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1. Introduction

The two main results to be reported here are (a) a proposition that common
knowledge of a Borel event is a co-analytic event, and is therefore universally mea-
surable, and (b) an extension of Aumann’s [1976] “agreement theorem” regarding
common knowledge of posterior probabilities to the framework of a measure space
defined on a complete, separable, σ-compact metric space.

Analysis involving common knowledge is prominent in game theory, and conse-
quently in several fields of applied economics that draw on game theory. Following
the research of Brandenburger and Dekel [1987] and Monderer and Samet [1989],
many game theorists have shifted from common knowledge to common certainty
as the object of analysis.1 As Brandenburger and Dekel point out, a main mo-
tivation for making that shift is to surmount the limitation of Aumann’s [1976]
analysis to the countable-information-partition framework, In particular, the uni-
versal type space of a game does not fit that framework. Monderer and Samet
[1989, p. 179] point out that common knowledge and common certainty of an event
differ by an event of prior probability zero, but do not exactly coincide in general.
Ben-Porath [1997] shows that the difference between them is crucial to considering
justification of backward induction in extensive-form games of perfect information.
Thus, the universal-measurability result to be presented here may have significant
game-theoretic applications.
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The connection between the agreement theorem and financial economics comes
via the “no trade theorem” of Milgrom and Stokey [1982] and Tirole [1982].2 Mil-
grom and Stokey’s version of that result can be paraphrased as follows.

No-Trade Theorem. Suppose that

• there are finitely many states of the world;
• agents’ prior beliefs about the state of nature are identical;
• agents maximize subjective expected utility, and are weakly risk averse;
• agents agree on the probabilities, conditional on utility-relevant events, of

the signals that they receive;
• with respect to prior beliefs, the endowment is Pareto efficient; and
• it is common knowledge that a particular trade is feasible, and is unani-

mously weakly preferred to the endowment with respect to posterior expected
utilities;

then, with respect to posterior expected utility, all traders are indifferent between
that particular trade and the endowment.

In Tirole’s exposition, the first premise of the theorem is generalized slightly
[1982, p. 1166], to specify that every signal has positive probability of being received
(so that the set of signals is countable). This assumption corresponds to Aumann’s
[1976, p. 1236] assumption. Regarding the role of this assumption, Tirole writes
that “It is clear that the result holds for much more general probability spaces.”
The study lays the groundwork for attempting to prove a no-trade theorem in a
more general setting, a project with a less certain outcome than Tirole’s remark
might suggest.

Standard Borel spaces (Such as the unit interval with its Borel sets) are an
indispensible ingredient of the formal models of asset pricing and of other models
studied in financial economics. These uncountable state spaces are building blocks
of continuous asset-return distributions (such as log-normal), diffusion processes,
and so forth. Thus, strictly speaking, the no-trade theorem is irrelevant to financial
economics. However researchers in that field have universally adopted Tirole’s view
that the formulation of the no-trade theorem in terms of a countable state space is
a mere mathematical convenience. In fact, many of the most insightful and careful
researchers have proceeded in that way. For example, Brennan and Cao [1996]
invoke the no-trade theorem to reduce a dynamic trading problem to a static one.
They formulate a model in which each agent receives a normally distributed signal
[1996, pp. 166-167] (so the state space cannot be countable). They state that “The
no-trade result of Milgrom and Stokey (1982) applies, and no further trade occurs
as new public information. . . becomes available.” [1996, pp. 166-167] However, the
upshot of the present research is that there is actually a gap at this step of Brennan
and Cao’s proof.

The typical context for citation of the no-trade theorem is the literature regard-
ing speculative trade. Virtually every author on that topic begins by noting that
speculative trade appears sometimes to occur but (purportedly) cannot be modeled
within the Bayesian rational expectations framework because the no-trade theorem

2These two results are proved in superficially different environments, but clearly are conceptu-

ally equivalent. Milgrom and Stokey derive their result explicitly as a corollary of the agreement
theorem, while Tirole proves his result “from scratch.” It is well understood that, in either case,

Aumann’s result is at the core of the no-trade result.
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would rule it out, and then proceeds to “spoil” the Bayesian RE model in one re-
spect or another, in order to produce the phenomenon that is to be analyzed. For
example, Easley et al. [1998] formulate a model that they analyze by taking a deriv-
ative with respect to a price [1998, p. 441], by which they implicitly assume that the
state space must be uncountable. They write that “[U]ninformed. . . trade [arises]
for. . . reasons that are exogenous to the model. This ‘noise trader’ assumption is
standard in microstructure models and it reflects the difficulty noted by Milgrom
and Stokey (1982). . . ” [1998, p. 436] But the present research makes it clear that,
in fact, it is an open question whether or not the Bayesian RE environment needs
to be modified in any way (such as positing noise traders, non-EU preferences, and
so forth) in order to accommodate speculative trade.

2. A measurability problem with knowledge

2.1. Formalizing knowledge in terms of a partition. (Ω,B, µ) is a probability
space.3 Throughout this article, it is assumed that4

(1)
Ω is uncountable, B is the σ-algebra generated by the open sets of
some Polish topology Ω, and µ : B → [0, 1] is a countably additive
probability measure.

P ⊆ B is the agent’s information partition of Ω. If {ψ, ω} ⊆ π ∈ P, then the
agent’s information cannot distinguish between ψ and ω having occurred.

For A ⊆ Ω, the saturation of A is defined by

(2) [A]P =
⋃
{π|π ∈ P and π ∩A 6= ∅}.

[A]P is the event that what the agent observes is consistent with A having occurred.
The agent knows that B has occurred, if his observation is inconsistent with B

not having occurred. The event κ(B) that the agent knows that B has occured is
formalized as follows.5

(3) κ(B) = Ω \ [Ω \B]P.

2.2. A decision-theoretic example. Jurisprudence is a practical context in which
knowledge is distinguished from subjective belief. In United States law, for exam-
ple, the Supreme Court has ruled the distinction to be crucial to determining the
admissibility of expert testimony. “The subject of an expert’s testimony must be
‘scientific . . . knowledge.’ . . . The word ‘knowledge’ connotes more than subjective
belief or unsupported speculation.”6

Consider the following example of a decision problem in which, due to a jurispru-
dential requirement that testimony must be based on knowledge, an agent’s payoff
from an action would be contingent on whether or not another (non-strategic) agent
has knowledge of an event. Suppose that an avaricious entrepreneur, Mr. Durham,
faces a decision, whether or not to manufacture a product that might harm con-
sumers. Durham only wants to maximize his profit, and is indifferent to consumers’

3Aumann [1976] specifies that Ω is countable and that B = 2Ω (or, tantamount to that assump-
tion, that B is generated by a countable partition of Ω). The present formalization of common

knowledge coincides in essential respects with the formalization provided in Aumann [1999a,b].
4A topology induced by a complete, separable metric is called Polish.
5This definition is equivalent to the definition introduced by Aumann [1976], which parallels

the definition of the modal operator necessity formulated by Kripke [1959].
6Daubert v. Merrell Dow Pharmaceuticals, 509 U.S. 579 (1993).
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welfare. If the product is brought to market, then it is inevitable that a consumer
will sue for compensation of alleged harm. A reknowned scientist, Dr. Schliemann,
has already stated publicly that he is certain that the product would be harmful,
that he is confident of his ability to prove the harm scientifically, and that he would
be eager to testify as an expert witness. Durham’s decision whether or not to go
forward turns on the question: can Schliemann really acquire scientific knowledge
that the product is harmful?

