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1 Introduction

Location choice and spatial product di¤erentiation is one of the key strategic decisions in many

industries, ranging from retail services, such as gas stations, fast food outlets, grocery stores, or

hospitals, to manufacturing of goods that are di¢ cult or expensive to transport, such as cement or

sugar. In this paper we use highway procurement data from Michigan as an attractive setting that

allows us to quantify the importance of local market power, and evaluate alternative mechanisms

to reduce it.

A typical empirical paper in industrial organization that analyzes or controls for spatial di¤er-

entiation does so by splitting the geographical space into discrete local markets (such as counties,

MSAs, or states), and assuming that all �rms within a market are not spatially di¤erentiated. While

this approach is a reasonable approximation in many settings, there are two related reasons why it

limits our ability to analyze spatial competition. First, space is continuous, so discretizing the space

by �building high walls�that split one market from another could have important implications for

the analysis. Markets that are de�ned too small would tend to under estimate competition, while

markets that are de�ned too big will tend to over estimate competition. Second, the �correct�

market de�nition may be speci�c to each customer. While a small customer may not be willing

to search much and explore many (spatial) options, a large customer may search over a larger

area, thus inducing competition from a much broader set of �rms. Whether these limitations are

important may depend on the context, and it is ultimately an empirical question.

Highway procurement provides an excellent setting to think about spatial competition in a

more continuous way.1 First, highway maintenance projects are quite homogeneous and do not

require unique capabilities, arguably making spatial di¤erentiation and distance from the project

a �rst-order consideration for �rms. In fact, 48 percent of the projects in our data are awarded

to the closest bidder. Second, the locations of �rms and projects are easily observed, and auction

participation and bidding behavior are observed on a project-by-project basis. This provides good

variation in the competitive environment, and allows us to analyze the importance of spatial com-

petition in di¤erent situations. Third, dynamics and other �super-game�considerations, which are

likely to play an important role in many applications of entry and location choice, are less important

for auction participation, so focusing (as we do) on static and simultaneous-move analysis may be

less restrictive. Finally, unlike many other cases of entry and location choice applications,2 auctions

provide an attractive setting where post-entry (or, in our case, post-participation) competition is

observed, allowing us to �de-link� competitive e¤ects from idiosyncratic shocks to participation

costs.3 Studying highway procurement may also be of a direct interest. In the United States,

1We are obviously not the �rst to explicitly model spatial di¤erentiation. Some recent other examples include
Thomadsen (2005), Davis (2006), and Houde (2008), who estimate spatial demand for retail services. One advantage of
our setting is that we observe the same �rm multiple times, facing di¤erent competitive environments, so endogeneity
of the �rm�s location choice is much less of an issue.

2E.g., Bresnahan and Reiss (1991), Berry (1992), Seim (2006), and many others.
3Motivated by this nice feature, there are few other recent applications that model participation and bidding in

auctions. We discuss these in more detail in the next section.
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highway construction expenditure has been steadily increasing, surpassing $50 billion annually in

recent years.

We focus our attention on two questions. First, we analyze how industry con�guration �espe-

cially distance �a¤ects bids, auction participation, and ultimately government procurement costs.

Besides documenting the importance of distance in the current environment, this analysis helps

assess mechanisms by which procurement costs can be reduced. Indeed, our second question eval-

uates how participation or bidding subsidy to �rms that are relatively distant from a particular

auction site would a¤ect competition and procurement costs. The answer to this second question

requires a model of �rm participation and bidding decisions.

We collected data on all auctions that were run by the Michigan Department of Transportation

(DOT) from January 2001 to August 2004. In our analysis, we focus on a subset of 865 projects that

are primarily highway maintenance projects and fairly homogenous. For each auction, we observe

the set of eligible �rms that submit a request (but not an obligation) to bid, the set of actual

bidders, and all the bids. As usual, the project is awarded to the lowest bidder. We provide some

descriptive statistics that motivate the more structural approach we follow later. We show that

�rm�s distance to the project site is statistically and economically important; closer �rms submit

lower bids and are more likely to submit bids. However, as competitors are further away �rms are

generally more likely to participate, but, when they do, they bid lower (more aggressively). Taken

together, these �ndings are surprising. We would have expected that if distant �rms bid higher

and participate less often, then �rms would also bid higher in the presence of distant competitors.

When we restrict attention to auctions with nearby competitors, we do obtain results consistent

with �rms bidding higher when facing more distant competitors. But while the competitor�s e¤ect

on bidding reverses signs, it is small and insigni�cant. A possible explanation for these �ndings,

which we explore in detail with our more structural approach, is that there is selection in partici-

pation: �rms that decide to participate do so because they have relatively low project costs. This

e¤ect is likely to attenuate the e¤ect of both own and competitors�distance on participation and

bidding decisions.

In principle, with su¢ cient variation we could identify the e¤ect of distance on bids and partic-

ipation decisions without imposing much structure. Without a more nuanced model, however, it is

not clear what type of parametric restrictions should be imposed when regressing bids on the entire

vector of distances, or how selection into becoming a bidder plays out. Hence, even to answer our

�rst question there may be an advantage to developing a more structural model of participation and

bidding decisions. Overall, there are three reasons that lead us to develop a structural approach:

the need to explicitly account for selection, the goal of quantifying � rather than testing � the

e¤ect of spatial di¤erentiation on competition and procurement costs, and our interest in running

counterfactuals, such as the e¤ect of a bid preference program.

