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1. INTRODUCTION

We propose a new estimator for the regression coefficients in a linear regression model, which is

robust to ‘contamination.’ Our estimator is inspired by the least median of squares (LMS) estimator

of Rousseeuw [27] and the Laplace estimator of Chernozhukov and Hong [3]; see also Jun, Pinkse,

and Wan [18]. Like Laplace estimators, our estimator is defined as the ratio of two integrals in-

volving an exponential transform of (in our case) the LMS objective function, but this is where the

similarity ends.

Suppose that the parameter vector of interest θ0 is the unique minimizer of a population objec-

tive function Ω over a compact parameter space Θ. Laplace estimators then employ the fact that

θ0 satisfies

θ0 = lim
n→∞

∫
θv(θ) exp{−αnΩ(θ)}dθ∫
v(θ) exp{−αnΩ(θ)}dθ

, (1.1)

where v is a pseudo–prior defined on Θ and {αn} is a scalar–valued deterministic sequence di-

verging to infinity with the sample size n. Note here that the density v(θ) exp{−αnΩ(θ)} /∫
v(θ) exp{−αnΩ(θ)}dθ becomes more concentrated around θ0 as αn increases. Replacing Ω

in (1.1) with its sample analog Ω̂1 results in a Laplace estimator. If a quadratic expansion of Ω̂

is available then the Laplace estimator is generally
√

n–consistent (Chernozhukov and Hong [3])

and the divergence rate of αn of lesser importance. Absent such a quadratic expansion, as in the

case of the LMS estimator, the resulting estimator is not
√

n–consistent, and the divergence rate of

αn partly determines the convergence rate of the Laplace estimator (Jun, Pinkse, and Wan [18]) .

We, instead, use the fact that in our case Ω is symmetric around θ0, which implies that

θ0 =

∫
θ exp{−Ω(θ)}dθ∫
exp{−Ω(θ)}dθ

, (1.2)

where the integrals are taken over the entire Euclidean space. There are four fundamental differ-

ences between (1.1) and (1.2): in (1.2) there is no limit, there is no αn, there is no compact parameter

space requirement, and there is no v. Because there is no limit in (1.2), αn is not needed anymore.

Since the symmetry of Ω around θ0 is used, the parameter space should not be artificially restricted

and no prior can be used. Our estimator θ̂ is obtained by replacing Ω in (1.2) with Ω̂.

In this paper we focus our attention on the case in which Ω̂ is the LMS objective function, or a

close relative thereof. We show that, subject to assumptions outlined in subsequent sections, θ̂ is
√

n–consistent and asymptotically normal with many robustness properties, which will be further

1We use bold face for random variables.
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explained below. Please note that although our estimator resembles a Bayes estimator, it is quite

different in that with Ω̂ being the LMS objective function, exp(−Ω̂) is not a likelihood.

Instead of basing an estimator on (1.2), as we do in this paper, one could alternatively consider

θ̂L, the Laplace estimator using Ω̂. However, because the LMS objective function does not allow

for a quadratic expansion (Kim and Pollard [19]) , θ̂L will not be
√

n–consistent. Indeed, this

scenario is similar to the one studied in Jun, Pinkse, and Wan [18] for the objective functions of

other 3
√

n–consistent estimators.

The pioneering work of Huber [17] has spawned an abundance of papers proposing estimators

with ever more desirable robustness properties. The main differences between the estimators are

their robustness properties, their asymptotic behavior absent contamination, their equivariance

properties, and their degree of computational complexity. These properties are summarized in

table 1. Our estimator is attractive in all four respects, as the exposition below will make apparent.

One notion of robustness is the finite sample breakdown point (Donoho and Huber [8]) ,2 which

is the fraction of the sample that must be changed to push the value of an estimator arbitrarily far.

The breakdown point of the least squares estimator equals 1/n and the breakdown point of the

least absolute deviations estimator (Koenker and Bassett [21]) depends on the regressor distribu-

tion and can be arbitrarily close to zero in large samples (p.328 Hampel, Ronchetti, Rousseeuw,

and Stahel [15]) . Most estimators, however, have a finite sample breakdown point close to 0.5 if

the regressors are in general position (Rousseeuw [27]) . Notable exceptions are Huber [17], Krasker

[22], Mallows [23]. Our estimator has the best achievable breakdown point of regression invariant

estimators, determined in Rousseeuw [27].

Because the requirement that regressors be in general position is strong, we provide results that

are more general than that. Specifically, it can be preferable (from a breakdown point perspective)

to use a quantile q other than the median. Details can be found in section 3.

Other commonly used notions of robustness are the gross error sensitivity (GES) and the local

shift sensitivity (LSS), both due to Hampel [12, 14]. The GES of an estimator is finite if its influence

function (Hampel [12, 14]) is bounded. Many, but not all, robust estimators have a bounded

influence function, including ours.

2An asymptotic version can be found in Hampel [13] and a different breakdown point concept in Sakata and White
[30, 31].
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The LSS is finite if the partial derivative of the influence function with respect to regressor and

regressand–values is bounded.3 We know of only one estimator, namely Mallows [23], which is

known to have a finite LSS. The proposed estimator does not have a finite LSS if the tails of the

error distribution are thin. We do, however, describe a modification of our estimator which can

achieve a finite LSS.

Virtually all existing robust estimators, and ours, are
√

n–consistent and asymptotically normal.

The two exceptions are the two other LMS–based estimators, Rousseeuw [27], Zinde-Walsh [35].

The original LMS estimator has been shown to be 3
√

n–consistent and has a complicated limit dis-

tribution (see Kim and Pollard [19]) . Zinde-Walsh [35] smoothes out the LMS objective function

to obtain a better convergence rate and a limiting normal distribution, but her estimator does not

achieve the desired
√

n–rate and its GES is infinite.

Like Zinde-Walsh [35], but unlike most of the other estimators mentioned here, we do allow

for dependence between errors and regressors. There are many examples in economics in which

e.g. heteroskedasticity is important. Unlike Zinde-Walsh [35], however, we do not allow for time

series dependence, but follow the rest of the literature and assume independent and identically

distributed (i.i.d.) data.

Almost all existing estimators, and ours, are both affine invariant and regression invariant. About

half are also scale invariant, meaning that if the regressand is scaled, the vector of regression coef-

ficient estimates is scaled by the same amount. Our estimator is not scale invariant, and scaling

does have a material impact on its performance. Issues pertaining to scaling are discussed in detail

in section 6.

Finally, there is great variation in the computational complexity of estimators, both in terms of

computation time and the difficulty of writing a program. Ours is the only high breakdown point

estimator for which the number of operations required for its computation is linear in n, albeit that

the constant multiplying n can be large and increases with the number of regressors d. Because

our estimator is the ratio of two integrals, it can be computed using any of a number of numerical

integration techniques. For low–dimensional (small d) problems Gaussian quadrature works well.

For many regressors, (quasi) Monte Carlo techniques can be used. For the numbers produced in

this paper, we use Gibbs sampling (Geman and Geman [10]) . A simple Gibbs sampling procedure

3The definition of the LSS is more general in that it allows for left– and right–derivatives to be different.
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is described in appendix F; a C program using a faster algorithm is available from the authors upon

request.

There are at least two interesting extensions which are not explored in this paper and are left for

future work. First, under additional conditions the methodology could potentially be applied to

nonlinear regression models, including generalized linear models with a known link function. It

is difficult at this point to oversee how restrictive such additional conditions would be or indeed

what class of nonlinear regression functions this would work for. Second, our estimator is defined

as a quasi–posterior mean, but one could alternatively look at quantiles of the quasi–posterior dis-

tribution; this possibility has already been explored for Laplace estimators by Chernozhukov and

Hong [3].

The remainder of our paper is organized as follows. In section 2 we define our estimator. Its

breakdown point properties are established in section 3. Section 4 contains the asymptotic results

absent contamination and section 5 a discussion of its asymptotic robustness properties (GES and

LSS). Finally, section 6 addresses the effects of scaling of observables and section 7 the computation

of the proposed estimator.

2. ESTIMATOR

For some 0 < q < 1 to be chosen, let N = bqnc+ 1, where b·c denotes the largest integer no

greater than its argument. Let further Q∗(ξ; q∗) denote the q∗–quantile of the distribution of ξ,

Q(ξ) = Q∗(ξ; q), and let Q̂(ξi) be the N–th order statistic of ξ1, . . . ξn for arbitrary ξ’s; so Q, Q̂ are

population and sample quantiles, respectively. In case a quantile is not unique, in the sense that

there are multiple values m that satisfy P(ξ < m) ≤ q ≤ 1−P(ξ > m), Q is taken to be any such

value.4

Let {(xi, yi)} be an i.i.d. sample of size n where xi ∈ Rd. The object of interest is the vector of

regression coefficients in the linear regression model

yi = xᵀi θ0 + ui, i = 1, . . . , n.