Let Ω = [0, 1] be the space of states of the world. Suppose that the the product
is harmful in event H = [0, 1/2) and safe in event S = [1/2, 1].

Consider an event X ⊆ H and its translation Y = {ω + 1/2 | ω ∈ X} ⊆ S.
Let Z = X ∪ Y be the event that Schliemann will be unable to produce scientific
proof (that is, to attain knowledge) to discriminate between some pair of states of
the world ω ∈ H and ω + 1/2 ∈ S. In that case, Durham would win the lawsuit.
Schliemann must give honest testimony, so Durham also wins if Schliemann knows
that the product is safe. In either of those events, Schliemann does not know that
the product is dangerous.

Schliemann’s information partition is:

(4) π ∈ P ⇐⇒

{
π = {ω} and ω /∈ Z
π = {ω, ω + 1/2} and ω ∈ X

The event that Schliemann does not actually know that Durham’s product is
harmful is [S]P = S ∪X.

If Durham makes and sells the product, then

• He wins the lawsuit, and subsequently makes huge profit, in event [S]P.
• He loses the lawsuit, must pay an enormous settlement to the plaintiff,

and is subsequently enjoined from selling the product, in event κ(H) =
Ω \ [Ω \H]P = Ω \ [S]P.

Let s and f be Durham’s utility outcomes of his success or failure in the lawsuit.
Normalize the utility of not selling the product to be 0. Suppose that f < 0 < s.
Durham “should” sell if his expected utility from it, U , is positive. Let µ be a
nonatomic measure on Ω that represents Durham’s beliefs. Then U = µ([S]P) · s+
(1− µ([S]P)) · f . He should make and sell the product, if µ([S]P) is close to 1.

Since [S]P = S ∪X, µ([S]P) = µ(S) + µ(X). But, what is µ(X)? Nothing has
been assumed about X. In fact, X might be an event that is not measurable with
respect to µ.7 In that case, U is undefined, and Durham’s decision problem falls
outside the scope of Bayesian decision theory.

The implication of this example for Aumann’s formalism is disturbing. The
partition P, consisting entirely of singletons and pairs, seems to be as tame as can
be. Likewise for the event S, a closed interval, from which the non-measurable
epistemic event in the example is derived. There is no sentence in the language
of Aumann’s theory, with which to state an axiom that would imply that X must
be measurable. Rather, the implicit hope is that a sufficiently ‘nice’ partition and

7An event B is measurable with respect to µ if there are events A and C in B such that

A ⊆ B ⊆ C and µ(A) = µ(C). An event that is not measurable with respect to any nonatomic
measure exists, by Oxtoby [1980, Theorems 5.3, 5.4], if the axiom of choice is satisfied. The axiom

of choice will be assumed throughout the present article.
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event will always generate a measurable knowledge event. The example dashes that
hope.

3. Formalizing common knowledge in terms of a partition

Suppose that agents 1 and 2 have information partitions P1 and P2. Let κi
denote i’s knowledge operator, defined by (3) with respect to Pi. Event B has
been defined by Lewis [1969] to be common knowledge between the agents in the
event that B occurs, each agent knows that it occurs, each knows that the other
knows, and so forth.

This concept generalizes to common knowledge among a set of agents. If I is
a finite set of agents, then define PI , the common-knowledge partition, to be the
finest partition that each Pi (for i ∈ I) refines. Aumann [1976, p. 1237] sketches
an argument (recapitulated below in the proof of proposition 5) that the definition
of common knowledge in terms of Lewis’ iterated-knowledge concept is equivalent
to the following definition of common knowledge.

(5) κI(B) = Ω \ [Ω \B]PI
.

This definition of a common-knowledge event is parallel to the definition (3) of the
event that an individual agent knows the same event, with PI being substituted
for the information partition P.

Defining common knowledge in this way risks, by the same argument as in sec-
tion 2.2, the possibility that the common-knowledge partition will have a non-
measurable block. In that case, it is foreseeable that the event of agents having
common knowledge of some Borel event will be non measurable.

Consider common knowledge between 2 agents. Let P1 be the partition defined
in (4) and let P2 = {{ω} | ω < 1} ∪ {[1, 2]}. Then X ∪ [1/2, 1] is the block
of P{1,2} that includes the block [1/2, 1] in P2. If X is not measurable, then,
a common-knowledge partition corresponding to information partitions built from
the simplest closed sets—singletons, pairs, and a closed interval—includes a non-
measurable block.

4. Measurability, equivalence relations, and agents’ types

4.1. Measurable, universally measurable, and analytic sets. A few concepts
relating to measurability of an event are needed, in order to amend Aumann’s
formalism and to study to what degree measurability difficulties are thus avoided.

Event B ⊆ Ω is measurable with respect to µ, a countably additive probability
measure, if there are events A and C in B such that A ⊆ B ⊆ C and µ(A) = µ(C).
In that case, µ can be extended to a countably additive measure, µ∗, on a σ-algebra
containing B ∪ {B}, and this measure completion satisfies

(6) µ∗(B) = µ∗(C) and ∀D ∈ B µ∗(D) = µ(D).

As has been mentioned in footnote 7, there are events that are not measurable with
respect to any nonatomic probability measure (in fact, with respect to any measure
for which no countable set has probability 1).

On the other hand, there are events that are universally measurable, that is,
measurable with respect to every probability measure. These include some events
that are not Borel (that is, not in B). It will be shown below that, when agents’ in-
formation is represented appropriately, the event that an agent knows a Borel event
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is a universally measurable event, even though his possession of that knowledge may
not be a Borel event.

A set S, together with a σ-algebra S of (some of) its subsets, is a standard Borel
space if there is some Polish topology, such that S is the smallest σ-algebra that
contains all of its open sets.

Now the classes Σ1
1(S) of analytic subsets and Π1

1(S) of co-analytic subsets of
a standard Borel space, (S,S), are defined. Define Σ1

1(S) to be the class of sets
X ⊆ S such that, for some standard Borel space (T, T ) and some set Y ∈ S × T ,
X = {σ|∃ω ∈ T (σ, ω) ∈ Y }.8 Define Π1

1(S) to be the class of sets X ⊆ S such
that, for some standard Borel space (T, T ) and some set Y ∈ S × T , X = {σ|∀ω∈
T (σ, ω) ∈ Y }. Define Σ1

2(S) to be the class of sets X ⊆ S such that, for some
standard Borel space (T, T ) and some set Y ∈ Π1

1(S × T ), X = {σ|∃ω∈T (σ, ω) ∈
Y }.