We consider a model where in the �rst stage �rms that are eligible and that have submitted a

request to bid must decide whether to participate in the auction based on a private signal of project

cost and on a �xed cost of participation. Those �rms that participate then observe their actual

project costs and submit a bid in the auction. Potential selection in participation is introduced by
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allowing the private signal of a �rm to be correlated with its actual project cost. Costs and entry

signals are drawn independently across �rms, but from potentially di¤erent distributions. Bidders

know the set of �rms that submit an intention to bid, but they do not perfectly know the set of

�rms that end up participating in the auction.

An analysis of the model leads to two relationships that are important for evaluating the e¤ect

of a change in distance on equilibrium entry and bidding �a precursor to assessing a bid preference

program, as well as other related issues. First, the extent to which �rms react to each other�s

participation decisions a¤ects the composition of �rms that participate when a subsidy is given to

more distant �rms. For example, if participation decisions are strong strategic substitutes, then

a subsidy that encourages participation from distant �rms may strongly discourage participation

of not-so-distant �rms, thus increasing procurement costs. On the other hand, if participation

decisions are weak substitutes, then a relatively small subsidy may be su¢ cient to encourage an

overall increase in participation and a reduction in procurement costs.

The extent to which participation decisions are substitutes depends on two forces working in

opposite directions. When a �rm participates more often, it is a stronger competitor and forces

others to behave more aggressively, thus decreasing pro�ts. However, if there is selection in partic-

ipation, then a �rm that participates more often is also a relatively weaker �rm. This second e¤ect

attenuates the extent to which �rms react to changes in competitors�participation decisions.

The second relationship that we hope to identify in the data is the extent to which changes

in own and competitors�distances a¤ect participation best responses. In turn, this relationship

depends on the impact of distance on both project and entry costs. We face two potential problems

in trying to identify the above relationships in the data. The �rst is standard: since we do not

observe costs, we need a structural model to disentangle costs from markups given the observed

bids. The second problem is speci�c to our participation model. Even if we were to observe costs

of �rms that participate in the auction, we would have to worry about selection: those �rms who

believe will have the lowest project cost will be more likely to participate. To resolve this second

problem, we need instruments: something that shifts participation decisions for reasons unrelated

to own project costs. In our case, these variables are competitors�distances and, to a lesser extent,

the number of eligible �rms.

Finally, we proceed to estimate the model. For reasons outlined later, we deviate from most of

the literature and propose to estimate a fully parametric speci�cation of the model. We take speci�c

care in allowing enough �exibility to estimate the relationships in the data that we discussed to be

crucial above.

[no results from the structural model yet; discussion of results and counterfactuals in the future]

We proceed as follows. We �rst discuss the related literature, and then in Section 3 we provide

a simple numerical example, which analyzes how the direct and strategic e¤ect of distance from the

project site may a¤ect participation and bidding decisions. In Section 4 we describe the environment

and the data, and in Section 5 we report results from several descriptive regressions. We present the

model and discuss its identi�cation properties and estimation in Sections 6 and 7. We present our

estimation results [once we get them!] in Section 8, and carry out several counterfactual exercises
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in Section 9. We then conclude. [unfortunately there are no results yet from the structural model,

so none of Sections 7-9 is written yet].

2 Related auction literature

There exist two standard models of entry or participation in the auction literature, and a recent

third that nests both of these and which we take as the basis of our structural model. All three

models are for symmetric players with identically distributed private values (or costs). The �rst

model is due to Levin and Smith (1994). They assume that �rms decide whether to pay a �xed

participation cost to learn their actual value (or cost). Only �rms that pay this cost are allowed

to bid. Equilibrium participation is in mixed strategies, but equilibrium can be puri�ed as in

Athey, Levin, and Seira (2004), where the participation cost is drawn randomly. In both cases,

the important aspect of the setup is that participation decisions are not correlated with bidding

decisions, hence ruling out the possibility of selection discussed above. The second entry model,

as in Samuelson (1985), assumes that �rms �rst privately observe their actual value (or cost) and

only then decide whether to pay a participation cost and submit a bid. In this case, there is perfect

correlation between the initial signal and the actual value, so selection is assumed to hold.

Recently, Marmer, Shneyerov, and Xu (2007) postulate a model that nests the two standard

models above by allowing for a more �exible correlation structure between the participation signal

and the actual project cost.4 We work with this more general model, with the slight di¤erence that

we also allow for asymmetries among �rms. Asymmetries are important to understand the e¤ect of

distances on participation and bidding. In contrast, the main objective of Marmer et al. (2007) is

to develop a non-parametric approach that allows them to discriminate among these three models

using exogenous variation in the number of �rms.