Under conditions to be developed in section 4, θ0 is unique and given by

θ0 = argmin
θ∈Rd

Q(|yi − xᵀi θ|2). (2.1)

4For instance, the median of a binary random variable ξ with P(ξ = 1) = 1/2 is any value between 0 and 1, inclusive.
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Our estimator of θ0 is

θ̂ =

∫
θ exp{− Q̂(|yi − xᵀi θ|2)}dθ∫
exp{− Q̂(|yi − xᵀi θ|2)}dθ

. (2.2)

The estimator θ̂ resembles a Laplace estimator (Chernozhukov and Hong [3], Jun, Pinkse, and

Wan [18]) , albeit that (as mentioned in the introduction) there is no sample–size–dependent input

parameter scaling the objective function and no pseudo–prior. Indeed, in Chernozhukov and

Hong [3] and Jun, Pinkse, and Wan [18] the objective function must be multiplied by a parameter

which tends to infinity with the sample size to ensure consistency; in Chernozhukov and Hong

[3] the parameter is set to n, in Jun, Pinkse, and Wan [18] it is chosen by the practitioner. This is

not needed here because m(t) = Q{|yi − xᵀi (θ0 + t)|} happens to be symmetric in t.

By substitution of t = θ − θ0 in (2.2) it follows that for m̂n(t) = Q̂{|yi − xᵀi (θ0 + t)|},

θ̂− θ0 =

∫
t exp{−m̂2

n(t)}dt∫
exp{−m̂2

n(t)}dt
. (2.3)

The representation (2.3) will be frequently used in the remainder of the paper, especially in the

proofs.

3. BREAKDOWN POINT

We now establish a general result concerning the breakdown properties of our estimator, which

implies that the breakdown properties of our estimator are no worse than those of Rousseeuw

[27].

Let Ŷn = sup‖t‖=1 n−1 ∑n
i=1 I(|xᵀi t| = 0), γ̂ = nŶn and Y = sup‖t‖=1 P(|xᵀi t| = 0). The numbers

Ŷn, γ̂ represent the degree of noncollinearity in the sample and Y that in the population. The best

breakdown point obtains when observations are in general position (Rousseeuw [27]) , in which

case γ̂ = d− 1. However, because Y > 0 if one (or more) of the regressors other than the constant

is discrete, the general position property then occurs with probability approaching zero as n→ ∞.

Our breakdown point result is hence for generic γ̂.

Theorem 1. If γ̂ + 1 < N < n then the breakdown point b̂ of θ̂ satisfies b̂ ≥ {min(n−N, N− γ̂− 1) +

1}/n.

Theorem 1 only provides a lower bound to the breakdown point. It is straightforward to con-

struct examples in which b̂ = {min(n− N, N − γ̂− 1) + 1}/n.
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Theorem 1 has several implications. First, for q = 0.5, the breakdown point when the obser-

vations are in general position is (bn/2c − d + 2)/n if d > 1,5 which is exactly the same as in

Rousseeuw [27, theorem 1]. The best breakdown point is achieved when q is chosen to make

N = b(n + γ̂ + 1)/2c, which results in a breakdown point of b(n− γ̂ + 1)/2c/n. If the observa-

tions are in general position then the breakdown point equals b(n− d)/2c+ 1, which is the same

as that in the remark following theorem 1 of Rousseeuw [27] and hence also as that of Siegel [32].

Asymptotically, the optimal choice of q in terms of breakdown properties is

q =
1 +Y

2
, (3.1)

resulting in a breakdown point converging to (1− Y )/2 as n → ∞, which is the best achievable

for any regression equivariant estimator (Rousseeuw [27]) . The rationale for the choice of q

in (3.1) is that Ŷn
p→ Y and hence that γ̂ ≈ nY , resulting in an optimal N of ≈ n(1 +Y )/2.

4. ASYMPTOTICS

We now turn to a discussion of the properties of θ̂ absent contamination. Throughout we as-

sume that {(xi, yi)} is an i.i.d. sequence of random variables and that 0 < q < 1.

We start by establishing identification. Let m0 = Q(|yi − xᵀi θ0|) = Q(|ui|).

Assumption A. The conditional density f (·|·) of ui given xi = x is for any x even, continuous, positive

on the entire real line, weakly decreasing at all u > 0, and strictly decreasing at m0.

Assumption A is strong, but for q = 0.5 weaker than Kim and Pollard [19, example 6.3] because

we allow ui and xi to be dependent and do not assume the existence of derivatives for consistency.

It is used here to establish identification.

Recall from section 3 that Y = sup‖t‖=1 P(|xᵀi t| = 0).

Assumption B. Y < 1.

Assumption B requires that the regressors are perfectly collinear with probability less than one.

It is implied by the requirement that 0 < E(xix
ᵀ
i ) < ∞ (example 6.3 Kim and Pollard [19]) , but

does not assume the existence of moments for xi. Given that for Y > 0 regressors are in general

position with probability approaching zero (see section 3), assumption B is weak.

Theorem 2. Under assumptions A and B, θ0 defined in (2.1) is unique.

5It is b(n + 1)/2c/n if d = 1.
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We need one additional condition for consistency.

Assumption C. Y < q.

Assumption C is the population equivalent (for q = 0.5) of the requirement in Rousseeuw [27]

that no vertical hyperplane (passing through the origin) contains more than bn/2c observations.

Assumption C can be restrictive. Indeed, with both a constant and a binary regressor it is

violated when q ≤ 0.5. But if Y > q then with probability approaching one Ŷn > q, also, and the

condition imposed on N in theorem 1 is violated. Consequently, none of the LMS–type estimators,

Rousseeuw [27], Zinde-Walsh [35] and ours, will then have a breakdown point any better than the

OLS estimator. So if assumption C is violated, it just means that q is chosen too small. In particular,

if q is chosen according to (3.1) then assumption C is equivalent to assumption B.

Theorem 3. Under assumptions A to C, θ̂
p→ θ0.

We now proceed with a discussion of the asymptotic distribution of θ̂. Let

m(t) = Q(|ui − xᵀi t|), m∞(t) = Q(|xᵀi t|). (4.1)

The notation m∞ is inspired by the fact that for any t 6= 0, limλ→∞{m(λt)/λ} = m∞(t) provided

that m∞(t) is unique.

Let f (·) and F(·) be the unconditional counterparts of f (·|·) and F(·|·), and let X =
{

x : ∃‖t‖ =

1, ε > 0 :
∣∣|xᵀt| −m∞(t)

∣∣ < ε
}

.

Assumption D. (i)

lim
η↓0

inf‖t‖=1 P{|xᵀi t| ≤ m∞(t) + η} − q
η

> 0, lim
η↓0

inf‖t‖=1 P{|xᵀi t| ≥ m∞(t)− η} − 1 + q
η

> 0,

where each inequality is taken to hold if the limit is infinite. Moreover, (ii) for some ε > 0, 0 <

infx f (ε|x) ≤ supx f (0|x) < ∞ and for some 2 < r < ∞, (iii) lims→∞{infx∈X f (s|x)/ f r(s)} ≥ 1, and

(iv) lims→∞[ f {s + F(−s)/ f (s)}/ f r(s)] > 0.

Conditions (ii) and (iii) in assumption D are automatically satisfied if ui and xi are independent

and can be seen as mild conditions restricting their dependence. We have verified condition (iv)

for a number of distributions satisfying assumption A, including (symmetrized versions of) the

Normal, Gumbel, Laplace, and Cauchy distributions.
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Finally, condition (i) is satisfied when all regressors other than the constant are continuous. For

discrete distributions, (i) is satisfied for most, but not all, choices of q. Condition (i) assumes away

the possibility that the q–quantile of |xᵀi t| is ambiguous for any vector t of length one. Condition (i)

is unique to our paper.

Because q can be chosen to satisfy (i), condition (i) is more a nuisance than a serious obstacle

for our estimator. Nevertheless, we highlight two alternatives that can be used to replace assump-

tion D. The first solution is to assume that the tails of the conditional error density are sufficiently

thick, i.e. declining more slowly than those of the density of an exponential distribution, which

is not desirable. The second solution is to replace |yi − xᵀi θ|2 in (2.2) with δ(|yi − xᵀi θ|) with δ a

function increasing much faster than quadratically. We do not provide a formal justification for

either solution.6

Finally, we need a condition on the derivative of f .

Assumption E. supu,x f ′(u|x) < ∞.

Assumption E is strong, but the assumption of the existence of the first derivative is also used in

Kim and Pollard [19], Hossjer [16], Zinde-Walsh [35], among others. Please note that assumption E

is only used to establish asymptotic normality.

Let A(t, m) = P(|ui − xᵀi t| ≤ m), D(t) = ∂m A{t, m(t)},7

H(t, s) = Cov[I{|ui − xᵀi t| ≤ m(t)}, I{|ui − xᵀi s| ≤ m(s)}], (4.2)

and

V = 4

∫∫
tsᵀ m(t)m(s)

D(t)D(s) H(t, s) exp[−{m2(t) + m2(s)}]dtds[∫
exp{−m2(t)}dt

]2 . (4.3)

Theorem 4. Let assumptions A to E hold. Then
√

n(θ̂− θ0)
d→ N(0, V ).