Also define ∆1
1(S) = Σ1

1(S) ∩Π1
1(S), and define Π1

2(S) to be the class of sets
X ⊆ S such that, for some standard Borel space (T, T ) and some set Y ∈ Σ1

1(S×T ),
X = {σ|∀ω∈T (σ, ω) ∈ Y }.

Lemma 1. The following assertions hold for all standard Borel spaces (S,S) and
(T, T ). Events in Σ1

1(S) and in Π1
1(S) are universally measurable. Each of Σ1

1(S)
and Π1

1(S) is closed under countable unions and intersections. If X ∈ Σ1
1(S) and

Y ∈ Σ1
1(T ), then X ×Y ∈ Σ1

1(S×T ). If f : S → T is measurable, then Y ∈ Σ1
1(T )

if and only if f−1(Y ) ∈ Σ1
1(S) If Y ∈ Σ1

1(S × T ) and X = {σ|∃τ ∈T (σ, τ) ∈ Y },
then X ∈ Σ1

1(S). ∆1
1(S) = S, but S ( Σ1

1(S) and S ( Π1
1(S).9

4.2. Equivalence relations generalize Harsanyi’s agent-type framework.
It is an elementary fact that the identity

(7) ∃π ∈ P [{ψ, ω} ⊆ π] ⇐⇒ (ψ, ω) ∈ E

associates an equivalence relation E ⊆ Ω×Ω to each partition of Ω, and vice versa.
If an equivalence relation E is specified, then it determines partition P according
to this relation. Both E and P are called closed (resp. Borel, analytic) if E is a
closed (resp. Borel, analytic) subset of Ω× Ω.

In much of the modeling of information in game theory, and in almost all of
its modeling in applied economics, an agent’s knowledge is represented implicitly
in terms of the agent’s state-contingent type. The space of types is posited to
be a standard Borel space (T, T ). A T -valued random variable τ : Ω → T (that
is, a measurable function from (Ω,B) to (T, T )) determines P according to P =
{τ−1(t) | t ∈ T} \ {∅}.10

8This is one of several, equivalent, conditions by which Σ1
1(S) can be defined. Cf. Bertsekas

and Shreve [1978, Proposition 7.41]
9These assertions are proved in Bertsekas and Shreve [1978, corollary 7.42.1, corollary 7.35.2,

corollary 7.36.1, proposition 7.39], Moschovakis [2009, theorem 1E3, theorem 2E.2]. Moschovakis’

assumption that S is perfect in its metric topology (embedded in his specification of the product
space X in his theorem) can easily be removed, both from this result and from other results to be
cited below. Cf. Moschovakis [2009, p. 60, fn. 4].

10If (Ω,B) and (T, T ) are standard Borel spaces, then f : Ω → T is measurable if, for every

A ∈ T , f−1(A) ∈ B. In the case that f : Ω×Ω→ T that will occur subsequently at some points,

note that ∆1
1(Ω)×∆1

1(Ω) = ∆1
1(Ω× Ω) (where the left side denotes the smallest σ-algebra that

contains all product “rectangles” A×B ⊆ Ω×Ω and the right side is the σ-algebra generated by

the open sets in the product topology). Cf. Aliprantis and Border [2006, theorem 4.44].
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If τ is a such a measurable assignment of a type, then the agent’s type is the same
in state ψ as in state ω is an equivalence relation. Specifically, if f : Ω×Ω→ T ×T
is defined by f(ψ, ω) = (τ(ψ), τ(ω)), then E = f−1(D) is the equivalence relation
that determines the partition of states according to the agent’s type. By lemma
1, E is analytic. In fact, E so defined belongs to a particularly simple sub-class of
the Borel equivalence relations.11 However, placing a restriction of being Borel, or
even closed, on partitions the information partitions mentioned in the hypotheses
of results to be proved below would not enable the conclusions of those results to be
strengthened in any significant way.12 For that reason, the remainder of this article
will be predominantly concerned with analytic partitions, equivalence relations, and
events.

A partition consisting of blocks in some class of events (closed events, for in-
stance) does not necessarily belong to the corresponding class of partitions, accord-
ing to this definition. For example, the partition defined by (4) consists of closed
blocks, but the equivalence class associated to it by (7) does not have a closed
graph, or even a graph in Σ1

1(Ω×Ω), if X /∈ Σ1
1(Ω). The way to see this fact, is to

prove its contrapositive: if E is defined by (4) and (7) and E ∈ Σ1
1(Ω × Ω), then

X ∈ Σ1
1(Ω), and hence is universally measurable. The proof proceeds as follows.

Define the diagonal (or identity) relation D ⊆ Ω× Ω by

(8) (ψ, ω) ∈ D ⇐⇒ ψ = ω.

D is a closed, and therefore Borel, subset of Ω × Ω; so (Ω × Ω) \D ∈ Σ1
1(Ω × Ω)

by lemma 1. Then, also by lemma 1, E \D ∈ Σ1
1(Ω×Ω) Finally, X can be defined

from E by ω ∈ X ⇐⇒ ∃ψ (ψ, ω) ∈ E \ D. Finally, lemma 1 shows both that
X ∈ Σ1

1(Ω) and that X is universally measurable.
Note that, if ω ∈ π ∈ P and E determines P, then π = {ψ|(ψ, ω) ∈ E}. That

is, π is defined by

(9) ψ ∈ π ⇐⇒ (ψ, ω) ∈ E.

Defining f : Ω → Ω × Ω by f(ψ) = (ψ, ω), π = f−1(Ω × {ω}), which proves the
following lemma.

Lemma 2. If π is defined from E by (9), and if E ∈ Σ1
1(Ω × Ω), then π is in

Σ1
1(Ω), and hence is universally measurable.

To summarize, it has been shown in this section that the pathologies of non-
measurability that were displayed in sections 2.2 and 3 are avoided by requiring
agents’ information partitions to be determined by analytic equivalence relations.
This observation generalizes to the following conjectures.

(1) If each Pi is determined by an analytic equivalence relation, then PI is
also determined by an analytic equivalence relation and every π ∈ PI is
analytic.

(2) If P is determined by an analytic equivalence relation and B is Borel, then
κ(B) is co-analytic.

(3) If each Pi is determined by an analytic equivalence relation and B is Borel,
then κI(B) is co-analytic.

11Cf. Harrington et al. [1990].
12Cf. Green [2012].
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These conjectures will be proved below. In fact, the hypothesis that B is Borel can
be weakened to a hypothesis that B is co-analytic.

4.3. Transitive closure. For a relation R ⊆ Ω× Ω, set13

(10) R(1) = R and, for each n ∈ N+,

R(n+1) = {(χ, ω)|∃ψ∈Ω [(χ, ψ) ∈ R and (ψ, ω) ∈ R(n)]}.