A few empirical papers have estimated a structural model of participation and bidding decisions

where players are asymmetric. Athey, Levin, and Seira (2004) allow for endogenous participation

to compare revenue and e¢ ciency of sealed bid vs. ascending timber auctions. There are two types

of bidders in their auctions, mills (strong) and loggers (weak). Their analyses highlights that it is

important to account for participation since auction design may di¤erentially a¤ect the participation

decision of each of these types of players. Krasnokutskaya and Seim (2007) also allow for endogenous

entry in a setting with two types of bidders, but in order to evaluate a policy that awards small

businesses a bidding preference in certain auctions. Both Athey et al. (2004) and Krasnokutskaya

and Seim (2007) follow the Levin and Smith (1994) model of participation, extended to allow for

asymmetric �rms. In particular, selection is ruled out in their models. Moreover, they focus on a

comparison of two types of bidders, strong and weak. Hence, while it is plausible that �rms that

participate tend to be stronger than �rms that do not participate, in their context this issue is likely

to be of second-order importance compared to the initial di¤erences in strength between weak and

strong bidders.

4Antecedents to this model also include Hendricks, Pinkse, and Porter (2003) and Ye (2007).
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Li and Zheng (2006) also estimate a version of the Levin and Smith (1994) model, but in contrast

to the previous two papers they assume bidders are symmetric. One of their main objectives is to

understand and measure the e¤ect of an increase in the number of �rms on equilibrium bidding.

While more competition always increases bidding in an IPV auction, they show that when entry

is taken into account there is an additional entry e¤ect of competition that goes in the opposite

direction. They then show that in their data the second e¤ect dominates, and that increasing entry

costs may actually decrease procurement costs. In a similar vein, we attempt to understand an a

priori puzzling result that we see in the data with the help of a model, but our focus is on distance.

Hence our need to incorporate both asymmetries and selection.

Some previous papers in the auction literature have also emphasized that distance to the project

site may introduce important asymmetries and a¤ect equilibrium bidding in procurement. These

papers focus only on a bidding stage, where �rms are asymmetric, and abstract from endogenous

participation. Among the �rst to emphasize the relationship between proximity to the site and

a higher likelihood of winning the contract are Bajari (1997), Porter (1999), and Bajari and Ye

(2003). More recently, Flambard and Perrigne (2006) use data from snow removal auctions in

Montreal to show that in a part of the city, where storage costs tend to be high, proximity to the

site provides a relative cost advantage.

3 Illustrative Example

We start by providing a simple numerical example that illustrates our framework and guides our

empirical analysis. We present the example somewhat loosely and focus on a graphical analysis of

the results. The example is a special case of the full model we take to the data. In Section 6, when

the full model is presented, we provide full details about the timing of the game, the information

structure, and the solution concept.

Consider two �rms i = 1; 2 that are eligible to submit a bid on a project. Firm i is characterized

by its distance to the project, xi, which is observed by both �rms. Closer �rms are more likely

to have lower costs of project completion ci. Speci�cally, let ci be drawn from N(xi; �
2
c = 0:5),

truncated to the [0; 1] interval. Throughout, we �x x1 = 0:5 but allow x2 to vary between 0:1

and 0:9. Thus, from �rm 1�s perspective the strength of competition changes, while from �rm 2�s

perspective competition is �xed, but its own competitiveness changes.

Initially, �rms must simultaneously decide whether to bid in the auction without knowing their

realized cost ci. Rather, �rms observe a private signal si which is drawn from N(ci; �
2
s). That

is, the signal is imperfectly correlated with the actual cost ci. We present two cases, one where

�2s = 0:1 so the signal is relatively informative, while the other where �
2
s = 10 so the signal is not

very informative. Each �rm incurs a �xed cost of 0:25 for learning its actual costs ci and submitting

a bid. Thus, a su¢ ciently bad signal or su¢ ciently bad competitive situation would make a �rm

unlikely to win the auction and therefore opt out and not submit a bid. Bidders simultaneously

submit a bid without observing the set of actual bidders. As long as the lowest bid is below a

reserve price of 0.75, the project is awarded to the lowest bidder at the cost submitted by such a
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bidder. An equilibrium of the game is a participation decision as a function of the private signal

and a bidding function conditional on participation for each �rm. Section 6 provide details of how

we solve for equilibrium, and here we con�ne ourselves to a graphical analysis of the equilibrium

strategies.

Figures 1 and 2 present the results. Figure 1 shows the equilibrium probability of participation

for each �rm, when �2s = 0:1 and when �
2
s = 10, as we move the distance of �rm 2, x2 (recall that

x1 = 0:5 throughout). The direct e¤ect of (own) distance is shown by the graph for �rm 2. As

expected, as �rm 2 is more distant, it is less likely to participate. The competitive e¤ect of distant

is shown by looking at �rm 1. As �rm 2 is more distant, entry to the auction is more pro�table

for �rm 1, and it increases its participation probability. Note also that the competitive e¤ect is

quantitatively smaller than the direct e¤ect; this could be seen by the smaller slope (in absolute

value) for �rm 1�s graph. The importance of selection into the auction is captured by comparing

the case with little selection (dashed lines; �2s = 10) and more selection (solid lines; �
2
s = 0:1). As

can be seen, selection attenuates both the direct e¤ect and the competitive e¤ect of distance. This

can be seen by the �atter graphs when selection is present. Figure 2 is analogous, and it shows

the expected bid (conditional on participation) for each �rm, when �2s = 0:1 and when �2s = 10,

as we move the distance of �rm 2, x2 (recall that x1 = 0:5 throughout). Both �rms increase

their expected bids as �rm 2 gets further away. Firm 2 does it primarily because its costs are, on

average, higher, while �rm 1 does it because it faces softer competition. Somewhat surprisingly,

the competitive e¤ect of distance seems to be on average larger than the direct e¤ect (but, recall,

these are conditional expectations, and the direct e¤ect of distance on participation is higher). The

e¤ect of selection here is slightly to attenuate the e¤ect of distance, but primarily to make the

auction more competitive. Once selection is stronger (more informative signal; solid lines) the bid

curves are slightly �atter, but are primarily shifted down, making �rms bid more aggressively. This

is because selection makes participating �rms more symmetric, so competition harsher. We use

these illustrative e¤ects in guiding our discussion of the descriptive empirical �ndings in the next

sections.