So even though the original LMS estimator is 3
√

n–consistent like other estimators studied by

Kim and Pollard [19], the convergence rate in the LMS case can be improved to
√

n whereas

Jun, Pinkse, and Wan [18] have shown that the convergence rate of Laplace versions of other

such estimators crucially depends on the smoothness of the population objective function and is

necessarily worse than
√

n. The reason is that the function m, defined in section 2, is even, and

6Both alternatives ensure that t exp{−m2(t)}/D(t) (or its equivalent if δ is used) in (4.3) is integrable, which is needed.
7∂m denotes the partial derivative with respect to m.
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that our estimator is a smooth functional of the LMS objective function. Indeed, (2.3) shows that

the mapping from m̂n to θ̂− θ0 is smooth, even though m̂n itself is not smooth. Consequently,

expanding exp
{
−m̂n

2(t)
}

in (2.3) around m(t) for each t suggests that (the proof of theorem 4 is

precise)

θ̂− θ0 '
∫

t exp{−m2(t)}dt∫
exp{−m2(t)}dt

−
2
∫

tm(t){m̂n(t)−m(t)} exp{−m2(t)}dt∫
exp{−m2(t)}dt

, (4.4)

where ' means that the remainder terms are asymptotically negligible. Here, the second right

hand side term in (4.4) is
√

n–normal by a central limit theorem. The ‘bias’ term in (4.4), i.e.

the first right hand side term, equals zero due to the symmetry of m, whereas the corresponding

term in Jun, Pinkse, and Wan [18] is nonzero and can only be made to converge to zero by ex-

panding the population objective function around zero, introducing the divergent sequence {αn}

mentioned in the introduction, and (choosing a particular bias–reducing) prior. In other words,

in Jun, Pinkse, and Wan [18] a bit of ‘bias’ is introduced to obtain a more significant reduction in

‘variance’ whereas in the present case the ‘variance reduction’ obtains without generating ‘bias.’8

We have shown that our estimator has good breakdown properties and is both
√

n–consistent

and asymptotically normal. For the sake of completeness, we now provide a consistent estimator

V̂ of V . Let

Ĥ∗(θ, θ̃) = n−1
n

∑
i=1

I{|yi − xᵀi θ| ≤ Q̂(|yi − xᵀi θ|)}I{|yi − xᵀi θ̃| ≤ Q̂(|yi − xᵀi θ̃)}

−
(

n−1
n

∑
i=1

I{|yi − xᵀi θ| ≤ Q̂(|yi − xᵀi θ|)}
)(

n−1
n

∑
i=1

I{|yi − xᵀi θ| ≤ Q̂(|yi − xᵀi θ̃|)}}
)

, (4.5)

and for some scalar h∗(θ),

D̂∗(θ) =
1

2nh∗(θ)

n

∑
i=1

I
{∣∣|yi − xᵀi θ| − Q̂(|yi − xᵀi θ|)

∣∣ ≤ h∗(θ)
}

. (4.6)

Then our estimator of the asymptotic variance is

V̂ = 4

∫∫
(θ − θ̂)(θ̃ − θ̂)ᵀ

Q̂(|yi−xᵀi θ|) Q̂(|yi−xᵀi θ̃|)
D̂∗(θ)D̂∗(θ̃)

Ĥ∗(θ, θ̃)e−{Q̂(|yi−xᵀi θ|2)+Q̂(|yi−xᵀi θ̃|2)}dθdθ̃[∫
exp{− Q̂(|yi − xᵀi θ|2)}dθ

]2 . (4.7)

The use of a uniform kernel in (4.6) is not essential but simplifies the proofs.

8The terms ‘bias’ and ‘variance’ are used loosely here to refer to whether or not the distribution is approximately
correctly centered and variability of the distribution around the center, not in terms of the first two moments of the
(dominant asymptotic expansion term) of the estimator.
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We need a single additional assumption, relating to the choice of bandwidth h∗. Let ≺ indicate

that the left hand side is of smaller order than the right hand side and let �,�,� be likewise

defined.

Assumption F. The bandwidth function h∗ satisfies h∗(θ) = (1 + ‖θ‖p∗)h0 for some 2 < p∗ < ∞ and

h0 ≺ 1 ≺ n(1−1/p∗)/σh0 for some σ > 4.

Because h0 and p∗ are chosen by the practitioner, assumption F is not restrictive. Assumption F

permits the bandwidth to converge at the ‘optimal’ n−1/5 rate if p∗ > 5. We are now in a position

to state the final theorem of this section.

Theorem 5. Let assumptions A to F hold. Then V̂
p→ V .

5. INFLUENCE FUNCTION

From the proof of theorem 49 it is apparent that the dominant asymptotic term is

2√
n

n

∑
i=1

∫
t m(t)
D(t)

[
I{|ui − xᵀi t| ≤ m(t)} − q

]
exp{−m2(t)}dt∫

exp{−m2(t)}dt
,

resulting in the influence function (Hampel [14]) 10

I (y, x) = 2

∫
t m(t)
D(t)

[
I{|y− xᵀ(θ0 + t)| ≤ m(t)} − q

]
exp{−m2(t)}dt∫

exp{−m2(t)}dt
. (5.1)

Since y, x enter (5.1) only through an indicator function, I is uniformly bounded and the GES11

of our estimator is hence finite.

The LSS is more complicated to determine. We now show that even in the constant–only case,

our estimator does not have a finite LSS when the tails of the error distribution are thin.

Theorem 6. Suppose that xi consists of only a constant and that F is the distribution function of a mean

zero normal random variable with variance ς2. Then if q = 0.5, ς2 > 2⇐⇒ supy |∂yI (y)| < ∞.

As the proof of theorem 6 illustrates, the LSS is infinite for thin–tailed error distributions be-

cause exp(−m2) does then not decrease fast enough as m increases. This problem can be remedied

9See (E.6).
10In Hampel [14] the influence function is defined as a functional derivative, which generally equals an element in
the sum in the first order asymptotic term (Reeds [25], Boos and Serfling [1], Fernholz [9]) . We do not establish such
equivalence here.
11The GES is the supremum over x, y of the norm of I .
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by replacing exp in (2.2) by another smooth function which equals zero whenever its argument is

sufficiently large negative. We do not investigate such a modification in this paper.

6. SCALING

Like Laplace estimators (Chernozhukov and Hong [3]) , the proposed estimator is not invariant

to scaling, or indeed monotonic transformations, of the objective function. In our case scaling the

objective function is equivalent to scaling the data, so consider the estimator θ̂α below in which

the scaling is made explicit by means of a scalar 0 < α < ∞.

θ̂α =

∫
θ exp{−α Q̂(|yi − xᵀi θ|2)}dθ∫
exp{−α Q̂(|yi − xᵀi θ|2)}dθ

.

Having α be finite and nonzero is important for our results. It is apparent that limα→∞ θ̂α (for

q = 0.5) yields Rousseeuw’s LMS estimator, which is not
√

n–consistent and lacks a bounded

influence function unless the supremum is only taken over the slope regressors (Davies [7]) .

To obtain the limit of θ̂α as α→ 0 is somewhat more complicated. We limit ourselves to the case

with odd n, scalar–valued nonnegative xi and q = 0.5, which is nonetheless instructive.12 Let µ =

(n + 1)/2 and let the data be arranged such that xi < xj ⇒ i < j and xi ≤ xj, yi < yj ⇒ i < j.13

Theorem 7. Suppose that n is odd, d = 1, q = 0.5, and that there are no ties in the yi–values. If all xi’s

are nonnegative and xµ > 0, then limα→0 θ̂α = yµ/xµ.

Theorem 7 has two interesting implications. First, if xi is a constant then yµ/xµ equals the sam-

ple median, which has excellent properties. In most other cases, however, yµ/xµ is an inconsistent

estimator of θ0. Indeed, if xi is continuously distributed then yµ/xµ is the ratio of the y and x

values of the observation corresponding to the sample median of the xi’s.

So the value of α that minimizes the asymptotic variance is generally different from zero and

infinity and the same is true for the value that minimizes the gross error sensitivity. Other esti-

mators in this literature, including Krasker [22], Mallows [23], also require the choice of an input

parameter but in those papers the input parameter represents a choice between efficiency (as mea-

sured by the trace of the asymptotic variance matrix) and robustness (as measured by the gross

error sensitivity).14 Figure 1 demonstrates that in our case there need not be a tradeoff between

12Nonnegativity is innocuous since xi, yi can be replaced with −xi,−yi if xi is negative.
13We ignore the possibility of ties in the yi’s given that they are assumed continuous throughout the paper.
14See Krasker [22].
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efficiency and robustness. One way of choosing α is to use a first stage estimator (be it ours with
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FIGURE 1. Asymptotic Variance and Gross Error Sensitivity;
ui, xi independent N(0, 1), no constant

a fixed α or some other robust method), estimate the asymptotic variance Vα (or indeed the gross

error sensitivity),

Vα = 4α2

∫∫
tsᵀ m(t)m(s)

D(t)D(s) H(t, s) exp[−α{m2(t) + m2(s)}]dtds[∫
exp{−αm2(t)}dt

]2 .

and choose the value of α that minimizes one’s estimate of (the trace of) Vα. We do not provide

results for such a data–dependent choice of α.

7. COMPUTATION

There are several ways of computing our estimator; all involve numerical integration. Es-

pecially for low–dimensional (d small) problems, Gaussian quadrature works well. For high–

dimensional problems, a Monte Carlo–based approach usually works better.