Then

(11) R+ =
⋃
n∈N+

R(n)

is the transitive closure of R.
Let ER denote the set of equivalence relations E ⊆ Ω× Ω such that R ⊆ E.

Lemma 3. If R is reflexive and symmetric, then R+ is an equivalence relation.
Specifically, R+ =

⋂
{E | E ∈ ER}.

Proof. By induction, for all n ∈ N+,

• R(n) is reflexive and symmetric;
• ∀E ∈ ER R(n) ⊆ E;
• (ψ, ω) ∈ R(n) ⇐⇒ ∃f [f : N → Ω and f(0) = ψ and f(n) = ω and ∀k <
n (f(k), f(k + 1)) ∈ R].

By (11), R+ is reflexive and symmetric and ∀E ∈ ER R+ ⊆ E. Therefore R+ ⊆⋂
{E | E ∈ ER}. If (χ, ψ) ∈ R+ and (ψ, ω) ∈ R+, then, for some m and n, (χ, ψ) ∈

R(m) and (ψ, ω) ∈ R(n). Therefore there are functions f : N → Ω and g : N → Ω
such that f(0) = χ, f(m) = g(0) = ψ, g(n) = ω, ∀k < m [(f(k), f(k + 1)) ∈ R],
and ∀k < n [(f(k), f(k + 1)) ∈ R]. Defining h(k) = f(k) if k < m and h(k) = g(k)
if k ≥ m shows that (χ, ω) ∈ R(m+n) ⊆ R+, so R+ is transitive (and an equivalence
relation). Thus R+ ∈ ER, so R+ =

⋂
{E | E ∈ ER}. �

Lemma 4. If R ∈ Σ1
1(Ω× Ω), then R+ ∈ Σ1

1(Ω× Ω).

Proof. It will be proved by induction that R(n) ∈ Σ1
1(Ω × Ω). R(1) ∈ Σ1

1(Ω × Ω)
by assumption. Define f : Ω×Ω×Ω→ Ω×Ω×Ω×Ω by f(χ, ω, ψ) = (χ, ψ, ψ, ω).
This function is continuous for Polish topologies that generate the Borel algebras
on the three-fold and four-fold products of Ω, so it is a Borel function. Let G =
Ω ×D × Ω. Consider the induction hypothesis that R(n) ∈ Σ1

1(Ω × Ω). Then, by
lemma 1, (R×R(n)) ∩G ∈ Σ1

1(Ω× Ω× Ω× Ω). Define H(n) = {(χ, ω, ψ)|(χ, ψ) ∈
R and (ψ, ω) ∈ R(n)}. By lemma 1, H(n) = f−1((R×R(n))∩G) ∈ Σ1

1(Ω×Ω×Ω)
and R(n+1) = {(χ, ω)|∃ψ ∈ Ω (χ, ψ, ω) ∈ H(n)} ∈ Σ1

1(Ω × Ω). So, by induction,
R(n) ∈ Σ1

1(Ω×Ω) for all n. Again by lemma 1, R+ =
⋃
n∈NR

(n) ∈ Σ1
1(Ω×Ω). �

5. Knowledge and common knowledge as equivalence relations

5.1. Characterizing PI. Conjecture (1) of section 4.2 follows immediately from
lemma 2 and the following proposition.

13N denotes {0, 1, 2, . . .} and N+ denotes {1, 2, . . .}.
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Proposition 5. If the information partition Pi of every agent i is determined by
a Σ1

1(Ω × Ω) equivalence relation Ei, then the common knowledge partition PI is
determined by the Σ1

1(Ω× Ω) equivalence relation

(12) EI =

(⋃
i∈I

Ei

)+

.

Every block of PI is an analytic (thus universally measurable) event.

The first step to proving this proposition is to show that EI is the transitive
closure of

⋃
i∈I Ei and that it determines PI . This fact, stated as lemma 6, follows

straightforwardly from lemma 3. Since
⋃
i∈I Ei is analytic by lemma 1, proposition

5 is an immediate consequence of lemmas 2, 4, and 6.

Lemma 6. EI is an equivalence relation. If πiω is defined by (9) with respect to ω
and Ei and πIω is defined by (9) with respect to ω and EI , then πiω ⊆ πIω. If E∗ is
any equivalence relation such that, for all i ∈ I, πiω ⊆ π∗ω (where π∗ω is defined by
(9) with respect to ω and E∗), then πIω ⊆ π∗ω. PI = {πIω|ω ∈ Ω}.

From this point forward, in light of proposition 5, individual agents’ information
will be represented as Σ1

1(Ω × Ω) equivalence relations, rather than as partitions.
If E determines P, then κE(A) is synonymous with κP(A).

5.2. Characterizing κE(A). The saturation with respect to equivalence relation
E of set A ⊆ Ω is

(13) [A]E = {α|∃β[(α, β) ∈ E and β ∈ A}.

The following lemma, trivially verified, is stated for subsequent reference.

Lemma 7. Knowledge (or common knowledge) of event A is related to saturation
by

(14) κE(A) = Ω \ [Ω \A]E ,

where E is Ei or EI .

Let’s investigate where in the projective hierarchy [A]E and kE(A) lie, if E is in
Σ1

1(Ω×Ω) and A is in either Σ1
1(Ω) or Π1

1(Ω). If A ∈ Σ1
1(Ω), then there is a Borel

I ⊆ Ω× Ω× Ω such that (α, β) ∈ E ⇐⇒ ∃γ (α, β, γ) ∈ I.

Lemma 8. There is a measurable function f : Ω→ Ω×Ω×Ω that is 1–1 and onto.

Proof. Both Ω and Ω × Ω × Ω are standard Borel spaces. By the Kuratowski’s
isomorphism theorem (Moschovakis [2009, theorem 1G.4]), there is a Borel isomor-
phism between them. �

In the following proposition, adopt the notation that f(ω) = (ω(0), ω(1), ω(2)) is
the homeomorphism that lemma 8 asserts to exist. Also, let t23 : Ω×Ω×Ω×Ω→
Ω × Ω × Ω × Ω denote the homeomorphism that transposes the second and third
factors of the product space.