4 Data and Environment

Our data comes from highway procurement in Michigan. Each month, the Michigan Department

of Transportation (DoT) runs about 50-70 simultaneous auctions on a diverse set of highway pro-

curement projects in the state. Up to 24 hours before the day of the auction, �rms submit an

intention to bid in a subset of these auctions, allowing the DoT su¢ cient time to con�rm eligibility.

Eligibility depends on the types of contract that a �rm is pre-quali�ed to bid in, on the amounts

of these contracts, and on the current capacity of a �rm. Only a subset of �rms (65% in the data

we use below) who submit an intention to bid end up submitting a bid. While it has been common

in much of the procurement literature to assume that �rms have perfect information about the

identity of competing bidders, it is not obvious to us �at least in the context of our setting �how

well �rms can predict who ends up bidding from among those who submit intentions. Therefore,
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throughout our analysis we will assume that the �rms have full information about the identity of

competing �rms who submit an intention to bid, but may not know at the time of bidding which

of these �rms actually submits a bid. We also note here that while, in practice, many of these auc-

tions occur simultaneously, so project portfolio considerations may be important, in what follows

we abstract from this simultaneity and consider each auction separately. Analyzing the e¤ect of

the simultaneity of multiple auctions is beyond the scope of the current paper.

We collected data on all auctions that were run by the Michigan DoT from January 2001

to August 2004. While the original data includes 3,000 auctions, our analysis below restricts

attention to the 865 projects that are primarily maintenance projects. This set of projects is fairly

homogeneous. It represents fairly simple work, which does not require special capability. As our

primary focus is on analyzing the e¤ect of distance to the project, it seems appropriate to focus on

simple and homogeneous set of projects, for which distance is more likely to play a �rst-order role.

Our data set includes details of each project and details about the set of all potential bidders.

We also know the set of those �rms who submitted an intention to bid, the actual bids by those

who decided to participate and submit a bid, and the outcome of the auction. Our main emphasis

in the analysis is on the role of distance. We matched each project location and each �rm location

with a street address, and we measure distance (using www.mapquest.com) between a �rm and

a project using driving miles and minutes. For �rms with multiple locations, we record both the

distance of the project to the �rm�s headquarters as well as the distance to the nearest branch.

Our current data contain information about 865 auctions and the 243 �rms that submitted an

intention to participate in at least one of those auctions. Table 1 presents summary statistics about

the set of auctions. A typical project is estimated to cost from 100,000 dollars to several million

dollars, with the typical auction attracting 3-8 participants and 2-5 bids. The winning bid is on

average 6 percent lower than the engineers�estimate, although for some auctions it is as low as 25%

while in others the winner bids more than 10% above the estimate. The winning bid is on average

7% below the second lowest. Depending on the project location, the nearest bidder could be as

close as 1 mile from the project (e.g., when the project is in the Detroit area) or as far as 60 miles

(when the project is at the Upper Peninsula of Michigan). As could be expected, distance plays an

important role. Firms that are closer to the project are more likely to submit an intention to bid.

Among those �rms that submitted an intention to bid, closer �rms are more likely to submit a bid

and closer bidders are more likely to win the auction.

Table 2 presents summary statistics about the set of �rms. As is the case in many similar data

sets, the distribution of �rm�s size and activity is very skewed. The median �rm participated in

only 7 auctions (out of the 865 above), submitted only 3 bids, and won none. In contrast, the most

active �rm participated in more than 400 auctions (about half), submitted bids in most of them,

and won more than 100. Still, distance matters: a �rm is more likely to participate and bid on

projects that are closer to its locations.
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5 Motivating facts

Table 3 presents simple regression analysis of participation and bidding behavior. These results

are quite representative of a much larger set of speci�cations. The top panel of Table 3 reports

regressions in which the sample is the set of �rms that submit a bid, and the dependent variable

is the (logarithm of the) bid amount. The bottom panel reports analogous regressions in which

the sample is the set of �rms that submitted an intention to bid and the dependent variable is a

dummy variable which is equal to one if the �rm actually submitted a bid.

