +mn(θ0)

= op(n−1/2) + V (θ̂I − θ0) + op(n−1/2) +mn(θ0) = mn(θ0) + V (θ̂I − θ0) + op(n−1/2).

Hence since E(A1s1s
′
1A

′
1) = E(A1T1A

′
1) = E(A1F1T

−1
1 F1A

′
1) = V > 0,

√
n(θ̂I − θ0) = −V −1√nmn(θ0) + op(1) d→ N(0, V −1). �

B Nonparametric Approximation

In addition to T̂i, Ti, Ŝi, Si we define

T̃i =
n∑

j=1

wijsjs
′
j , T̄i =

n∑
j=1

wijTj , S̃i =
n∑

j=1

wijF̃jX
′
j , S̄i =

n∑
j=1

wijSj ,

where F̃j = diag
(
I(|ujt| ≤ βn)

)
/(2βn).

11
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B.1 Lemmas showing that maxi ||Âi − Āi|| = op(1).

Note that

Âi − Āi = (Ŝ′i − ĀiT̂i)T̂−1
i =

(
(Ŝi − S̄i)′ − Āi(T̂i − T̄i)

)(
T̄−1

i + (T̂−1
i − T̄−1

i )
)

=
(
(Ŝi − S̃i)′ + (S̃i − S̄i)′ − Āi

(
(T̂i − T̃i) + (T̃i − T̄i)

))(
T̄−1

i + (T̂−1
i − T̄−1

i )
)
. (13)

We deal with the uniform convergence of the differences in turn and then find a bound on the growth of
Āi.

B.1.1 T̃i − T̄i

L2 ∃ε > 0 : ∀n : P
(
mini λmin(T̄i) < ε

)
= 0.

Proof:
P

(
min

i
λmin(T̄i) < ε

)
≤ P

(
min

i
λmin(Ti) < ε

)
= 0,

by A2. �

L3 For any p > 2 for which E(Rni|Xi) = 0 a.s. and lim supE||Rni||p <∞, E||
∑n

j=1wijRnj ||p = O(k−p/2
n ).

Proof: This is a special case of Pinkse (2006), L3, which was inspired by Robinson (1987), lemma ???.
�

L4 For any {ξni} for which E||ξni||p <∞ for all i, n and any ε > 0,

P (max
i
||ξni|| ≥ ε) ≤ ε−p

n∑
i=1

E||ξni||p.

Proof: The LHS is bounded by
∑

i P (||ξni|| ≥ ε) which is bounded by the RHS by the Markov inequality.
�

L5 For any p > 2 for which E(Rni|Xi) = 0 a.s. and lim supE||Rni||p < ∞, maxi ||
∑n

j=1wijRnj || =

Op(n1/pk
−1/2
n ).

Proof: Take ξni = n−1/pk
1/2
n

∑
j wijRj in L4 to obtain

P
(
max

i

∣∣∣∣∣∣n−1/pk1/2
n

n∑
j=1

wijRj

∣∣∣∣∣∣ ≥ ε
)

≤ n−1kp/2
n ε−p

n∑
i=1

E
∣∣∣∣∣∣ n∑

j=1

wijRj

∣∣∣∣∣∣p L3= O(1)ε−p → 0,

as ε→∞. �

L6 For all values of p > 2, maxi ||T̃i − T̄i|| = Op(k
−1/2
n n1/p).

Proof: Use L5 with Ri = sis
′
i − Ti. �

12
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B.1.2 T̂i − T̃i

We will make frequent use of the inequality

||ŝj ŝ
′
j − sjs

′
j || ≤ ||ŝj − sj ||2 + ||sj || · ||ŝj − sj || ≤ Cs||ŝj − sj ||, (14)

which holds for some 0 < Cs <∞ since both sj and ŝj are vectors of zeroes and ones. We will also make
multiple use of the inequality

||ŝj − sj || =
∣∣∣∣I(uj ≤ X ′

j(θ̂ − θ0)
)
− I(uj ≤ 0)

∣∣∣∣ ≤ ∣∣∣∣I(|uj | ≤ ||Xj || · ||θ̂ − θ0||ι
)∣∣∣∣

≤
∣∣∣∣I(|uj | ≤ ||Xj ||rnι

)∣∣∣∣ + I(||θ̂ − θ0|| > rn) = ||αjrn ||+ I(||θ̂ − θ0|| > rn), (15)

which holds for any sequence {rn}.