Proposition 9. Suppose that E ∈ Σ1
1(Ω × Ω). If A ∈ Σ1

1(Ω), then [A]E ∈ Σ1
1(Ω)

and κE(A) ∈ Π1
2(Ω). If A ∈ Π1

1(Ω), then [A]E ∈ Σ1
2(Ω) and κE(A) ∈ Π1

1(Ω).
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Proof. Suppose that A is in Σ1
1(Ω). Specifically suppose that, for some B ∈ B,

ω ∈ A ⇐⇒ ∃χ (ω, χ) ∈ B. Define C = (I×Ω)∩t23(Ω×Ω×B). C ∈ B×B×B×B.
Define j : B × B → B × B × B × B by j(ω, χ) = (ω, χ(0), χ(1), χ(2), ), and define

J = j−1(C). J ∈ B × B. Then

ω ∈ [A]E ⇐⇒ ∃χ [(ω, χ) ∈ E and χ ∈ A
⇐⇒ ∃χ [(ω, χ(0), χ(1)) ∈ I and (χ(0), χ(2)) ∈ B]

⇐⇒ ∃χ [(ω, χ(0), χ(1), χ(2)) ∈ (I × Ω) ∩ t23(Ω× Ω×B)]

⇐⇒ ∃χ [(ω, χ) ∈ J ].

(15)

Hence [A]E ∈ Σ1
1(Ω). Consequently, if instead A ∈ Π1

1(Ω), then κE(A) = Ω \ [Ω \
A]E ∈ Π1

1(Ω) by lemma 7.
Suppose instead that A is in Π1

1(Ω). Specifically suppose that, for some B ∈ B,
ω ∈ A ⇐⇒ ∀ψ (ω, ψ) ∈ B. Define k : B × B × B → B × B × B × B by
k(ω, χ, ψ) = (ω, χ(0), χ(1), ψ, ), and define K = k−1(C). K ∈ B × B × B. Then

ω ∈ [A]E ⇐⇒ ∃χ [(ω, χ) ∈ E and χ ∈ A
⇐⇒ ∃χ ∀ψ [(ω, χ(0), χ(1)) ∈ I and (χ(0), ψ) ∈ B]

⇐⇒ ∃χ ∀ψ [(ω, χ(0), χ(1), ψ) ∈ (I × Ω) ∩ t23(Ω× Ω×B)]

⇐⇒ ∃χ ∀ψ [(ω, χ, ψ) ∈ K].

(16)

Hence [A]E ∈ Σ1
2(Ω). Consequently, if instead A ∈ Σ1

1(Ω), then κE(A) = Ω \ [Ω \
A]E ∈ Π1

2(Ω) by lemma 7. �

6. Aumann’s agreement theorem

6.1. Framing the issue. Roughly speaking, Aumann has proved for a countable,
standard Borel, state space that, if the posterior probabilities that two agents assign
to some event are common knowledge between them at some state, then both agents
must assign the same posterior probability to the event at that state.

If a standard Borel space is countable, then every singleton is a Borel event, every
arbitrary subset of the space is a countable union of singletons, and so every subset
of the space is a Borel event. In contrast, as has already been mentioned, every
uncountable standard Borel space has non-Borel subsets. Some of those events are
not measurable with respect to any nonatomic probability measure.

Aumann’s proof makes use of this special feature of a countable space. Specifi-
cally, the proof incorporates the assumption that the event of agents having common
knowledge is a Borel event. The question is, is this assumption a mathematical con-
venience to provide a simple proof of a special case of a general result, or is the
agreement theorem a fragile proposition that cannot be extended to apply to the
uncountable state spaces in which models in decision theory, game theory, and
economics are framed?

Proposition 9 suggests the answer to this question may depend on what is the
class of events, of which agents’ common knowledge is to be considered. If that
class is the class of all analytic events, then the only information that proposition
9 provides in general, is that common knowledge events are in Π1

2(Ω). It turns out
that, apparently, whether or not every such event is measurable is independent of
the axioms of set theory that are typically invoked in decision theory and related
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fields.14 If an event of agents having common knowledge is not measurable, then
there is little hope of generalizing Aumann’s proof to cover the situation. That is,
Aumann’s analysis involving a Borel event κI(A) could perhaps be generalized to
an analysis involving a measurable event, but it clearly could not be generalized to
apply to a non-measurable event.

Therefore, to answer the question of whether or not Aumann’s result is a fragile
one, two more basic questions may have to be answered. The first question is
whether or not every event in Π1

2(Ω) can be obtained as κI(A) for some analytic
event A? (Conceivably, all such events κI(A) lie in a sub-class of Π1

2(Ω) that
consists entirely of measurable events.) This is an open question, and its answer
may also be independent of ZFC set theory. If the answer to the first question
is affirmative or depends on “strong” set-theoretic axioms beyond ZFC, then the
second question is a philosophical question: which set-theoretic axioms beyond ZFC
are the appropriate ones to adopt as a framework for studying knowledge and belief
in a community of rational agents?

But, in practice, the questions about knowledge and common knowledge that
arise in the modeling of rational agents, and of communities of rational agents,
predominantly have to do with common knowledge of Borel events.15 By lemma 1,
those events are in ∆1

1(Ω), hence in Σ1
1(Ω). By proposition 9, then, the event of an

agent having knowledge of such an event, or of the event being common knowledge
among a community of agents, is in Σ1

1(Ω). By lemma 1, then, that event is
universally measurable. So, if common knowledge of Borel events is all that needs
to be considered, then the most obvious reason to suspect that the agreement
theorem cannot be generalized is sidestepped. But a difficult problem remains,
having to do with the conditional-probability representation of agents’ posterior
beliefs. A review of Aumann’s proof will be helpful for stating this problem.

6.2. Formal statement of Aumann’s theorem. To facilitate subsequent com-
parison with generalizations, it will be helpful to re-state and prove Aumann’s
[1976] version of the agreement theorem. Consider a countable probability space
(N, 2N, µ) and let I = {1, 2}. For i ∈ I, let Pi = {πik}k∈Ni

, where Ni ⊆ N, with
j 6= k =⇒ πij ∩ πik = ∅ for all j and k in Ni.

16

Consider an event A ⊆ N.
If µ represents the prior beliefs common to the two agents, then the posterior

probability that agent i assigns to A in event π ∈ Pi is

(17) µi(A|π) = µ(A ∩ π)/µ(π)

if µ(π) > 0.

Theorem 10 (Aumann’s agreement theorem). If

(1) q1 ∈ [0, 1] and q2 ∈ [0, 1], and
(2) µ({π}) > 0 for every π ∈ P1 ∪P2, and

14These are the ZFC axioms, including the axiom of choice. Independence is a consequence
of Jech [2002, corollary 25.28, theorem 26.14]. The question is apparently independent because

Theorem 26.14 has a hypothesis that cannot be proved to be consistent with ZFC.
15In some cases, questions regarding events that are not Borel do arise naturally. Cf. Stinch-

combe and White [1992].
16Ni is introduced, rather than simply using N as the index set, because the partition might

possibly be finite.
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(3) Q ⊆ N is defined by Q = [
⋃
{π ∈ P1|µ1(A|π) = q1]∩[

⋃
{π ∈ P2|µ2(A|π) = q2],

and
(4) κI(Q) 6= ∅,

then q1 = q2.

Proof. First observe that, for any sets B ⊆ S and partition P of S, [S \ [B]P]P =
S \ [B]P. Therefore, taking B = Ω \Q and S = Ω and P = PI ,

(18) [κI(Q)]PI
= κI(Q).