Our focus is on the e¤ect of own and competitors�distance. Of course, one could be concerned

about �rm and auction omitted characteristics, which may a¤ect the interpretation of the distance

coe¢ cients. For example, projects near the populated (by �rms) area of Detroit are associated with

short distances, while projects in the unpopulated Upper Peninsula of Michigan are associated with

long distances. To the extent that the region is associated with other omitted characteristics of

its projects, this could lead to misleading interpretation. To this end, we report four speci�cations

for each regression. In one speci�cation we use only a single control variable for the auction (we

use the engineers�estimate for the project) and a single control variable for the �rm (we use the

number of projects in our data for which the �rm submitted an intention to bid, as a proxy for

�rm�s size). At the other extreme, we use a full set of auction and �rm �xed e¤ects. We also report

other speci�cations with only �rm �xed e¤ects or with only auction �xed e¤ects, and experimented

with many others (not reported). As the tables illustrate, in most cases the e¤ect of distance is

quite stable across these very di¤erent speci�cations, so for the most part omitted variables are

unlikely to be a concern. All speci�cations use a logarithmic transformation, so coe¢ cients can be

interpreted as elasticities (in the top panel) or semi-elasticities (in the bottom panel). For distance

we use in these tables the driving distance in miles from the nearest branch of the �rm. Results are

qualitatively similar if we measure distance in minutes or if we measure it from the headquarters

of the �rm.

The top panel of Table 3 reports regressions in which the sample is the set of �rms that submit

a bid, and the dependent variable is (logarithm of) the bid amount (in thousand of current dollars).

Overall, the engineer�s estimates are highly correlated with the bids, and bigger (or, more precisely,

more active) �rms tend to be more competitive and submit lower bids. The e¤ect of own distance

on bids is highly signi�cant, and quite stable across speci�cations. The elasticity of own distance

ranges from about 0.02 (without auction �xed e¤ects) to about 0.03 (with auction �xed e¤ects),

which is not trivial. This suggests that a bidder who is twice as far will submit a bid which is, on

average, 3 percent higher. In more than 25 percent of the auctions (see Table 1), 3 percents increase

in the bid would make the winner lose the auction. The fact that closer bidders submit lower bids

�presumably re�ecting lower costs � is not particularly surprising. As the example in Section 3

illustrates, it seems natural to expect that this should also lead bidders to bid more aggressively

when they face a competitor who is near the project location. This is where the top panel of

Table 3 reveals a surprising pattern; the distance of the nearest (to the project) competitor a¤ects

negatively the bid amount, with elasticities that are about half of the own distance e¤ect. That is, if
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the nearest competitor (and similar results hold with alternative measures of competitors�distances)

is closer to the project �presumably suggesting that he would bid more aggressively �bidders in

fact raise their bids and bid less aggressively. This e¤ect is quite stable across speci�cations and is

largely signi�cant (except for the speci�cations with both �rm and auction �xed e¤ects).

The bottom panel of Table 3 reports regressions (linear probability models) in which the sample

is the set of �rms that submitted an intention to bid and the dependent variable is a dummy variable

which is equal to one if the �rm actually submitted a bid (about 65% of the cases). The likelihood of

submitting a bid (conditional on intention) is lower for larger auctions and higher for bigger �rms.

Closer �rms are more likely to submit a bid, and this e¤ect is, as before, large and stable across

speci�cations. The e¤ect of competitors�distance is less stable, ranging from positive coe¢ cients

(which is consistent with the intuitive e¤ect based on the example of section 2) to negative e¤ects,

which are less intuitive but arise in what was our ex-ante preferred speci�cations (columns (10)

and (12)).

The somewhat counter-intuitive e¤ects of competitors�distance are puzzling. We believe that

these qualitative e¤ects are inconsistent with most competitive static bidding models. It turns out,

however, that the negative coe¢ cient on competitors�distance in the bid amount regression seems

to be driven by auctions where at least one of the two nearest bidders is relatively far. That is, when

we let the e¤ect of distance be discontinuous, we obtain that the extensive margin of competitors�

distance (analogous to taking a close competitor and making him far away) generates the negative

e¤ect, while the intensive margin of competitors (moving a competitor one mile further) goes in the

more intuitive direction. This e¤ect may be consistent with various dynamic incentives (arising from

collusion, predation, etc.), which are out of the scope of the current paper. To focus on the patterns

in the data that seem more consistent with competitive static bidding models, we therefore restrict

attention to projects where at least two bidders are close (within 15 miles). Table 4 replicates the

regressions of Table 3 for this set of auctions. Here the distance e¤ects are more consistent with

standard intuition, and closer competitors are associated with more aggressive bidding, although

largely insigni�cantly so.

More generally, once �rms are allowed to be asymmetric (due to distance), these �reduced

form� regressions are hard to interpret. Using the nearest competitor to summarize competition

is not satisfactory, and it is easy to think of alternatives (e.g., the average competitors�distance).

Similarly, using auction �xed e¤ects may only imperfectly control for auction unobservables, as

di¤erent (asymmetric) �rms may respond to the same e¤ect asymmetrically. Selection may also

be a concern: distant �rms who intend to bid may do so because they have some unobserved cost

advantage. However, these various e¤ects could only be analyzed in the context of a fully speci�ed

participation and bidding model, which is our focus in the rest of the paper.

6 Model and identi�cation

Setting and notation There are N �rms that are eligible to submit a bid on a particular

project. Initially, each of these �rms gets a private estimate or participation signal si about its
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cost of completing the project. Given the private signal, each �rm decides whether to participate

in the auction by submitting a bid. There is a �xed cost of participating in the auction, ei > 0.