Because the computation of a sample median requires O(n) operations (chapter 6 Knuth [20]) ,

the computation of each of the integrands in (2.2) requires O(n) operations, also. Hence if θ̂ is com-

puted using the (classical) Monte Carlo method, with or without importance sampling (Defini-

tion 3.9 Robert and Casella [26]) , or indeed using quadrature, then the total number of operations

needed is linear in n.

To illustrate, consider figure 2, for which we used the Monte Carlo method with importance

sampling using a normal distribution with variance chosen to match the tails of exp{− Q̂(|yi −

xᵀi θ|2)} as an instrumental distribution. For each (n, d)–combination, we constructed 1,000 sam-

ples s = 1, . . . , 1000, computed θ̂s(∞) = θ̂ using 1,000,000 draws. We then computed θ̂sr 1000 times
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FIGURE 2. Computational Accuracy as a Function of n

(r = 1, . . . , 1000) using 1000 draws in each case. Finally, we use the average mean square deviation

for each (n, d)–combination, ∑1000
s=1 ∑1000

r=1 (θ̂sr − θ̂s(∞))
2/10002, as a measure of the computational

accuracy of using 1000 draws.

If the number of operations needed to achieve the same level of accuracy were to increase with

n, both curves in figure 2 would be increasing. The reason that they are initially decreasing is due

to our choice of an instrumental distribution, which is a better match for the integrand for large n

than it is for small n.

Although the results depicted in figure 2 are encouraging, some words of caution are in order.

First, it is conceivable that performance is different for designs different from the one chosen here.

Second, although computation is linear in n, it could be slow for any n if a large number of ran-

dom draws is needed to achieve a desired level of accuracy, which arises when the instrumental

distribution used is a bad match for the integrand. Indeed, the best choice of it depends on the

shape of exp{− Q̂(|yi − xᵀi θ|2)}, in particular, on the unknown parameter vector θ0. Likewise, the

number of draws needed to achieve the same level of accuracy need not go up linearly in d.

For these reasons, it can be preferable to use other numerical integration methods such as Gibbs

sampling (Geman and Geman [10]) . A simple scheme, which requires O(n2) operations for a

draw, is described in appendix F. A faster algorithm is available from the authors.
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APPENDIX A. BASICS

Lemma A1. ∀t : m(−t) = m(t).

Proof. Note that

q = P{|ui − xᵀi t| ≤ m(t)} = E[F{m(t) + xᵀi t|xi} − F{−m(t) + xᵀi t|xi}]

= E[1− F{−m(t)− xᵀi t|xi} − 1 + F{m(t)− xᵀi t|xi}]

= E[F{m(t) + xᵀi (−t)|xi} − F{−m(t) + xᵀi (−t)|xi}], (A.1)

where the penultimate equality follows from the symmetry of F. Hence m(t) = m(−t). �

APPENDIX B. CONSISTENCY

The results in appendix B presume assumptions A and B to hold, but use notation introduced

throughout sections 1 to 4. Let for arbitrary scalar λ and t ∈ Rd and any 2 ≤ p < ∞, vi(λ, t) =

|ui − λxᵀi t|/(1 + λp), ai = [ui|xᵀi ]
ᵀ, Qa = Q(‖ai‖), Q̂a = Q̂(‖ai‖), m̂v(λ, t) = Q̂{vi(λ, t)},

mv(λ, t) = Q{vi(λ, t)}. We moreover use m, m∞ as defined in (4.1) and L ∞(Rd) as the collection

of bounded functions on Rd equipped with a sup–norm.

Lemma B1. For all ε1 > 0 there exists a C1 < ∞ such that (i) supλ>C1
sup‖t‖=1 mv(λ, t) ≤ ε1 and (ii)

lim
n→∞

P
{

sup
λ>C1

sup
‖t‖=1

m̂v(λ, t) > ε1

}
= 0.

Proof. We show (ii), where we establish along the way that (i) holds, also. Take C1 = max(2Qa/ε1, 1).

Then supλ>C1
sup‖t‖=1 m̂v(λ, t) ≤ Q̂aC1/(1 + Cp

1 ) and

P{Q̂aC1 > (1 + Cp
1 )ε1} ≤ P{|Q̂a −Qa|C1 > (1 + Cp

1 )ε1/2}︸ ︷︷ ︸
≺1

+ I{QaC1 > (1 + Cp
1 )ε1/2}︸ ︷︷ ︸

=0

. �

Lemma B2. For any C1 < ∞ there exists a C2 < ∞ such that

lim
n→∞

P
{

sup
0≤λ≤C1

sup
‖t‖=1

m̂v(λ, t) > C2

}
= 0.

Proof. Take C2 = 4Qa > 0. Noting that max(1, λ)/(1 + λp) ≤ 1,

P
{

sup
0≤λ≤C1

sup
‖t‖=1

m̂v(λ, t) > C2

}
≤ P(Q̂a > C2) ≤ P(|Q̂a −Qa| > C2/2) ≺ 1. �

Let Âv(λ, t, m) = n−1 ∑n
i=1 I{vi(λ, t) ≤ m} and Av(λ, t, m) = P{vi(λ, t) ≤ m}.
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Lemma B3.
√

n(Âv − Av)
w→ Gv in L ∞(Rd+2) for a zero mean Gaussian process Gv with covariance

kernel Hv(λ, t, m, λ̃, t̃, m̃) = Cov[I{|ui − λxᵀi t| ≤ (1 + λp)m}, I{|ui − λ̃xᵀi t̃| ≤ (1 + λp)m̃}].

Proof. Let C be the collection of sets of (u, xᵀ)ᵀ indexed by (a, bᵀ, m)ᵀ ∈ Rd+2 such that |au +

xᵀb| ≤ m. Since the collection of half spaces is a Vapnik–Chervonenkis (VC) class and C is the

collection of intersections of half spaces, C is a VC class. Therefore, F = {I{C} : C ∈ C } is a VC

subgraph class of functions that are indexed by (a, bᵀ, m)ᵀ ∈ Rd+2. Since Rd+2 is separable, F is a

pointwise measurable class. Therefore, F is a Donsker class in L ∞(Rd+2). Reparametrizing by

a = 1/(1 + λp) and b = λt/(1 + λp) does not affect the Donsker property, and therefore the weak

convergence of
√

n(Âv − Av) in L ∞(Rd+2) follows. Apply a central limit theorem to arbitrary

finite marginals and the Gaussian limit process and covariance kernel follow. �

Let cpt = 1 + ‖t‖p and Gp a Gaussian process with covariance kernel H∗p(t, s) = H(t, s)/cptcps,

where H is as defined in (4.2). Let further Ân(t, m) = n−1 ∑n
i=1 I(|ui − xᵀi t| ≤ m).

Lemma B4. Let Sn1(t, m) =
√

n{Ân(t, m) − A(t, m)}, Sn2(t) =
√

n[Ân{t, m(t)} − A{t, m(t)},

and Sn3p(t) =
√

n[Ân{t, m(t)} − A{t, m(t)}]/cpt. For Gp as defined above and some other Gaussian

processes G1, G2, (i) Sn1
w→ G1 in L ∞(Rd+1), (ii) Sn2

w→ G2 in L ∞(Rd), (iii) Sn3p
w→ Gp in L ∞(Rd).

Proof. First (i). Since the collection of half spaces in a Euclidean space is a VC class, the indicator

functions F∗ = {I(|ui − xᵀi t| ≤ m) : (t, m) ∈ Rd+1} form a VC subgraph class, because F∗ is

generated by using a finite intersection of half spaces. Since Rd+1 is separable, F∗ is a pointwise

measurable class and is hence Donsker.

Since the derivations for (ii) and (iii) are similar to each other, we only consider (iii). Since the

Gaussianity of finite marginals follows from a central limit theorem, we focus on the stochastic

equicontinuity of Sn3p. Note that

∣∣Sn3p(t)−Sn3p(t̃)
∣∣ ≤ sup

m

∣∣Sn1(t, m)−Sn1(t̃, m)
∣∣+ sup

t,m

∣∣Sn1(t, m)
∣∣∣∣∣ 1

cpt
− 1

cpt̃

∣∣∣
+ sup

t∗

∣∣Sn1{t∗, m(t)} −Sn1{t∗, m(t̃)}
∣∣,

where the RHS converges in probability to 0 as ‖t− t̃‖ → 0, because of (i) and since 1/cpt and m

are continuous in t. �

Lemma B5. supλ,t |Av{λ, t, m̂v(λ, t)} − Av{λ, t, mv(λ, t)}| � 1/
√

n.
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Proof. By the triangle inequality and the definition of mv,

sup
λ,t
|Av{λ, t, m̂v(λ, t)} − Av{λ, t, mv(λ, t)}| ≤

sup
λ,t
|Av{λ, t, m̂v(λ, t)} − Âv{λ, t, m̂v(λ, t)}|+ sup

λ,t
|Âv{λ, t, m̂v(λ, t)} − q|. (B.1)

The first right hand side term (RHS1) in (B.1) is � 1/
√

n by lemma B3 and RHS2 is ≺ 1/
√

n by

the definition of m̂v. �

Lemma B6. For any C1 < ∞, sup0≤λ≤C1
sup‖t‖=1 |m̂v(λ, t)−mv(λ, t)| � 1/

√
n.