Since each Pi refines PI , [κI(Q)]Pi
= κI(Q) for each i. Therefore, for i ∈ I, there

is a subset Mi ⊆ Ni such that
⋃
n∈Mi

πin = κI(Q). Note that qi = µ(A|πin) for all
n ∈Mi.

q1µ(κI(Q)) = q1

∑
n∈M1

µ(π1
n)(19a)

=
∑
n∈M1

µ(A|π1
n)µ(π1

n)(19b)

= µ(A ∩ κI(Q))(19c)

=
∑
n∈M2

µ(A|π2
n)µ(π2

n)(19d)

= q2

∑
n∈M2

µ(π2
n)(19e)

= q2µ(κI(Q))(19f)

Because µ(B) > 0 for every non-empty subset B of N and κI(Q) 6= ∅, the equation
between the left side of (19a) and (19f) can be divided by µ(κI(Q)), yielding that
q1 = q2. �

7. Generalizing the agreement theorem to uncountable spaces

7.1. A futile attempt. In general, when P is an analytic partition of an uncount-
able standard Borel space, then the conditional probability (conditioning from prior
probability µ) of an event A with respect to P is defined in two steps. First, a σ-
algebra BP of µ-measurable subsets of Ω that are observable with respect to the
partition is defined. Specifically, BP can be specified as the sub-σ-algebra of B that
comprises the events in B that can be tiled by blocks of P.17

(20) BP =
{
B|B ∈ B and ∃T ⊆P B =

⋃
T
}

=
{
B|B ∈ B and B = [B]P

}
.

Second, a BP-measurable random variable a : Ω→ [0, 1] such that

(21) ∀B ∈ BP
∫
B

a(ω) dµ(ω) = µ(A ∩B).

is asserted by the Radon-Nikodym theorem to exist.18

Typically, that random variable is nonatomically distributed. That is, for any
q, µ({ω|a(ω) = q} = 0. In that case, if Q is defined as above, then µ(κI(Q)) = 0.
Therefore it should be anticipated that the hypothesis of theorem 10 will virtually

17Blackwell [1956] and Blackwell and Dubins [1975] study conditional probability in relation
to σ-algebras of this form.

18This construction is due to Kolmogorov [1956, chapter IV]. Any two random variables sat-
isfying (21) agree almost surely.
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never be satisfied in the setting of an uncountable Borel space. A more general
statement of the theorem is called for. But merely to generalize the statement will
not resolve conceptual issues regarding the meaning of the theorem or the logic of
its proof. Therefore, a first step to extend the theorem is to provide a proof of
a result that differs from theorem 10 only by the substitution of an uncountable
standard Borel space for N.

Many results can be generalized from the context of a countable probability
space to that of an uncountable standard Borel space with a nonatomic measure by
a routine procedure of transforming probability-weighted summations into integrals
with respect to a density. Consider how (19) in the proof of theorem 10 would be
transformed in that way.

Conjecture. If

(1) q1 ∈ [0, 1] and q2 ∈ [0, 1], and
(2) (Ω,B) is an uncountable standard Borel space and µ : B → [0, 1] is a nonatomic

probability measure, and
(3) the random variables a1 and a2 satisfy (21) with respect to BP1

and BP2

respectively, and
(4) Q = a−1

1 ({q1}) ∩ a−1
2 ({q2}), and

(5) µ∗(κI(Q)) > 0,19

then q1 = q2.

Attempted proof. Q ∈ B, so, by lemma 1 and proposition 9, κI(Q) ∈ Π1
1(Ω). There-

fore κI(Q) is universally measurable, and is thus in the domain of µ∗ as hypothesis
5 implies.20

Because a co-analytic set is universally measurable, the Lebesgue integral of a
Borel measurable function over a co-analytic domain, K ∈ Π1

1(Ω), is uniquely de-
fined. Specifically, because K is universally measurable by lemma 1, there are Borel
events J and L such that J ⊆ K ⊆ L and µ(J) = µ(L). For every Borel-measurable
f : Ω→ R+,

∫
J
f(ω) dµ(ω) =

∫
L
f(ω) dµ(ω). Thus

∫
K
f(ω) dµ(ω) should be defined

by

(22)

∫
K

f(ω) dµ(ω) =

∫
J

f(ω) dµ(ω) =

∫
L

f(ω) dµ(ω).

This definition of the integral is extended in the usual way to functions of form
f − g, where both f and g are nonnegative-valued and have finite integrals. Since
κI(Q) ∈ Π1

1(Ω), integration over κI(Q) is well defined.

19Recall that µ∗ denotes the extension by outer measure of µ to the σ-algebra that completes

B with respect to µ. To streamline notation in the following discussion, µ will be used to refer to
its extension, µ∗. Wherever ‘µ(B)’ is written but the possibility that B /∈ B is countenanced, a

reference to µ∗(B) is implicit.
20Lemma 1 asserts that∆1

1(Ω) ( Π1
1(Ω), so µ must be interpreted here as a measure completion

that extends the domain, B, of µ to a larger σ-algebra.
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On that account, and because κI(Q) ⊆ Q ⊆ a−1
i ({qi}), the steps at (23a), (23b),

(23e), and (23f) of the following argument are sound.

q1µ(κI(Q)) = q1

∫
κI(Q)

1 dµ(ω)(23a)

=

∫
κI(Q)

a1(ω) dµ(ω)(23b)

= µ(A ∩ κI(Q))(23c)

=

∫
κI(Q)

a2(ω) dµ(ω)(23d)

= q2

∫
κI(Q)

1 dµ(ω)(23e)

= q2µ(κI(Q))(23f)

Hypothesis 5 justifies dividing the left side of line (23a) and line (23f) by µ(κI(Q)),

which yields that q1 = q2. ?

7.2. A gap and a counterexample. There is a gap in this attempted proof where
it is asserted, at stages (23c) and (23d), that∫

κI(Q)

a1(ω) dµ(ω) = µ(K ∩ κI(Q)) =

∫
κI(Q)

a2(ω) dµ(ω).

These stages may seem to be justified by the definining condition (21) of conditional
probability, but that condition is not necessarily applicable. If κI(Q) ∈ B, then
κI(Q) ∈ BP by (18) and (20). However, all that has been proved (in proposition

9) is that κI(Q) ∈ Π1
1(Ω). Since BPi ⊆ B ( Π1

1(Ω) (by lemma 1), κI(Q) (as the
value of B) might not be in the domain of the quantification over BPi

(as the value
of BP) in (21).21 In that case, (20) cannot be used to argue in a single step that∫
κI(Q)

a1(ω) dµ(ω) = µ(A ∩ κI(Q)) (that is, step (23c)) or that the corresponding

assertion in (23d) holds.
It might be hoped that a three-step argument for step (23c) (and analogously

for step (23d)) would work. Find an event J ∈ BP and an event L ∈ B such that
J ⊆ κI(Q) ⊆ L and µ(J) = µ(L). From (22), argue that

∫
J
a1(ω) dµ(ω) = µ(A∩J).