Only �rms that incur this cost observe their actual cost of completing the project, ci, and become

bidders in the auction. Bidders simultaneously submit a bid without observing the set of actual

bidders. As long as the lowest bid is below a reserve price r, the project is awarded to the lowest

bidder at the cost submitted by such a bidder.

The pairs (si; ci) are realizations of random variables (Si; Ci) that are independently, but not

necessarily identically, distributed across �rms i 2 f1; :::; Ng. Let Fi(si; ci) denote the corresponding
distribution function, with continuous density fi(si; ci) positive on [0; 1] � [c; c], where 0 � c < c.
The reserve price is set below the maximum cost, r � c.5 In addition, the random variables (Si; Ci)
are a¢ liated (Milgrom and Weber, 1982), so that higher signals are (weakly) associated with higher

costs. Without loss of generality, we can assume that the marginal distribution of the signals is

uniform on [0; 1]

A strategy for �rm i is a set Si of participation signals for which a �rm participates in the

auction and a bidding strategy �i : [c; c] �! R+ that is followed in case of participation. A pro�le
of strategies is denoted by (�; S), where � = (�1; :::; �N ) and S = (S1; :::;SN ). We will show that in
equilibrium participation decisions are characterized by some threshold si, i.e. Si = fsi : si � sig.
Hence, we later use s = (s1; :::; sN ) to denote participation decisions.

Let Hi(b; ��i;S�i) denote �rm i�s probability of winning the auction when other �rms follow

strategies (��i;S�i). Expected payo¤s of a participating �rm with cost ci that faces other �rms�

strategies (��i;S�i) and chooses an optimal bid are

�i(ci; ��i;S�i) � max
b
(b� ci)Hi(b; ��i;S�i): (1)

In equilibrium, �rms choose participation and bidding strategies that are optimal given the strate-

gies of the other �rms.

De�nition 1 (S; �) is an equilibrium of the participation/bidding game if for all i 2 f1; :::; Ng,

� for each ci 2 [c; c], �i(ci) 2 argmaxb(b� ci)Hi(b; ��i;S�i),

� for each si 2 Si;
R c
c �i(c; ��i;S�i)dFi(ci j Si = si)� ei � 0, and for each si =2 Si;R c

c �i(c; ��i;S�i)dFi(ci j Si = si)� ei � 0.

Characterization of equilibrium Finding a best response to other �rms�strategies requires

a characterization of �i(c; ��i;S�i) for each
�
��i;S�i

�
. Instead, we follow a more convenient

approach. First, we �x hypothetical equilibrium participation decisions and solve for the equilibrium

of the resulting auction game. Second, we require participation decisions to actually be optimal.

For �xed participation decisions S, let �S = (�S1; :::; �
S
N ) denote an equilibrium pro�le for the

auction game where bidders�primitives are Fi(ci j Si 2 Si), i.e. for all i and ci,

�Si (ci) 2 argmax
b
(b� ci)Hi(b; �S�i;S�i). (2)

5Since players are uncertain about the number of bidders in the auction, the reserve price will always bind.
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As usual, �Si is increasing and its inverse �
S
i is obtained as the solution of a system of di¤erential

equations, with boundary conditions �Si (r) = r and �
S
i (c) = b for all i (uniqueness of equilibrium

bidding strategies can be shown using Lebrun (2006) and additional assumptions on primitives).

The resulting payo¤s of player i depend on the entire pro�le S and are given by �i(c; �S�i;S�i).
Next, consider participation decisions. Assuming participation decisions are given by S, if �rm

i observes signal si and decides to participate, its expected pro�ts areZ c

c
�i(c; �

S
�i;S�i)dFi(ci j Si = si)� ei: (3)

Since pro�ts from staying out are zero, in order for S to be an equilibrium it must be that equation

(3) is positive for si 2 Si and negative otherwise. Moreover, it is easy to see that �i is decreasing
in ci. Together with the fact that (Si; Ci) are a¢ liated, it follows that the expression in (3) is

decreasing in si. Hence we can focus, without loss of generality, on equilibria where �rms choose

participation thresholds s. Re-writing equation (3) as

�i(si; si; s�i) �
Z c

c
�i(c; �

s
�i; s�i)dFi(ci j Si = si)� ei; (4)

equilibrium requires �i to be positive for all si � si and negative otherwise. Hence, equilibrium

thresholds solve, for each i, b�i(si; s�i) � �i(si; si; s�i) = 0 (5)

for si 2 (0; 1), and b�i(si; s�i) � (�)0 for si = 1 (si = 0). Equilibrium does not necessarily exist

without further assumptions. By assumption, the function �i is continuous in its �rst argument.

If �i is also continuous in its second argument (auction comparative statics), then b�i is continuous
in its �rst argument and an equilibrium exists.

To summarize, in order to �nd the equilibria of the participation/bidding game, we �rst solve

for equilibrium bidding strategies �s of an auction for �xed thresholds s. We then use equilibrium

pro�ts in the auction to compute b�i for each i and use the system of equations de�ned by (5) to

�nd equilibrium participation strategies s�: The corresponding bidding strategies are then �s
�
.