Proof. By lemma B5 and the mean value theorem, for some m̂∗
v(λ, t) between m̂v(λ, t) and mv(λ, t),

sup
0≤λ≤C1

sup
‖t‖=1

|∂m Av{λ, t, m̂∗
v(λ, t)}{m̂v(λ, t)−mv(λ, t)}| � 1/

√
n.

It hence suffices to show that for some C3 > 0,

lim
n→∞

P
[

inf
0≤λ≤C1

inf
‖t‖=1

∂m Av{λ, t, m̂∗
v(λ, t)} > C3

]
= 1.

By lemma B2 it suffices to show that

inf
0≤λ≤C1

inf
‖t‖=1

inf
0≤m≤C2

|∂m Av(λ, t, m)| > 0.

Because Av(λ, t, m) = E[F{λxᵀi t + (1 + λp)m|xi} − F{λxᵀi t − (1 + λp)m|xi}], it follows that for

sufficiently large but finite C4,

inf
0≤λ≤C1

inf
‖t‖=1

inf
0≤m≤C2

∂m Av(λ, t, m)

= inf
0≤λ≤C1

inf
‖t‖=1

inf
0≤m≤C2

{
(1 + λp)E[ f {λxᵀi t + (1 + λp)m|xi}+ f {λxᵀi t− (1 + λp)m|xi}]

}
≥ 2 E[ f {C1C4 + (1 + Cp

1 )C2|xi}I(‖xi‖ ≤ C4)] > 0, (B.2)

by assumption A. �

Lemma B7. supλ≥0,‖t‖=1 |m̂v(λ, t)−mv(λ, t)| ≺ 1.

Proof. We show that for any ε > 0,

lim
n→∞

P
{

sup
λ≥0,‖t‖=1

|m̂v(λ, t)−mv(λ, t)| > ε
}
= 0. (B.3)
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In lemma B1, take ε1 = ε/4 to show that for the choice of C1 given there,

lim
n→∞

P
{

sup
λ>C1,‖t‖=1

|m̂v(λ, t)−mv(λ, t)| > ε/2
}
= 0.

The case 0 ≤ λ ≤ C1 is dealt with in lemma B6. �

Lemma B8. inft∈Rd{m(t)/(1 + ‖t‖)} > 0.

Proof. We show equivalently that

∃ε, c > 0 : sup
λ≥0,‖t‖=1

P{|ui − λxᵀi t| ≤ c(1 + λ)} ≤ q− ε. (B.4)

By assumption C it follows that for any sufficiently small ε > 0,

sup
‖t‖=1

P(|xᵀi t| ≤ ε) ≤ q− 2ε. (B.5)

Now choose K1 = −F−1(ε/2), K2 = max(2K1/ε, 1), c = min
(
ε/4, (q− ε)/[2(1+K2)E{ f (0|xi)}]

)
.

Then

sup
λ>K2,‖t‖=1

P{|ui − λxᵀi t| ≤ c(1 + λ)} ≤

P(|ui| > K1) + sup
λ>K2,‖t‖=1

P{|ui − λxᵀi t| ≤ c(1 + λ), |ui| ≤ K1}

≤ ε + sup
λ>K2,‖t‖=1

P{λ|xᵀi t| ≤ c(1 + λ) + K1} ≤ ε + sup
‖t‖=1

P(|xᵀi t| ≤ 2c + K1/K2)

≤ ε + sup
‖t‖=1

P(|xᵀi t| ≤ ε) ≤ q− ε, (B.6)

by (B.5). Further,

sup
λ≤K2,‖t‖=1

P{|ui − λxᵀi t| ≤ c(1 + λ)}

≤ sup
λ≤K2,‖t‖=1

E[F{λxᵀi t + c(1 + λ)|xi} − F{λxᵀi t− c(1 + λ)|xi}]

≤ 2c(1 + K2)E{ f (0|xi)} ≤ q− ε, (B.7)

by assumption A and the choice of c. Combining (B.6) and (B.7) yields (B.4). �

Lemma B9. inft∈Rd{m̂n(t)/(1 + ‖t‖)} � 1.
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Proof. We show the equivalent result that for any sufficiently small ε, c > 0,

P
[

sup
λ≥0,‖t‖=1

Ân{λt, c(1 + λ)} > q− 2ε
]
≺ 1.

Now,

P
[

sup
λ≥0,‖t‖=1

Ân{λt, c(1 + λ)} > q− 2ε
]
≤

I
[

sup
λ≥0,‖t‖=1

A{λt, c(1 + λ)} ≥ q− ε
]
+ P

[
sup

λ≥0,‖t‖=1

∣∣Ân{λt, c(1 + λ)} − A{λt, c(1 + λ)}
∣∣ > ε

]
.

(B.8)

RHS2 in (B.8) is ≺ 1 by lemma B4 and RHS1 is exactly (B.4). �

Lemma B10. supt∈Rd{m(t)/(1 + ‖t‖)} < ∞.

Proof. The result follows immediately from the fact that Q(|ui − xᵀi t|) ≤ (1 + ‖t‖)Qa, with Qa

defined at the beginning of appendix B. �

Lemma B11. supt∈Rd{m̂n(t)/(1 + ‖t‖)} � 1.

Proof. The result follows immediately from the fact that m̂n(t) ≤ (1 + ‖t‖)Q̂a, with Q̂a defined at

the beginning of appendix B. �

APPENDIX C. ASYMPTOTIC NORMALITY

The assumptions of theorem 4 are taken to hold for the lemmas below. The suprema and infima

in this section are taken over λ ∈ [0, ∞) and ‖t‖ = 1, unless otherwise noted. Let f−1 : [0, f (0)]→

[0, ∞) be a function (not necessarily unique) such that f { f−1(t)} = t for all t.

Lemma C1. For some C > 0 and all sufficiently large λ,

sup
t
|m(λt)− λm∞(t)| ≤ f−1

( 1
Cλ

)
+ CλF

{
− f−1

( 1
Cλ

)}
.

Proof. For C to be chosen, set ε = 2F
{
− f−1(1/Cλ)

}
. By David [6, theorem 1] and assumption D

for some finite C independent of λ,

sup
t
{m(λt)− λm∞(t)} ≤ Q∗(|ui|; 1− ε) + λ sup

t
{Q∗(|xᵀi t|; q + ε)−m∞(t)}

≤ Q∗(|ui|; 1− ε) + Cλε/2 = f−1(1/Cλ) + CλF{− f−1(1/Cλ)}.
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The case supt{λm∞(t)−m(λt)} is similar. �

Lemma C2. infλ,t ∂m Av{λ, t, mv(λ, t)} > 0.

Proof. For all λ belonging to a compact set, the result was established in (B.2). We now show that

the result also holds for large λ. Noting that by the symmetry of the conditional distribution of ui

given xi,

Av(λ, t, m) = P{|ui−λxᵀi t| ≤ (1+λp)m} = E[F{λxᵀi t+(1+λp)m|xi}− F{λxᵀi t− (1+λp)m|xi}]

= E[F{λ|xᵀi t|+ (1 + λp)m|xi} − F{λ|xᵀi t| − (1 + λp)m|xi}].

Hence

∂m Av{λ, t, mv(λ, t)} = (1 + λp)E[ f {λ|xᵀi t|+ m(λt)|xi}+ f {λ|xᵀi t| −m(λt)|xi}]

≥ (1 + λp)E[ f {λ|xᵀi t| −m(λt)|xi}]

= (1 + λp)E
(

f [λ{|xᵀi t| −m∞(t)}+ {λm∞(t)−m(λt)}|xi]
)
. (C.1)

Note first that P{−ε/λ < |xᵀi t| −m∞(t) ≤ 0} and P{0 ≤ |xᵀi t| −m∞(t) < ε/λ} both exceed C∗/λ

by assumption D for any fixed ε > 0 and some C∗ independent of t, λ. Hence the RHS in (C.1) is

for sufficiently large λ bounded below by

λp E
[

f
{

sup
t
|λm∞(t)−m(λt)| |xi

}
I
(∣∣|xᵀi t| −m∞(t)

∣∣ ≤ ε/λ
)]

≥ C∗λp−1
[

f
{

sup
t
|λm∞(t)−m(λt)|

}]r

≥ C∗

Cp−1 (Cλ)p−1 f
[

f−1
( 1

Cλ

)
+ CλF

{
− f−1

( 1
Cλ

)}]r
, (C.2)

where the first inequality in (C.2) follows from assumption D and the second from lemma C1 and

where C is as chosen in lemma C1. Since p can be chosen arbitrarily large, it hence suffices that for

some p∗,

lim
s→∞

f {s + F(−s)/ f (s)}
{ f (s)}p∗ > 0,

which was assumed in assumption D. �

For some σ > 4, let

ψn = n1/σp. (C.3)
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Lemma C3.

sup
0≤λ≤ψn

sup
‖t‖=1

|m̂v(λ, t)−mv(λ, t)| � 1/
√

n.