Finally, infer from µ(J) = µ(L) and (22), and from (6) applied to A ∩ κI(Q), that∫
κI(Q)

a1(ω) dµ(ω) = µ(A ∩ κI(Q)). But this hope is in vain.

Proposition 11. The universal measurability of κI(Q) entails that there are events
J and L in B such that J ⊆ κI(Q) ⊆ L and µ(J) = µ(L), but it does not entail
that J can be chosen from BP, even though κI(Q) = [κI(Q)]P.

This proposition is an immediate consequence of the following lemma, which
shows that, if one tries to approximate an event in Π1

1(Ω) \ B from inside and
from outside in this way, there may be no approximation except by countable and
co-countable (and hence of probabilities 0 and 1 with respect to the nonatomic
measure µ) Borel events.

21An example in which κI(Q) /∈ B can obtained by adapting the construction provided in
Green [2012].
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Lemma 12. For every K ∈ (Σ1
1(Ω) ∪ Π1

1(Ω)) \ B, if both K and Ω \ K have
cardinality 2ℵ0 (the same cardinality as Ω has), then there is a partition P of Ω
such that

(1) K = [K]P;
(2) P consists of singletons and pairs;
(3) if B ∈ BP and B ⊆ K, then B is countable;
(4) if C ∈ BP and K ⊆ C, then Ω \ C is countable.

Proof. The first step is to construct a partition Q that satisfies conclusions 1–3.
Define U = {B|B ∈ B and B ⊆ K is uncountable}. Every B ∈ U ∪ {Ω} has
cardinality 2ℵ0 , and U itself has cardinality 2ℵ0 .22 Let κ denote the first ordinal of
this cardinality.

Let f : κ→ U be 1–1 and onto.
Let g : 2Ω \ {∅} → Ω be a choice function.
Define Q recursively.

• Q0 = ∅.
• If α < 2ℵ0 , then
Qα+1 = Qα ∪ {{g(f(α) \

⋃
Qα), g(K \ (

⋃
Qα ∪ f(α)))}}.

• If λ ≤ κ is a limit ordinal, then Qλ =
⋃
α<λQα.

For α < κ, define the pair πα = Qα+1 \ Qα. Note the general principle that,
if ι < κ and, for every θ < ι, Fθ is finite, then the cardinality of

⋃
θ<ι Fθ is less

than 2ℵ0 . Thus Qα = Q0 ∪
⋃
β<α πβ has cardinality less than 2ℵ0 for every α < κ.

Consequently the sets f(α) \
⋃
Qα) and K \ (

⋃
Qα ∪ f(α)) are both non empty, so

this recursion is well defined.⋃
Qκ ⊆ K.

Define Q = Qκ ∪ {{ω}|ω ∈ Ω \
⋃

Qκ}.
K = [K]Q because K = (

⋃
Qκ) ∪ {{ω}|ω ∈ K \

⋃
Qκ}.

Suppose that B ∈ U ∩ BQ. Then B = f(α) for some α < 2ℵ0

Therefore {g(B \
⋃
Qα), g(K \ (

⋃
Qα ∪B))} ∈ Qα+1 ⊆ Q.

Hence g(K \ (
⋃
Qα ∪B)) ∈ [B] = B.

This is a contradiction, since g, as a choice function, must satisfy g(K \ (
⋃
Qα ∪

B)) ∈ K \ (
⋃
Qα ∪B).

Similarly, define a partition R such that [Ω \ K]R = Ω \ K and, for every
uncountable subset B of Ω \K, [B]R 6= B.

Finally, define P = (Q � K) ∪ (R � (Ω \K)).
Since P � K = Q � K, Q satisfies conclusions 1–3, and those conclusions concern

subsets of K, conclusion 4 is all that remains to be proved. Suppose that K ⊆ C ∈
B, and let B = Ω \C. Then B ⊆ Ω \K. By construction of P and R, [B]P = [B]R
and therefore B = [B]P =⇒ B is countable. Since C = [C]P =⇒ B = [B]P,
C = [C]P =⇒ Ω \ C is countable. �

If κI(Q) ∈ Π1
1(Ω) \B, and if both κI(Q) and Ω \κI(Q) have cardinality 2ℵ0 and

BP1
is related to κI(Q) as in lemma 12, then the situation described in proposition

11 obtains. That is, the argument via (23) for the conjectured generalization of
Aumann’s agreement theorem is unsound.

22The first assertion is Moschovakis [2009, corollary 2C.3]. The second assertion follows quickly
from that result and Moschovakis [2009, 1E.3]. Cardinal and ordinal numbers and transfinite

recursion are explained in chapters 1–2 of Jech [2002]
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7.3. Proposition 11 reconsidered. The partition, constructed in the proof of
lemma 12, which leads to a difficulty of measurability despite consisting of innocu-
ous sets (singletons and pairs), strongly resembles the problematic partition con-
structed in section 2.2. While the earlier counterexample has to do with violation of
measurability, lemma 12 illuminates a more subtle problem: that a universally mea-
surable set that is saturated with respect to a partition may not be approximable
in measure by Borel sets that are saturated with respect to it.

Again in this case, a sound analysis of an uncountable state space requires that
agents’ information partitions must be constrained by conditions stated in terms of
the equivalence relations that determine them. Proposition 14, below, is identical
to the conjecture framed in section 7.1, except that two new hypotheses have been
added. Hypothesis 6 states that each agent’s information partition is determined
by an analytic equivalence relation, and hypothesis 7 states that each of those
partitions consists of countable blocks. Recall that the counterexample constructed
in lemma 12 consists of countable blocks.

The proof of proposition 14 will inolve the notion of a relation being Borel
measurable. R ⊆ Ω × Ω possesses this property if, for every B ∈ B, {ψ|∃ω ∈
B (ψ, ω) ∈ R} ∈ B. Note that a countable union of Borel-measurable relations is
Borel measurable.

Lemma 13. If Ei is Borel measurable for each i ∈ I, and if Q ∈ B, then κI(Q) ∈ B.

Proof. Define R =
⋃
i∈I Ei. R, a union of finitely many Borel-measurable relations,

is Borel measurable. By proposition 5, EI = R+. Define B = Ω \ Q ∈ B and
K0 = B. For m > 0, Km = {ψ|∃ω ∈ B (ψ, ω) ∈ R(m)}. Note that Km+1 =
{ψ|∃ω ∈ Km (ψ, ω) ∈ R}, which is a Borel event by Borel-measurability of R.
Thus, by induction on m, for any B ∈ B, Km ∈ B. [B]PI

=
⋃
m∈NKm ∈ B.