As usual in entry models, equilibrium participation decisions need not be unique. There are

two sources of multiplicities. One is the case where a �rm never participates because it expects

other �rms to always participate �to the extent that which �rm stays out is arbitrary, there will be

multiplicity here. We can get rid of this source of multiplicity by adding restrictions that rule out

some non-interior equilibria. For example, this can be achieved by having a reserve price strictly

below c and by making the lowest signal su¢ ciently bad news so that a �rm would like to stay out

of the auction, even if no one else were to participate. Similarly, we could assume that the highest

signal is su¢ ciently good news such that a �rm would like to participate even if every other �rm

were to also participate. The second source of multiplicity occurs when there is more than one

interior solution to the system of equations de�ned by (5). This multiplicity depends on functional

form assumptions, and in the parametric speci�cation that we take to the data we make sure to

obtain uniqueness.
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Modeling asymmetries Motivated by our empirical implementation, we assume that there is a

vector of one-dimensional parameters x = (x1; :::; xN ), and that each player i is characterized by a

parameter xi 2 Xi � R that is meant to capture �rm asymmetries �in the empirical speci�cation,

xi will depend on a �rm�s distance to the auction site, among other things. Since the marginal

distribution of participation signals is �xed by assumption, we then write the primitives as F (ci j
Si = si; xi) and e(xi) = ei, where e : Xi �! R. In the rest of the paper we write the expression in
(5) as b�i(s; x).
Sketch of the identi�cation argument Since participation signals are uniformly distributed

in the interval [0; 1] without loss of generality, for a �xed x the primitives we would like to identify

are the distribution of costs, conditional on each possible entry signal si, F (ci j Si = si; xi),6 and
the entry costs ex = (e(x1); :::; e(xN )). For the purpose of this section, we view xi as measuring the

distance of the �rm to the auction site. Additional covariates will be included in our estimation.

The argument for non-parametric identi�cation relies on Guerre, Perrigne and Vuong (2000)

and has been speci�cally discussed by Marmer, Shneyerov, and Xu (2007) for a symmetric version

of the participation/bidding model presented above. Our participation/bidding model adds two

dimensions to the standard auction setting. First, endogenous participation may a¤ect the type of

�rms that will participate, and we need to identify the relationship between participation signals

and project costs. Second, �rm asymmetries play a crucial identi�cation role in our model, since

we rely on variation in competitors�characteristics, x�i, to identify the primitives for a �xed xi. In

a similar vein, Marmer et al. (2007) rely on exogenous variation in the number of eligible �rms, N ,

to test the extent to which participation signals are correlated with project costs when �rms are

symmetric.

For �xed x, suppose that �rms play an equilibrium s�(x); �s
�
(x) and that we observe x, and

everyone�s participation and bidding decisions. That is, we make the possibly strong assumption

that there are no additional sources of �rm heterogeneity which are observed by �rms but not by

us.7 Following Guerre et al. (2000), we can estimate the probability bHi(b; x) that each bidder
wins with a bid b and use it to back out the project cost that makes the observed bid optimal.

Given that we observe x, we can then identify the cost distribution conditional on participation,

F (ci j Si � s�i (x); xi). Moreover, since participation decisions are observed we can also obtain the
probability that each player participates, s�(x).

As pointed out by Marmer et al. (2007), the primitives of interest, F (ci j Si = si; xi) for all

si and the vector of participation costs ex are not identi�ed without additional assumptions on

observables. In order to identify the cost distribution conditional on each signal, we need variation

in the participation decisions that does not also a¤ect costs. In our speci�cation, this variation can

6To the extent that the reservation price r is strictly below c, we can only identify the primitives for values of c
between [c; r].

7 In fact, we don�t need to literally observe x, as long as we observe x up to parameters that we estimate. In
particular, what we cannot allow for our identi�cation argument is unobserved heterogeneity that a¤ects x. It is well
known that the primitives of the auction are not identi�ed in this latter case (Athey and Haile, 2005).

12



come from su¢ cient variation in x�i. Suppose that we observe all auctions x 2 �, and that for
each bxi and si 2 [0; 1], there exists bx�i such that bx 2 � and s�i (x) = si. Intuitively, this condition
is unlikely to be satis�ed if there is only variation in N , but seems more plausible when there is

variation in both x and N . The source of variation in x also seems clearer, as variation in N may

be driven by many unobserved factors. If this condition is satis�ed and we do observe a player

xi choosing all possible participation thresholds, then we can identify F (ci j Si = si; xi) for each

si and use it to obtain entry costs by setting equation (5) equal to zero. In practice, the extent

that variation in x gives us the entire range of equilibrium decisions is determined by our data.

To the extent that the data do not provide su¢ cient variation, identi�cation will rely on some

functional-form assumptions, which is what we do in the next section.

To summarize, we are performing the following conceptual exercises, whose analogs we exploit

in the data. First, we can think of �xing xi and moving around x�i. Second, we can think of

�xing x�i and moving around xi. The former variation is the key to identi�cation and allows us

to identify the primitive of interest for a �xed xi. The latter �xes competition and shifts �rm i�s

strength and allows us to non-parametrically identify how the object of interest changes for each

value of xi.