Proof. We use the shorthand Âv{m̂v} for Âv{λ, t, m̂v(λ, t)} and likewise for similar symbols. By

the mean value theorem and assumption E for some function m̂∗
v between m̂v and mv,

Av(m̂v)− Av(mv) = ∂m Av(mv)(m̂v −mv) + ∂2
m Av(m̂∗

v)(m̂v −mv)
2/2. (C.4)

Further, by the triangle inequality,

sup
λ≥0

sup
‖t‖=1

|Av(m̂v)− Av(mv)| ≤

sup
λ≥0

sup
‖t‖=1

|Av(m̂v)− Âv(m̂v)− Av(mv) + Âv(mv)|+ sup
λ≥0

sup
‖t‖=1

|Av(mv)− Âv(mv)|

+ sup
λ≥0

sup
‖t‖=1

|Âv(m̂v)− q|+ sup
λ≥0

sup
‖t‖=1

|q− Av(mv)|. (C.5)

RHS3 and RHS4 in (C.5) are ≺ 1/
√

n by construction and RHS1 is ≺ 1/
√

n by lemma B3. RHS2 is

� 1/
√

n, also, by lemma B3. Combining (C.4) and (C.5) yields

sup
λ≥0

sup
‖t‖=1

∣∣∂m Av(mv)(m̂v −mv) + ∂2
m Av(m̂∗

v)(m̂v −mv)
2/2
∣∣ � 1/

√
n. (C.6)

Now let κn ≺ 1 be such that

sup
0≤λ≤κ

−2/σp
n

sup
‖t‖=1

|m̂v −mv| � κn. (C.7)

Such κn exist by lemma B7; we will choose it later. Then for any such κn it follows from (C.6) that

sup
0≤λ≤κ

−2/σp
n

sup
‖t‖=1

∣∣∂m Av(mv)(m̂v −mv)
∣∣ � sup

0≤λ≤κ
−2/σp
n

sup
‖t‖=1

∣∣∂2
m Av(m̂∗

v)(m̂v −mv)
2/2
∣∣+ 1/

√
n

� sup
u,x

f ′(u|x) sup
0≤λ≤κ

−2/σp
n

sup
‖t‖=1

∣∣(1 + λp)2(m̂v −mv)
2∣∣+ 1/

√
n. (C.8)

RHS1 in (C.8) is ≺ sup
0≤λ≤κ

−2/σp
n

sup‖t‖=1

∣∣m̂v −mv
∣∣ by (C.7) and assumption E whereas the LHS

in (C.8) is � sup
0≤λ≤κ

−2/σp
n

sup‖t‖=1

∣∣m̂v −mv
∣∣, by lemma C2. Hence

sup
0≤λ≤κ

−2/σp
n

sup
‖t‖=1

|m̂v −mv| � 1/
√

n,

so we can choose κn = 1/
√

n, which corresponds to ψn = n1/σp, as defined in (C.3). �
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Lemma C4.

sup
0≤λ≤ψn

sup
‖t‖=1

∣∣Âv{λ, t, mv(λ, t)} − Av{λ, t, mv(λ, t)} − ∂m Av{λ, t, mv(λ, t)}{m̂v(λ, t)−mv(λ, t)}
∣∣

≺ 1/
√

n.

Proof. Using the same short hand notation as in lemma C3 we have by the triangle inequality that

|Âv(mv)− Av(mv) + ∂m Av(mv)(m̂v −mv)| ≤ |Âv(mv)− Av(mv)− Âv(m̂v) + Av(m̂v)|

+ |Âv(m̂v)− q|+ |q− Av(mv)|+ |Av(mv)− Av(m̂v) + ∂m Av(mv)(m̂v −mv)|. (C.9)

RHS2 and RHS3 in (C.9) are ≺ 1/
√

n by construction and RHS1 is ≺ 1/
√

n by lemma B3, all

uniformly in λ, t. By the mean value theorem, for some m̂∗
v between mv, m̂v, RHS4 in (C.9) is

sup
0≤λ≤ψn

sup
‖t‖=1

|∂2
m Av(m̂∗

v)(m̂v −mv)
2/2| ≤ (1 + ψ

p
n)

2 sup
u,x

f ′(u|x) sup
0≤λ≤ψn

sup
‖t‖=1

(m̂v −mv)
2

� n2/σ−1 ≺ 1/
√

n,

by lemma C3 and because σ > 4; see (C.3). �

Lemma C5. Recalling that cpt = 1 + ‖t‖p,

sup
‖t‖≤ψn

∣∣∣ m̂n(t)−m(t)
cpt

+
Ân{t, m(t)} − A{t, m(t)}

cpt∂m A{t, m(t)}

∣∣∣ ≺ 1√
n

. (C.10)

Proof. Note that for λ = ‖t‖ and t0 = t/‖t‖,

m̂n(t) = cptm̂v(λ, t0), m(t) = cptmv(λ, t0),

A{t, m(t)} = Av{λ, t0, mv(λ, t0)} = q, Ân{t, m(t)} = Âv{λ, t0, mv(λ, t0)},

∂m A{t, m(t)} = ∂m Av{λ, t0, mv(λ, t0)}/cpt.

The stated result then follows from lemmas C2 and C4. �



23

APPENDIX D. VARIANCE MATRIX ESTIMATION

In this appendix the assumptions of theorem 5 are used. Let h(t) = h∗(θ0 + t), set p = p∗ − 1,

with p∗, σ as defined in assumption F, and let

D̂(t) =
1

2nh(t)

n

∑
i=1

I
{∣∣|ui − xᵀi t| − m̂n(t)

∣∣ ≤ h(t)
}

,

Ĥ(t, s) = n−1
n

∑
i=1

I{|ui − xᵀi t| ≤ m̂n(t)}I{|ui − xᵀi s| ≤ m̂n(s)}

−
(

n−1
n

∑
i=1

I{|ui − xᵀi t| ≤ m̂n(t)}
)(

n−1
n

∑
i=1

I{|ui − xᵀi s| ≤ m̂n(s)}
)

.

(D.1)

Lemma D1. supt,s∈Rd |Ĥ(t, s)− H(t, s)| ≺ 1.

Proof. We will show the uniform convergence of RHS1 in the definition of Ĥ in (D.1), because the

second term is similar. Reparametrize the first term of Ĥ(t, s) in terms of λ0, λ1, t0, t1 to obtain

n−1
n

∑
i=1

I{(1 + λ
p
1)
−1|ui − xᵀi λ1t0| ≤ m̂v(λ1, t0)}I{(1 + λ

p
2)
−1|ui − xᵀi λ2s0| ≤ m̂v(λ2, s0)},

where λ1, λ2 ≥ 0 and ‖t0‖ = ‖s0‖ = 1. Since m̂v converges uniformly to mv by lemma B7, it

suffices to show that for ai defined at the beginning of appendix B,

n−1
n

∑
i=1

I(|aᵀi t∗| ≤ m∗)I(|aᵀi t̃∗| ≤ m̃∗)
p→ E{I(|aᵀi t∗| ≤ m∗)I(|aᵀi t̃∗| ≤ m̃∗)} (D.2)

uniformly in (t∗, m∗, t̃∗, m̃∗) ∈ Rd+1 ×R+ ×Rd+1 ×R+. Since the collection of half spaces in a

Euclidean space is a VC class, the collection of indicator functions F = {I(|aᵀi t∗| ≤ m∗)I(|aᵀi t̃∗| ≤

m̃∗) : (t∗, m∗, t̃∗, m̃∗) ∈ Rd+1 ×R+ ×Rd+1 ×R+} generated by finite intersections of half spaces

form a VC subgraph class. Since Rd+1 and R+ are separable, F is a pointwise measurable class,

and it follows that F is Glivenko–Cantelli. �

Lemma D2. For some some ε > 0 and recalling that cpt = 1 + ‖t‖p,

lim
n→∞

P
{

inf
t∈Rd

cptD̂(t) < ε
}
= 0.

Proof. Note that D̂(t) = 2
[
Ân{t, m̂n(t)+ h(t)}− Ân{t, m̂n(t)− h(t)}

]
/h(t), such that by lemma B4,

sup
t

cpt

∣∣∣2D̂(t)− A{t, m̂n(t) + h(t)} − A{t, m̂n(t)− h(t)}
h(t)

∣∣∣ � 1√
nh0
≺ 1. (D.3)
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Using Q̂a, Qa from appendix B it follows from assumption F that

sup
‖t‖>ψn

|m̂n(t)−m(t)|
h(t)

≤ Q̂a +Qa

h0
sup
‖t‖>ψn

1 + ‖t‖
1 + ‖t‖p �

n(1−p)/pσ

h0
≺ 1. (D.4)

Likewise, by lemma C3 and assumption F,

sup
‖t‖≤ψn

|m̂n(t)−m(t)|
h(t)

= sup
‖t‖≤ψn

|m̂v −mv(t)|
h0

� 1√
nh0
≺ 1. (D.5)

From (D.3) to (D.5) it follows that it suffices to show that

inf
t

A{t, m(t) + h(t)/2} − A{t, m(t)− h(t)/2}
h0

> 0. (D.6)

The LHS in (D.6) is by the mean value theorem for some 0 < ω(t) < 1 and ε∗(t) = ω(t)h(t)/2

equal to

cpt∂m A{t, m(t) + ε∗(t)}+ cpt∂m A{t, m(t)− ε∗(t)} =

cpt E
[

f {xᵀi t + m(t) + ε∗(t)|xi}+ f {xᵀi t−m(t)− ε∗(t)|xi}

+ f {xᵀi t + m(t)− ε∗(t)|xi}+ f {xᵀi t−m(t) + ε∗(t)|xi}
]
,

which by assumption A equals

cpt E
[

f {|xᵀi t|+ m(t) + ε∗(t)|xi}+ f {|xᵀi t| −m(t)− ε∗(t)|xi}

+ f {|xᵀi t|+ m(t)− ε∗(t)|xi}+ f {|xᵀi t| −m(t) + ε∗(t)|xi}
]
≥

cpt E
[
I{|xᵀi t|−m(t) ≥ 0} f {|xᵀi t|−m(t)− ε∗(t)|xi}+ I{|xᵀi t|−m(t) < 0} f {|xᵀi t|−m(t)+ ε∗(t)|xi}

]
≥ cpt E

[
I{|xᵀi t| −m(t) ≥ 0} f {|xᵀi t| −m(t)|xi}+ I{|xᵀi t| −m(t) < 0} f {|xᵀi t| −m(t)|xi}

]
= cpt E

[
f {|xᵀi t| −m(t)|xi}

]
.