L7 For some C > 0 and any r ≥ 0, E(||αir|| |Xi) ≤ C||Xi||r a.s.
Proof: Note that

0 ≤ E(αirj |Xi) = P (|uij | ≤ r||Xi|| |Xi) = Fuij |Xi
(r||Xi||)− Fuij |Xi

(−r||Xi||)
A4
≤ 2Cf ||Xi||r. �

L8 For any p > 0, maxi ||T̂i − T̃i|| = Op(ζnpT ).
Proof: First,

C−1
s ||T̂i − T̃i|| = C−1

s

∣∣∣∣∣∣ n∑
j=1

wij(ŝj ŝ
′
j − sjs

′
j)

∣∣∣∣∣∣ (14)

≤
n∑

j=1

wij ||ŝj − sj ||

(15)

≤
n∑

j=1

wij

(
||αjrn || − E(||αjrn || |Xj)

)
+

n∑
j=1

wijE(||αjrn || |Xj) + I(||θ̂ − θ0|| > rn). (16)

Take rn = 1/(
√
n − log n). Since e−1/t is an increasing function of t and for arbitrary positive a, b I(a >

b) ≤ g(a)/g(b) for any increasing function g,

I(||θ̂ − θ0|| > rn) ≤ e1/rne−1/||θ̂−θ0|| = Op(e1/rn−
√

n) = Op(e− log n) = Op(n−1). (17)

For the second RHS term in (16), note that

max
i

n∑
j=1

wijE(||αjrn || |Xj)
L7
≤ Cαrn max

i

n∑
j=1

wij ||Xj || ≤ Cαrn max
i
||Xi||

L4= Op(rnn1/px) = Op(n1/px−1/2).

Finally, noting that the ||αjrn ||’s are uniformly bounded, L5 implies that for any p > 0,

max
i

∣∣∣∣∣∣ n∑
j=1

wij

(
||αjrn || − E(||αjrn || |Xj)

)∣∣∣∣∣∣ = Op(n1/pk−1/2
n ),

which takes care of the first RHS term in (16). �

L9 For any p > 0, maxi ||T̂−1
i − T̄−1

i || = Op(ζnpT ).
Proof: Since T̂−1

i = T̄−1
i

(
I + (T̂i − T̄i)T̄−1

i

)−1, the result follows from lemmas L2, L6 and L8. �

13
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B.1.3 S̃i − S̄i

L10 maxi ||S̄i|| = Op(n1/px) and maxi ||Āi|| = Op(n1/px).
Proof: Note that for some 0 < C <∞,

max
i
||Āi|| ≤ max

i
||S̄i||max

i
||T̄−1

i ||
L2
≤ Cmax

i
||S̄i|| ≤ Cmax

i
||Si||

A4
≤ CCf max

i
||Xi||

L4= Op(n1/px). �

L11 maxi ||S̃i − S̄i|| = Op

(
n1/px(k−1/2

n β
1/px−1
n + β2

n)
)
.

Proof: Note that

S̃i − S̄i =
n∑

j=1

wij

(
F̃j − E(F̃j |Xj)

)
X ′

j +
n∑

j=1

wij

(
E(F̃j |Xj)− Fj

)
X ′

j . (18)

Take Rnj = β
1−1/px
n

(
F̃j − E(F̃j |Xj)

)
X ′

j in L5 to obtain the rate Op(n1/pxk
−1/2
n β

1/px−1
n ) for the first RHS

term in (18). For the second RHS term note that by the mean value theorem for all t = 1, . . . , d,

∣∣∣∣E(F̃jt|Xj)− Fjt

∣∣∣∣ =
∣∣∣∣6−1β2

nf
′′
ujt|Xj

(·)
∣∣∣∣ A4
≤ 6−1Cfβ

2
n. (19)

Hence the second RHS term in (18) is bounded by

6−1Cfβ
2
n max

i

n∑
j=1

wij ||Xj || ≤ 6−1Cfβ
2
n max

i
||Xi|| = Op(n1/pxβ2

n). �

B.1.4 Ŝi − S̃i

L12 maxi ||Ŝi − S̃i|| = Op(n1/2k−1
n β−1

n ).
Proof: Let rn = 1/(

√
n− log n). Now,

max
i
||Ŝi − S̃i|| = max

i
||Ŝi − S̃i||I(||θ̂ − θ0|| ≤ rn) + max

i
||Ŝi − S̃i||I(||θ̂ − θ0|| > rn). (20)