Therefore κI(Q) = Ω \ [B]PI
∈ B. �

Proposition 14. If

(1) q1 ∈ [0, 1] and q2 ∈ [0, 1], and
(2) (Ω,B) is an uncountable standard Borel space and µ : B → [0, 1] is a nonatomic

probability measure, and
(3) the random variables a1 and a2 satisfy (21) with respect to BP1

and BP2

respectively, and
(4) Q = a−1

1 ({q1}) ∩ a−1
2 ({q2}),

(5) µ∗(κI(Q)) > 0,
(6) each agent’s information partition Pi is determined by an equivalence re-

lation Ei ∈ Σ1
1(Ω× Ω), and

(7) for each i ∈ I and for every ω ∈ Ω, the block [{ω}]Pi
is countable,

then q1 = q2.

Proof. By hypotheses 6 and 7, and by Moschovakis [2009, exercises 2E.4 and 4F.17],
the graph of each Ei is the union of a countable set {fik : Ω → Ω}k∈N of Borel-
measurable functions.23 The graph of each of these functions is a Borel-measurable
relation. Ei, the union of this countable set, is then Borel measurable, so lemma
13 implies that κI(Q) ∈ B. Therefore the calculation (23) is sound in this case. �

23Moschovakis [2009, exercise 4F.17] is a recursion-theoretic version of the result needed here.
Moschovakis [2009, theorem 3D.7, theorem 3E.4] explains how it justifies the needed result.
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7.4. Generalization to a sigma-compact Polish space. Proposition 14 is an
extension of the agreement theorem that places no restriction on the space Ω of
states of the world, except that it should be a standard Borel space. It places a mild
restriction, that is, to be analytic, on agents’ information partitions. However, it
also places a much tighter restriction on those partitions, that they should consist
of countable blocks. For the purpose of shedding light on a counterexample with
countable blocks (that is, the one in lemma 12), that restriction is innocuous.
However, it would be untenable in settings, envisioned in the introduction of this
article and in section 7.1, in which the type of one agent is nonatomically distributed
conditional on the type of the other. For example, if each of two agents privately
observes a normal random variable, and if those observations are not perfectly
correlated, then there must be a continuum of states (corresponding to the possible
observations by agent 2) in which agent 1 observes 0.

The following proposition places significant restrictions on Ω and the relations
Ei, but ones that could be satisfied in many prospective applications, including to
finite-strategy games of incomplete information (discussed below in section 7.5).

Proposition 15. If

(1) q1 ∈ [0, 1] and q2 ∈ [0, 1], and
(2) (Ω,B) is an uncountable standard Borel space, B is generated by a metric

that induces a σ-compact topology on Ω,24 and µ : B → [0, 1] is a nonatomic
probability measure, and

(3) the random variables a1 and a2 satisfy (21) with respect to BP1
and BP2

respectively, and
(4) Q = a−1

1 ({q1}) ∩ a−1
2 ({q2}),

(5) µ∗(κI(Q)) > 0,
(6) each agent’s information partition Pi is determined by an equivalence re-

lation Ei that is closed in the topology on Ω

then q1 = q2.

Proof. By Aliprantis and Border [2006, theorem 18.20], R =
⋃
i∈I Ei is Borel mea-

surable. Therefore lemma 13 implies that κI(Q) ∈ B, and the calculation (23) is
sound. �

7.5. Compact Polish universal belief-type spaces. The purpose of this section
is to sketch a proof that proposition 15 is applicable to a class of environments that
includes finite-strategy games of incomplete information.

Recall that,roughly speaking, a state of nature completely specifies the objective
environment (such as the feasible strategy profiles of a game and the players’ payoffs
from each profile). A state of the world completely specifies both the state of nature
and agent’s beliefs (including higher-order beliefs about the beliefs of others). A
type space is a set of states of the world. Mertens and Zamir [1985] construct, from
compact space S of states of nature, an essentially unique universal type space into
which any other space of states of the world (that are genuinely distinct from one
another) incorporating these states of nature can be embedded. Brandenburger and
Dekel [1993] provide an analogous construction based on a Polish space S. Both
constructions represent the universal type space as an inverse limit of a sequence of
finite-level belief hierarchies. Thus, if S is a compact Polish space (that is, a space

24A topology on Ω is σ-compact if Ω is a countable union of compact sets.
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to which both constructions apply), then, because the inverse limit is essentially
unique, the two constructions yield the same type space.

The inverse limit of a sequence of Hausdorff spaces is a closed subset of a count-
able product of Hausdorff spaces. Therefore, for any class of Hausdorff spaces that
is closed under taking both countable products and closed subspaces, the inverse
limit of a sequence of spaces in that class belongs to the class. Both compact
spaces and Polish spaces satisfy those conditions.25 Thus, if S is a compact Polish
space, then its universal type space is also a compact Polish space, so proposition
15 applies.

8. Conclusion

From the proof of proposition 15, it is clear that the proposition is mathemat-
ically not very general. Specifically, the proof shows that κI(Q) is a Borel event
under its hypotheses. In contrast, proposition 9 restricts κI(Q) only to be co-
analytic, and it follows from lemma 1 and Green [2012, corollary 4.3] that there is
a non-Borel common-knowledge event, even under the closedness assumption 5 of
proposition 15. Thus assumption 2 of the proposition, although it superficially has
nothing to do with common knowledge, actually places a binding constraint on the
class of common knowledge events. There is little to choose, between Aumann’s
device of assuming that information partitions are countable in order to ensure that
common-knowledge events must be Borel and the present device of assuming that
state spaces are σ-compact in order to coerce the same result.

Of course the goal is not mathematical generality for its own sake, but relevance
to economics. Proposition 15 is also restrictive in that sense. There are practical
situations to which it does not apply, such as continuous-time asset trading. The
mathematical framework for studying that situation is the theory of continuous-
time stochastic processes, of which diffusion processes built from a Wiener process
are the most tractable sub-class. But the canonical Wiener process is a time-indexed
family of random variables defined on the space of continuous, real-valued functions
with the topology of uniform convergence on compact sets. That topological space
is not σ-compact.

Possibly a more satisfactory framework for studying probabilities of events con-
cerning knowledge and common knowledge would be the concept of a countably ad-
ditive, normal conditional probability introduced by Blackwell and Dubins [1975].
The idea would be to take C ⊂ 2Ω to be a σ-algebra to which all analytic events
belong, and to specify BP to be a sub-σ-algebra of C, rather than of B.26

(24) BP =
{
B|B ∈ C and ∃T ⊆P B =

⋃
T
}

=
{
B|B ∈ C and B = [B]P

}
.

Then, the random variable a in (21) would be specified to be measurable with
respect to BP as defined in (24), rather than as defined in (20).

25The condition regarding closed subspaces is immediate from the definition of the relative
topology. The condition regarding countable products follows from Aliprantis and Border [2006,
theorem 2.61 (Tychonoff), corollary 3.39].

26Blackwell and Dubins specify C to be Lebesgue’s completion of B by all subsets of Borel
events of µ measure 0.
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