Now,

inf
t

(
cpt E

[
f {|xᵀi t| −m(t)|xi}

])
= inf

λ≥0
inf
‖t‖=1

(
(1 + λp)E

[
f {λ|xᵀi t| −m(λt)|xi}

])
. (D.7)

The RHS in (D.7) is the infimum of the middle expression in (C.1), which is shown to be bounded

away from zero, uniformly in λ, t, in lemma C2. �

Lemma D3. ∀t ∈ Rd : |D̂(t)−D(t)| ≺ 1.
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Proof. Choose t. From (D.3) and assumption F it follows that∣∣∣2D̂(t)− A{t, m̂n(t) + h(t)} − A{t, m̂n(t)− h(t)}
h(t)

∣∣∣ � 1√
nh0
≺ 1.

Take n large enough to ensure that ‖t‖ ≤ ψn. We have by the mean value theorem that

A{t, m̂n(t) + h(t)} − A{t, m̂n(t)− h(t)}
h(t)

− 2D(t) =

∂2
m A(t, ·)
2h(t)

{m̂n(t)−m(t) + h(t)}2 − ∂2
m A(t, ·)
2h(t)

{m̂n(t)−m(t)− h(t)}2. (D.8)

By lemma C3 and assumptions E and F both RHS terms in (D.8) are ' (1/n + h2
0)/h0 ≺ 1. �

Lemma D4.

∀t, s ∈ Rd :
Ĥ(t, s)

D̂(t)D̂(s)
− H(t, s)

D(t)D(s)
≺ 1.

Proof. Follows immediately from lemmas D1 to D3 and the fact that Ĥ and H are bounded. �

APPENDIX E. THEOREMS

Proof of theorem 1. The proof of this theorem is inspired by that of Rousseeuw [27, theorem 1];

see also Rousseeuw and Leroy [28, section 3.4]. Let Z = {(xi, yi)} be the original sample,

Z ∗ = {(x∗i , y∗
i )} be the contaminated sample and Z † the sample consisting of observations

shared between the two.

Suppose that the number of observations contaminated is at most b∗ = min(n − N, N − γ̂ −

1) > 0. We show that θ̂ is bounded. Specifically, we show that the numerator is bounded and

that the denominator is bounded away from zero, i.e. (i)
∫
‖θ‖ exp{− Q̂(|y∗

i − θᵀx∗i |2)}dθ < ∞,

(ii)
∫

exp{− Q̂(|y∗
i − θᵀx∗i |2)}dθ > 0. Let ȳ = maxZ |yi| and x̄ = maxZ ‖xi‖.

First (ii). Since b∗ > 0 there exists for each θ at least one observation
(
x†

i (θ), y†
i (θ)

)
∈ Z † for

which Q̂(|y∗
i − θᵀx∗i |) ≤ |y†

i (θ) − θᵀx†
i (θ)| ≤ ȳ + x̄‖θ‖. Hence the left hand side (LHS) in (ii) is

bounded below by exp(−2ȳ2)
∫

exp(−2x̄2‖θ‖2)dθ > 0.

Now (i). Let B(B, ρ) be the ρ–expansion of a (d − 1)–dimensional subspace B of Rd and let

ρ(Z ) be the smallest ρ for which B(B, ρ) contains at least γ̂ + 1 of the xi’s. By the definition of γ̂,

ρ(Z ) > 0.

Since at most b∗ observations are contaminated, Z † contains at least γ̂+ 1 observations indexed

i1, . . . , iγ̂+1 for which Q̂(|y∗
i − θᵀx∗i |) ≥ |yij

− xᵀij
θ|. Take B(θ) = {x ∈ Rd : xᵀθ = 0}. Then for

at least one j = j(θ), xij
6∈ B{B(θ), ρ(Z )/2} by the definition of ρ(Z ). For this value of j, let
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x†
i (θ) = xij

, y†
i (θ) = yij

, and let ȳ be as defined above. Then since Q̂(|y∗
i − θᵀx∗i |) ≥ |y†

i −

θᵀx†
i (θ)| ≥ ρ(Z )‖θ‖/2− ȳ and Q̂(|y∗

i − θᵀx∗i |2) ≥ ρ2(Z )‖θ‖2/4− ρ(Z )ȳ‖θ‖ for all θ, the LHS

in (i) is bounded above by exp(ȳ2)
∫
‖θ‖ exp

[
−ρ2(Z ){‖θ‖ − 2ȳ/ρ(Z )}2/4

]
dθ < ∞. �

Proof of theorem 2. We show that for all t 6= 0, P(|ui − xᵀi t| ≤ m0) < q. Thus, by assumptions A

and B,

P(|ui − xᵀi t| ≤ m0)− q = E{F(m0 + xᵀi t|xi)− F(xᵀi t−m0|xi)− F(m0|xi) + F(−m0|xi)}

= E{F(m0 + xᵀi t|xi) + F(m0 − xᵀi t|xi)− 2F(m0|xi)} < 0. �

Proof of theorem 3. We start from (2.3). Let ω(m) = exp(−m2). Expanding ω{m̂n(t)} around

m(t) using the mean value theorem yields for some m̂∗
n(t) between m̂n(t) and m(t) that for any

function ψ bounded in absolute value by some polynomial,∫
ψ(t)[exp{−m̂2

n(t)} − exp{−m2(t)}]dt = −2
∫

ψ(t)m(t){m̂n(t)−m(t)} exp{−m̂∗2
n (t)}dt.

The stated result then follows from lemmas B7 to B9. �

Proof of theorem 4. We work on the numerator and denominator in (2.3) separately.

First the denominator. Let ω(m) = exp(−m2). Expanding ω{m̂n(t)} around m(t) yields for

some m̂∗
n(t) between m(t) and m̂n(t),∫

exp{−m̂2
n(t)}dt =

∫
exp{−m2(t)}dt− 2

∫
m̂∗

n(t){m̂n(t)−m(t)} exp{−m̂∗2
n (t)}dt. (E.1)

For RHS2 in (E.1) we have by lemmas B7 to B11 for some ε > 0 that∫
m̂∗

n(t){m̂n(t)−m(t)} exp{−m̂∗2
n (t)}dt ≺

∫
cpt(1 + ‖t‖) exp(−ε2‖t‖2)dt � 1.

Now the numerator. Let ψn be as defined in (C.3), Tn = {t ∈ Rd : ‖t‖ ≤ ψn}, and T c
n = {t ∈

Rd : ‖t‖ > ψn}. Then by lemma A1,

∫
t exp{−m̂2

n(t)}dt =∫
Tn

t[exp{−m̂2
n(t)} − exp{−m2(t)}]dt +

∫
T c

n

t exp{−m̂2
n(t)}dt−

∫
T c

n

t exp{−m2(t)}dt. (E.2)

For RHS2 in (E.2) note that by lemma B9 for some ε > 0 and since ψn is polynomial in n,∫
T c

n

‖t‖ exp{−m̂2
n(t)}dt �

∫
T c

n

‖t‖ exp(−ε2t2)dt ≺ 1/
√

n. (E.3)
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RHS3 in (E.2) can similarly be shown to be ≺ 1/
√

n using lemma B8. For RHS1 in (E.2) we have

∫
Tn

t[exp{−m̂2
n(t)} − exp{−m2(t)}]dt = −2

∫
Tn

tm(t){m̂n(t)−m(t)} exp{−m2(t)}dt

−
∫

Tn

t{1− 2m̂∗2
n (t)}{m̂n(t)−m(t)}2 exp{−m̂∗2

n (t)}dt. (E.4)

RHS2 in (E.4) is ≺ 1/
√

n by lemmas B8 to B11, C2 and C3. Further, RHS1 in (E.4) equals

− 2
∫

Tn

tcptm(t)
{ m̂n(t)−mt

cpt
+

Ân{t, m(t)} − A{t, m(t)}
cpt∂m A{t, m(t)}

}
exp{−m2(t)}dt

− 2
∫

T c
n

tcptm(t)
Ân{t, m(t)} − A{t, m(t)}

cpt∂m A{t, m(t)} exp{−m2(t)}dt.

+ 2
∫

tm(t)
Ân{t, m(t)} − A{t, m(t)}

D(t)
exp{−m2(t)}dt (E.5)

The first term in (E.5) is≺ 1/
√

n by lemma C5. The second term in (E.5) is also≺ 1/
√

n, which can

be established along the lines of (E.3), noting that cpt∂m A is bounded away from zero by lemma C2

and that tcptm(t) is polynomial in t.