By (17) I(||θ̂ − θ0|| > rn) = Op(n−1), such that the second RHS term in (20) converges faster than the
first. Now the first RHS term in (20). Using the inequality (for generic a, b, t)∣∣I(|a| ≤ t)− I(|b| ≤ t)

∣∣ ≤ I(|b| ≤ t+ |a− b|)− I(|b| ≤ t− |a− b|),

it follows that

||F̂j − F̃j ||I(||θ̂ − θ0|| ≤ rn) ≤
∣∣∣∣∣∣I(|uj | ≤ (βn + ||Xj ||rn)ι

)
− I

(
|uj | ≤ (βn − rn||Xj ||)ι

)∣∣∣∣∣∣, (21)

14
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and hence

max
i
||Ŝi − S̃i||I(||θ̂ − θ0|| ≤ rn) ≤ max

i

n∑
j=1

wij ||Xj || · ||F̂j − F̃j ||

≤ β−1
n max

i
||Xi||max

i

n∑
j=1

wij

∣∣∣∣∣∣I(|uj | ≤ (βn + ||Xj ||rn)ι
)
− I

(
|uj | ≤ (βn − rn||Xj ||)ι

)∣∣∣∣∣∣
A6
≤ Cw(knβn)−1

n∑
j=1

∣∣∣∣∣∣I(|uj | ≤ (βn + rn||Xj ||)ι
)
− I

(
|uj | ≤ (βn − rn||Xj ||)ι

)∣∣∣∣∣∣. (22)

Since for all t = 1, . . . , d,

E
(
I
(
|ujt| ≤ (βn+rn||Xj ||)

)
−I

(
|ujt| ≤ (βn−rn||Xj ||)

)
|Xj

)
= Fujt|Xj

(βn+rn||Xj ||)−Fujt|Xj
(βn−rn||Xj ||)

= fujt|Xj
(·)||Xj ||rn ≤ Cfrn||Xj ||, (23)

the unconditional expectation of (22) is bounded by

dCwCfrn(knβn)−1
n∑

j=1

E||Xj ||2 = O
(
nrn(knβn)−1

)
= O(n1/2k−1

n β−1
n ). �

L13 maxi ||Âi − Āi|| = op(1).
Proof: Using L2, L6, L8, L9, L10, L11 and L12 in (13) yields

Âi − Āi = Op

(
(n1/pxζnpT + ζnpS)(1 + ζnpT ) = op(1),

by A7. �

B.2
√

n
(
m̂n(θ0)−mn(θ0)

)
Observe that

√
n
(
m̂n(θ0)−mn(θ0)

)
= n−1/2

n∑
i=1

(Âi −Ai)si = n−1/2
n∑

i=1

(Âi − Āi)si + n−1/2
n∑

i=1

(Āi −Ai)si. (24)

15
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We use the expansion in (13) to deal with the first RHS term and show the following results.

n−1/2
n∑

i=1

Āi(T̂i − T̃i)T̄−1
i si = op(1), (25)

n−1/2
n∑

i=1

Āi(T̃i − T̄i)T̄−1
i si = op(1), (26)

n−1/2
n∑

i=1

(Ŝi − S̃i)′T̄−1
i si = op(1), (27)

n−1/2
n∑

i=1

(S̃i − S̄i)′T̄−1
i si = op(1), (28)

n−1/2
n∑

i=1

Āi(T̂i − T̄i)(T̂−1
i − T̄−1

i ) = op(1), (29)

n−1/2
n∑

i=1

(Ŝi − S̄i)′(T̂−1
i − T̄−1

i ) = op(1), (30)

n−1/2
n∑

i=1

(Āi −Ai)si = op(1). (31)

B.2.1 (25)

L14 Let {ξi} be an i.i.d. random sequence for which E(ξi|X) = 0 a.s. and ess sup(||ξi||) ≤ 1. Then

max
j

∣∣∣∣∣∣ n∑
i=1

wijξi

∣∣∣∣∣∣ = op(
√
n log n/kn).

Proof: Let εn = Cw
√

3n log n/kn. Then

P
(
max

j

∣∣∣∣∣∣∑
i

wijξi

∣∣∣∣∣∣ ≥ 2εn
)
≤ P

(
max

j

∣∣∣∣∣∣∑
i6=j

wijξi

∣∣∣∣∣∣ ≥ εn

)
+ P

(
max

j
||wjjξj || ≥ εn

)
. (32)

The second RHS term in (32) is bounded by I(Cw/kn ≥ εn), which equals zero for sufficiently large n. We
now deal with the first RHS term in (32). By the Hoeffding inequality,12 noting that ||wijξi|| ≤ Cw/kn for

12The Hoeffding inequality says that if {µi} is an independent sequence of mean zero random variables taking values on
[ai, bi], then P (||

P
i µi|| > εn) ≤ exp

ˆ
−2ε2n/

Pn
i=1(bi − ai)

2
˜
.

16



SJJJP060920

all i, j,

P
(
max

j

∣∣∣∣∣∣∑
i6=j

wijξi

∣∣∣∣∣∣ ≥ εn|Xj , ξj

)
≤

n∑
j=1

P
(∣∣∣∣∣∣∑

i6=j

wijξi

∣∣∣∣∣∣ ≥ εn|Xj , ξj

)
≤

n∑
j=1

exp
(
− ε2nk

2
n

2nC2
w

)
= n exp

(
− (3/2) log n

)
= n−1/2 = o(1). �

L15 Let {ξi} be as in L14 and let ξni = Ξni(X)ξi, where for some pΞ > 0, lim supE||Ξni(X)||pΞ < ∞.
Then

max
j

∣∣∣∣∣∣ n∑
i=1

wijξni

∣∣∣∣∣∣ = op

(
n1/pΞ+1/2k−1

n log n
)
.

Proof: Let ε∗n = n1/pΞ
√

log n, εn =
√

3Cwn
1/pΞ+1/2 log n/kn and ξ∗ni = ξniI

(
||Ξni(X)|| ≤ ε∗n

)
/ε∗n. Then

P
(
max

j

∣∣∣∣∣∣ n∑
i=1

wijξni

∣∣∣∣∣∣ ≥ 2εn
)

= P
(
max

j

∣∣∣∣∣∣ n∑
i=1

wij

(
ε∗nξ

∗
ni + ξniI(||Ξni(X)|| > ε∗n)

)∣∣∣∣∣∣ ≥ 2εn
)

≤ P
(
max

j

∣∣∣∣∣∣ n∑
i=1

wijξ
∗
ni

∣∣∣∣∣∣ ≥ 2
εn
ε∗n

)
+ P

(
max

i
||Ξni(X)|| ≥ ε∗n

)
. (33)

The second RHS term in (33) is by L4 bounded by

(ε∗n)−pΞ

n∑
i=1

E||Ξni||pΞ = O
(
(log n)−pΞ/2

)
= o(1).

The first RHS term in (33) is also o(1) because ess sup ||ξ∗ni|| ≤ 1 by construction and since

εn
ε∗n

=
√

3Cwn
pΞ+2

2pΞ log n/kn

n1/pΞ
√

log n
=
Cw
√

3n log n
kn

,

L14 can be applied. �

L16 n−1/2
∑

i Āi(T̂i − T̃i)T̄−1
i si = op(1).

Proof: The LHS is∣∣∣∣∣∣n−1/2
n∑

j=1

n∑
i=1

wijĀi(ŝj ŝ
′
j − sjs

′
j)T̄

−1
i si

∣∣∣∣∣∣ L15
≤

n∑
j=1

||ŝj ŝ
′
j − sjs

′
j || × op(n1/pxk−1

n log n)

(14)

≤ Cs

n∑
j=1

||ŝj − sj || × op(n1/pxk−1
n log n). (34)
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Set rn = 1/(
√
n− log n). Now,

n∑
j=1

||ŝj − sj ||
(15)

≤
n∑

j=1

(
||αjrn || − E(||αjrn || |X)

)
+

n∑
j=1

E(||αjrn || |X) + nI(||θ̂ − θ0|| > rn). (35)

The third RHS term is Op(1) by (17) and the second RHS term is by L7 bounded by Cαrn
∑n

j=1 ||Xj || =
Op(nrn) = Op(n1/2). Squaring the first RHS term and taking its expectation yields

n∑
j=1

E
(
||αjrn || − E(||αjrn || |X)

)2 L7
≤ Cnrn = O(nrn).