Finally,
√

n times the last term in (E.5) equals

2√
n

n

∑
i=1

∫
t

m(t)
D(t)

[
I{|ui − xᵀi t| ≤ m(t)} − q

]
exp{−m2(t)}dt. (E.6)

Apply the Lindeberg–Levy central limit theorem. �

Proof of theorem 5. We show consistency of the numerator; the denominator is easier. Recall the

definitions in (D.1) and let

R̂(t, s) =
m̂n(t)m̂n(s)
D̂(t)D̂(s)

Ĥ(t, s) exp{−m̂2
n(t)− m̂2

n(s)},

R(t, s) =
m(t)m(s)
D(t)D(s)

H(t, s) exp{−m2(t)−m2(s)}.

Substituting t = θ − θ0 and s = θ̃ − θ0 in the numerator in (4.7) yields∫∫
{t + (θ0 − θ̂)}{s + (θ0 − θ̂)}ᵀR̂(t, s)dtds. (E.7)

To establish that (E.7) converges in probability to the numerator in (4.3), it suffices by the con-

sistency of θ̂ to show that (i)
∫∫

tsᵀ{R̂(t, s) − R(t, s)}dtds ≺ 1, (ii)
∫∫

tR̂(t, s)dtds � 1, (iii)



28∫∫
sᵀR̂(t, s)dtds � 1, (iv)

∫∫
R̂(t, s)dtds � 1. Since establishing (ii) to (iv) is similar to but easier

than (i), we only establish (i) here.

We use the weak version of Glick [11, theorem A].15 Pointwise convergence in probability of R̂

to R follows from lemmas B7 and D4 and Slutsky.

We now only need to find a convergent upper bound to ‖t‖‖s‖|R̂(t, s)|whose limit is integrable.

Because supm{|m| exp(−|m|)} = 1/e, Ĥ is bounded, it suffices by lemma D2 to show that for

any fixed order polynomial P,
∫
|P(t)| exp{m̂n(t)− m̂2

n(t)}dt is convergent, which follows from

lemma B9. �

Proof of theorem 6. Let u = y− θ0. It follows from (5.1) that we need to determine when

∂u

∫
t

m(t)
D(t)

I{|u− t| ≤ m(t)} exp{−m2(t)}dt (E.8)

is uniformly bounded in u.16 Let t− = t−(u), t+ = t+(u) be such that u − t− − m(t−) = 0,

u− t+ +m(t+) = 0 if such t−, t+ exist; set t− and/or t+ equal to−∞, ∞, respectively if no solution

exists. So |u− t| ≤ m(t)⇐⇒ t−(u) ≤ t ≤ t+(u).

From the definition of m it follows that if solutions for t+, t− exist they solve

F(2t+ − u)− F(u) = 1/2, F(u)− F(2t− − u) = 1/2.

Hence t+ = ∞ if u ≥ 0 and t− = −∞ if u ≤ 0. We concentrate on the case u < 0; the case u > 0

is similar and the left derivative at u = 0 (if it is finite) equals the limit as u ↑ 0. The expression

in (E.8) then equals

∂u

∫ t+(u)

−∞
t

m(t)
D(t)

exp{−m2(t)}dt = t+
m(t+)
D(t+)

exp{−m2(t+)}∂ut+. (E.9)

By the implicit function theorem ∂ut+ = D(t+)/2 f (2t+ − u), such that twice the RHS in (E.9)

equals

t+
m(t+)

f (2t+ − u)
exp{−m2(t+)} = t+(t+ − u)

f (2t+ − u)
exp{−(t+ − u)2} =

ς
√

2π t+(t+ − u) exp
{
−(1− 2/ς2)t+2 + 2(1− 1/ς2)ut+ − (1− 1/2ς2)u2}.

15See the comment on page 67 in Glick [11].
16There is a slight abuse of notation here since the left and right derivatives at u = 0 can differ. If that is the case, let for
the remainder of this proof ∂u denote the greater in absolute value of the left and right derivatives.



29

Take the limit as u ↑ 0 noting that for fixed negative u, t+ is finite and that (tedious but simple

derivations yield) limu↑0{ut+(u)} = 0. �

Proof of theorem 7. Note that Q̂(|yi − xiθ|) is a piecewise linear function of θ. Indeed, on each

such segment [θ, θ̄], Q̂(|yi − xiθ|) = |yj − xjθ| for some j = 1, . . . , n. If θ, θ̄ are both finite then for

s = 0, 1,

lim
α→0

∫ θ̄

θ
θs exp{−α Q̂ |yi − xiθ|2}dθ = lim

α→0

∫ θ̄

θ
θs exp{−α(yj − xjθ)

2}dθ = (θ̄s+1 − θs+1)/(s + 1),

which is finite. The limit is hence determined by the terms for which θ̄ or θ is infinite. Note that

Q̂(|yi − xiθ|) = |yµ − xµθ| for any sufficiently large |θ|. Now, for the denominator,

lim
α→0

(√
α/π

∫ θ̄

−∞
exp{−α(yµ − xµθ)2}dθ

)
= 1/2xµ. (E.10)

By symmetry, the same limit applies to
∫ ∞

θ , so the denominator converges to 1/xµ. For the numer-

ator and arbitrary θ, θ̄ by substitution of t =
√

2α(xµθ − yµ),√
α

π

∫ θ̄

θ
θ exp{−α(yµ − xµθ)2}dθ =

1
x2

µ

∫ √2α(xµ θ̄−yµ)

√
2α(xµθ−yµ)

( t√
2α

+ yµ

)
φ(t)dt

=
1√

2αx2
µ

[
φ{
√

2α(xµθ − yµ)} − φ{
√

2α(xµ θ̄ − yµ)}
]

+
yµ

x2
µ

[
Φ{
√

2α(xµ θ̄ − yµ)} −Φ{
√

2α(xµθ − yµ)}
]
.

Hence adding the terms for θ = −∞ with arbitrary θ̄ and θ̄ = ∞ with arbitrary θ and taking α→ 0,

we obtain
yµ

x2
µ

+ lim
α→0

φ{
√

2α(xµθ − yµ)} − φ{
√

2α(xµ θ̄ − yµ)}√
2α

=
yµ

x2
µ

, (E.11)

since φ has derivative zero at zero. Hence limα→0 θ̂α = (yµ/x2
µ)/(1/xµ) = yµ/xµ. �

APPENDIX F. COMPUTATION

The method we describe here is Gibbs sampling (Geman and Geman [10]) ; for other possibili-

ties see section 7. Because θ̂ can be thought of as the mean of a distribution with density function

ψ(θ) ∝ exp{− Q̂(|yi − xᵀi θ|2)}, all we need is a method to draw random numbers from that dis-

tribution. The idea is to draw random numbers from the conditional distribution of each element

θ∗ of θ given the remaining elements.
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θ →

|yi − xiθ| ↑Q̂(|yi − xᵀi θ|)

FIGURE 3. Gibbs sampling — single draws

Since the linear combination of remaining regressors and corresponding coefficients can be ab-

sorbed into yi, the remainder of our discussion presumes d = 1 and n odd.17 To simplify the

discussion further, we will presume that all regressors are positive–valued and that there are no

two regressors taking the same value. Zeroes and ties require minor adjustments to the procedure

and negative values can be accommodated by replacing (xi, yi) with (−xi,−yi).

Figure 3 represents the way Q̂(|yi − xiθ|) varies with the value of θ. Since Q̂(|yi − xiθ|) is

piecewise linear in θ, ψ is a different normal density in each of a number of intervals (θ(j), θ(j+1)],

j = 0, . . . , J. It can be shown that J ≤ 2n + 1. Thus, since for some observation ij, Q̂(|yi − xiθ|) =

|yij − xij θ| for all θ ∈ (θ(j), θ(j+1)] we get for Φj(θ) = Φ{
√

2(xij θ(j+1) − yij)} that

Ψ(θ) ∝
J

∑
j=0

{
I(θ(j+1) ≤ θ)

(Φj(θ(j+1))−Φj(θ(j))

xij

)
+ I(θ(j) ≤ θ < θ(j+1))

(Φj(θ)−Φj(θ(j))

xij

)}
.

So one only needs to find the boundary points θ(j) and corresponding observation ij in order to

compute Ψ. Once the boundaries θ(j) are known, Ψ−1(ζ) can be computed for any value ζ ∈ (0, 1)

by identifying the value of j for which Ψ(θ(j)) ≤ ζ < Ψ(θ(j+1)) and then computing the inverse of

a univariate normal distribution function.

What remains to be done, therefore, is to find the corner points θ(j). The simplest way of achiev-

ing this is to compute all intersection points by brute force, which takes O(n2) operations. Noting

17To accommodate even n, just add an observation with both xi, yi set to zero.
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that both i0 and iJ equal the index of the median of xi, one can start on the left and look at all inter-

section points of the downward sloping line corresponding to i0 with the remaining observations.

The observation whose line intersects first will be i1, and so forth. Such a brute force approach

suffices for most applications.

For the simulations in section 6 we used a more complicated algorithm, which is significantly

faster for large n. A C program is available from the authors.
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