Hence the RHS in (35) is Op(
√
nrn) + Op(

√
n) + Op(1) = Op(

√
n), which implies that the RHS in (34) is

op(n1/px+1/2k−1
n log n) = op(1) by A7. �

B.2.2 (26)

L17 Let ξnij = ξn(ui, uj ;X) be such that E(ξnij |ui, X) = E(ξnij |uj , X) = 0 a.s. for all i, j and maxi,j E||ξnij ||2 =
O(1). Then n−1

∑n
i,j=1wijξnij = Op(k−1

n ).
Proof: Square the LHS and take the expectation to obtain

n−2
n∑

i,j=1

(
E(w2

ij ||ξnij ||2) + E(wijwjiξ
′
nijξnji)

) A6
≤ 2C2

wk
−2
n max

i,j
E||ξnij ||2 = O(k−2

n ). �

L18 n−1/2
∑n

i=1 Āi(T̃i − T̄i)T̄−1
i si = op(1).

Proof: In L17, take ξnij = Āi(sjs
′
j − Tj)T̄−1

i si to obtain a convergence rate of Op(n1/2k−1
n ) = op(1). �

B.2.3 (27) and (28)

L19 n−1/2
∑

i(Ŝi − S̃i)′T̄−1
i si = op(1).

Proof: The norm of the LHS is

∣∣∣∣∣∣n−1/2
n∑

j=1

(F̂j − F̃j)X ′
j

n∑
i=1

wijT̄
−1
i si

∣∣∣∣∣∣ ≤ max
j

∣∣∣∣∣∣n−1/2
n∑

i=1

wijT̄
−1
i si

∣∣∣∣∣∣ n∑
j=1

||F̂j − F̃j || × ||Xj ||

L14= Op(k−1
n

√
log n)

n∑
j=1

||F̂j − F̃j || × ||Xj ||.

18
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Let (as in L12) rn = 1/(
√
n− log n). Then

n∑
j=1

||F̂j − F̃j || × ||Xj || =
n∑

j=1

||F̂j − F̃j || × ||Xj ||I(||θ̂− θ0|| ≤ rn) +
n∑

j=1

||F̂j − F̃j || × ||Xj ||I(||θ̂− θ0|| > rn)

(17)
=

n∑
j=1

||F̂j − F̃j || × ||Xj ||I(||θ̂ − θ0|| ≤ rn) +
n∑

j=1

||F̂j − F̃j || × ||Xj || ×Op(n−1).

Finally,
√

log n
kn

n∑
j=1

||F̂j − F̃j || × ||Xj ||I(||θ̂ − θ0|| ≤ rn)
(21),(23)

≤
Cfdrn

√
log n

knβn

n∑
j=1

||Xj ||2 = Op

(√n log n
knβn

)
= op(1),

by A7. �

L20 n−1/2
∑n

i=1(S̃i − S̄i)′T̄−1
i si = op(1).

Proof: The LHS is

n−1/2
n∑

i,j=1

wij

(
F̃j − E(F̃j |Xj)

)
X ′

jT̄
−1
i si + n−1/2

n∑
i,j=1

wij

(
E(F̃j |Xj)− Fj

)
X ′

jT̄
−1
i si. (36)

The first RHS term is Op(n1/2β
−1/2
n k−1

n ) = op(1) by L17. The norm of the second RHS term is bounded
by

n−1/2 max
j

∣∣∣∣∣∣ n∑
i=1

wijT̄
−1
i si

∣∣∣∣∣∣ n∑
j=1

wij

∣∣∣∣E(F̃j |Xj)− Fj

)∣∣∣∣× ||Xj ||

L14,(19)

≤ Op(k−1
n

√
log n)6−1Cfβ

2
n

∑
j

||Xj || = Op(nk−1
n β2

n

√
log n) = op(1),

by A7.

B.2.4 (29) and (30)

L21 n−1/2
∑n

i=1 Āi(T̂i − T̄i)(T̂−1
i − T̄−1

i )si = op(1).
Proof: Note that∣∣∣∣∣∣n−1/2

n∑
i=1

Āi(T̂i − T̄i)(T̂−1
i − T̄−1

i )si

∣∣∣∣∣∣
≤ max

i

∣∣∣∣T̂i − T̃i

∣∣∣∣× ∣∣∣∣T̂−1
i − T̄−1

i

∣∣∣∣× n−1/2
n∑

i=1

||Āi|| × ||si|| = Op(
√
nζ2

npT ) = op(1),

by L8, L9 and A7. �
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L22 n−1/2
∑n

i=1(Ŝi − S̄i)′(T̂−1
i − T̄−1

i )si = op(1).
Proof: Use a similar inequality to the one used in L21 to obtain a rate of n1/2ζnpSζnpT = o(1) by A7. �

B.2.5 (31)

L23 E||Āi −Ai||2 = o(1).
Proof: The square of the LHS is bounded by

C
(
E||Ai||4E||T̄i − Ti||4 + (E||S̄i − Si||2)2

)
= o(1),

by theorem 1 of Stone (1977). �

L24 n−1/2
∑n

i=1(Āi −Ai)si = op(1).
Proof:

E
∣∣∣∣∣∣n−1/2

n∑
i=1

(Āi −Ai)si

∣∣∣∣∣∣2 ≤ E||Āi −Ai||2 = o(1),

by L23. �

L25 m̂n(θ0)−mn(θ0) = op(n−1/2).
Proof: Using the expansion in (24) and (25)–(31), the stated result follows from lemmas L16, L18, L19,
L20, L21, L22, and L24. �

C Feasible Estimator

L26 There exists a positive sequence {µ1n} with µ1n = o(1) such that for any positive sequence {rn},
n−1

∑n
i=1 ||Āi −Ai|| ||αirn || = op(rnµ1n).

Proof: Let µ1n be such that µ1n = o(1) and E||Āi−Ai||2 = o(µ2
1n); such µ1n exist by lemma L23. Now,

E
(
||Āi −Ai|| ||αirn ||

) L7
≤ CrnE

(
||Āi −Ai|| ||Xi||

) Schwarz
≤ Crn

√
E

(
||Āi −Ai||2

)√
E||Xi||2 = o(rnµ1n). �

Let Θr = {θ ∈ Θ : ||θ − θ0|| < r}.

L27 There exists a positive sequence {µn} with µn = o(1) such that for any positive sequence {rn},

sup
θ∈Θrn

||m̂n(θ)−mn(θ)|| = op(rnµn + n−1/2).
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Proof: First note that

sup
θ∈Θrn

||m̂n(θ)−mn(θ)||
triangle
≤ sup

θ∈Θrn

||m̂n(θ)−mn(θ)− m̂n(θ0) +mn(θ0)||+ ||m̂n(θ0)−mn(θ0)||

L25
≤ sup

θ∈Θrn

n−1
n∑

i=1

||Âi −Ai|| ||si(θ)− si(θ0)||+ op(n−1/2)

≤ n−1
n∑

i=1

||Âi −Ai|| ||αirn ||+ op(n−1/2).

Now, let µ2n be such that maxi ||Âi − Ai|| = op(µ2n) and µ2n = o(1); such µ2n exist by L13. Then by the
triangle inequality,

n−1
n∑

i=1

||Âi −Ai|| ||αirn || ≤ n−1
n∑

i=1

||Âi − Āi|| ||αirn ||+ n−1
n∑

i=1

||Āi −Ai|| ||αirn ||

≤ max
i
||Âi−Āi||n−1

n∑
i=1

||αirn ||+n−1
n∑

i=1

||Āi−Ai|| ||αirn ||
L7,L13,L26

= op(µ2n)Op(rn)+op(µ1nrn) = op

(
(µ1n+µ2n)rn

)
,

Take µn = µ1n + µ2n. �

L28 mn(ˆ̂θ) = op(n−1/2).

Proof: Let {ψn} be such that || ˆ̂θ − θ0|| = Op(ψn) but || ˆ̂θ − θ0|| 6= op(ψn). Let µn be as in L27. Then
for rn = ψn/

√
µn we have

||mn(ˆ̂θ)||
triangle
≤ ||mn(ˆ̂θ)−m̂n(ˆ̂θ)||+||m̂n(ˆ̂θ)|| . sup

θ∈Θrn

||mn(θ)−m̂n(θ)||+op(n−1/2) L27= op(ψn
√
µn)+op(n−1/2).

So by L1, || ˆ̂θ − θ0|| = op(ψn) +Op(n−1/2). Hence ψn ∼ n−1/2. Apply L27 with rn = n−1/2. �

Proof of T3: By L28, ˆ̂
θ satisfies (8). �

D Covariance Matrix Estimation

Let V̄ = n−1
∑n

i=1 ĀiS̄i.

L29 V̂ − V̄ = op(1).
Proof: Using the expansion

V̂ − V̄ = n−1
n∑

i=1

(Âi − Āi)(Ŝi − S̄i) + n−1
n∑

i=1

(Âi − Āi)S̄i + n−1
n∑

i=1

Āi(Ŝi − S̄i),

the stated result follows from L11, L12 and L13. �
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L30 V̄ − V = op(1).
Proof: Using a similar expansion to the one in L29, we have

E||V̄ − V || = E
∣∣∣∣∣∣n−1

n∑
i=1

(ĀiS̄i −AiSi)
∣∣∣∣∣∣

≤ E
(
||Āi −Ai|| × ||S̄i − Si||

)
+ E

(
||Ai|| × ||S̄i − Si||

)
+ E

(
||Āi −Ai|| × ||Si||

)
Schwarz
≤

√
E||Āi −Ai||2

√
E||S̄i − Si||2 +

√
E||Ai||2

√
E||S̄i − Si||2 +

√
E||Āi −Ai||2

√
E||Si||2.

Apply L23, theorem 1 of Stone (1977) and the fact that E||Ai||2, E||Si||2 <∞ by assumption. �

Proof of T4: Combine the previous two lemmas. �

E Computation

Proof of T5: By L27 and T4 it follows that θ̂(1) = Op(n−1/2). Hence by L1, m̂n(θ̂(j)) − mn(θ̂(j)) =
op(n−1/2) for j = 0, 1. Because {Aisi} is a VČ class (see (11)), it follows that∣∣∣∣mn(θ̂(1))−mn(θ̂(0))−m(θ̂(1)) +m(θ̂(0))

∣∣∣∣ = op(n−1/2).

Since m(θ̂(1))−m(θ̂(0)) = V (θ̂(1) − θ̂(0)) + op(n−1/2) (see (12)), it follows that

m̂n(θ̂(1))− m̂n(θ̂(0)) = mn(θ̂(1))−mn(θ̂(0)) + op(n−1/2) = m(θ̂(1))−m(θ̂(0)) + op(n−1/2)

= V (θ̂(1) − θ̂(0)) + op(n−1/2) = −V V̂ −1(θ̂(0))m̂n(θ̂(0)) + op(n−1/2) T4= −m̂n(θ̂(0)) + op(n−1/2).

So m̂n(θ̂(1)) = op(n−1/2) and (9) is satisfied. �
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No Overlap Overlap in θ01, θ02

xi1 = xi2 xi1 6= xi2 xi1 = xi2 xi1 6= xi2

xi1, xi2 ⊥⊥ ui1, ui2 ui1 ⊥⊥ ui2 all same all same J<S∗SO J<S∗SO
ui1 6⊥⊥ ui2 all same J<S∗SO J<S∗SO J<S∗SO

xij ⊥⊥ uij∗ ; j 6= j∗ ui1 ⊥⊥ ui2|xi1, xi2 all same JS∗S<O J<S∗SO J<S∗S<O
ui1 6⊥⊥ ui2|xi1, xi2 all same J<S∗S<O J<S∗SO J<S∗S<O

xij 6⊥⊥ uij∗ ui1 ⊥⊥ ui2|xi1, xi2 JS∗S<O JS∗<S<O J<S∗S<O J<S∗<S<O
ui1 6⊥⊥ ui2|xi1, xi2 J<S∗S<O J<S∗<S<O J<S∗S<O J<S∗<S<O

The entries indicate which methods are preferable to others in terms of asymptotic efficiency in various situations.
‘⊥⊥’ denotes independence and ‘<’ means “is typically more efficient but never less efficient than.” J=joint estimation
(new methodology), S=separate estimation (Zhao’s method), S∗=separate estimation using the regressors from both
equations (Zhao’s results can be used for this) and O=no efficiency correction.

Please note: when errors are independent of each other and of the regressors and the coefficient vectors do not overlap,
then equation by equation adaptive (to error distribution) estimation dominates all of the other estimation methods
mentioned here.

This comparison applies equally to mean and quantile regressions.

Table 1: Asymptotic Efficiency Comparison of Semiparametric Methods
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