7 Parametric assumptions and estimation

Although the model is, in principle, non-parametrically identi�ed, we continue by making paramet-

ric assumption before taking the model to data. We start this section by explaining why we choose

to follow a fully parametric approach, where identi�cation, at least partially, may rely on speci�c

functional-form assumptions. To minimize the extent to which important relationships in the data

are restricted by parametric assumptions, we continue by intuitively discussing comparative statics

in the participation/bidding model. This exercise allows us to isolate four relationships in the data

that are crucial for determining the e¤ect of policy changes on equilibrium outcomes. We then

present an econometric speci�cation that is �exible enough to capture these relationships. Finally,

we describe the estimation strategy.

7.1 Discussion of possible estimation strategies

We discuss three possible estimation strategies, emphasizing both their desirability and feasibility.

Non-parametric estimation Ideally, we would proceed non-parametrically and estimate our

primitives following the non-parametric identi�cation argument sketched earlier. As in most appli-

cation in the literature, we do not have enough data to proceed in this way, and must therefore rely

on parametric assumptions. Our setting is likely to be even less attractive for a fully nonparametric

approach, because bidder types are continuous, so even with a lot of data, we would be asking a

lot from the data to fully identify the primitives non-parametrically.
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Semi-parametric estimation. As most of the literature, we could follow the non-parametric

identi�cation argument above by making parametric assumptions on the distribution of opponents�

bids faced by each player, bHi(b; x). In addition, since we also have a participation stage, we

need to estimate equilibrium entry thresholds s�(x) from the data. Again, data restrictions make

parametric assumptions more tractable. In particular, we would impose parametric restrictions on

the dependence of s�(�) on x. The main advantage of this approach is that it does not require
us to solve for the equilibrium of the auction game � once bHi(b; x) is estimated, we can follow
the standard procedure of backing out project costs from the �rst order condition of the bidder�s

maximization problem. However, we note two drawbacks of following this approach. First, bothbH(�) and s�(�) are not primitives, but are rather determined endogenously given the primitives. It
is not clear what would be a reasonable way in which, say, the entire vector of everyone�s distances

enters both of these expressions. And it is not clear how exactly such restrictions map to restrictions

on the actual primitives of interest. Second, even if we felt comfortable with parameterizing the

previous endogenous expressions,8 we would still need to make sure that the implied primitives are

consistent with both parameterizations of bHi(�) and s�i (�). Of course, if the distribution of costs
in the auction, F (ci j Si � s�i ; xi), were obtained non-parametrically for each (s

�
i ; xi), then by

de�nition there would be no need to check for consistency. In practice, however, insu¢ cient data

precludes us from non-parametrically estimating this distribution for all values of si in [0; 1] and for

all values of xi in a su¢ ciently �ne grid. Hence, we would need to impose parametric restrictions

on F (ci j Si � si; xi) as well, but then it is highly unlikely that these restrictions will be consistent
with the restrictions we impose on bHi(�) and s�i . In addition, even if we did not impose parametric
restrictions on F (ci j Si � si; xi), we would still have the problem that the primitives obtained

from our original parameterization of s�i (�) are unlikely to be consistent with the actual equilibrium
thresholds.

Parametric estimation For the above reasons, we proceed by specifying a functional form for

the primitives F (ci j Si = si; xi) and ei(xi) and estimating the corresponding parameters via

maximum likelihood. This approach also involves trade-o¤s. On one hand, we need to numerically

solve for the bidding game, which involves solving for a system of di¤erential equations and can be

quite time consuming. Because of this, we need to choose a speci�cation that produces a bidding

game that depends on as few parameters as possible. On the other hand, we need to be careful to

avoid a priori restrictions on relationships that are important for the questions we seek to answer.

We explain how we resolve this trade-o¤ in the remainder of this section.

7.2 Comparative statics

We can use the two-stage characterization of equilibrium in Section 6 to obtain intuition about

comparative statics results. It is well-known that equilibrium comparative statics at the auction

8For example, we could specify a few primitives, solve numerically for the equilibrium of the game, and get some
understanding of how the vector of everyone�s distances enters bH(�) and s�.
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stage are hard to characterize and, furthermore, tend to depend on particular parametric assump-

tions. Hence, the intuition that follows is speculative. Once we obtain results at the auction

stage, we can go back to the participation stage and �nd a �xed point or a solution to the sys-

tem of equations de�ned by (5). Here, it is useful to look at how the �best response� of a �rm,

bri(sj ; x) =
n
si : b�i(si; sj ; x) = 0o, is a¤ected by changes in the threshold strategies of other �rms.

It is in this sense that we can discuss the extent to which participation decisions are strategic sub-

stitutes. Finally, the e¤ect of changes in parameters, such as distance, can be represented by shifts

in �rms�participation �best responses.�Whether participation decisions are strategic substitutes

or complements depends on the e¤ect of si and sj on b�i(s; x;N) �if they a¤ect b�i in the same
direction, participation decisions are strategic substitutes; otherwise, they are complements.

First, consider how b�i(s; x;N) depends on sj , j 6= i. Since sj only enters the expression through
�i, it su¢ ces to understand the e¤ect of sj on the outcome of the bidding game. There are two

direct e¤ects of an increase in sj on player i�s probability of winning. The �rst e¤ect is to increase
player j�s participation in the auction, while the second e¤ect is to increase the likelihood that

player j draws a higher project cost. All players will change their equilibrium strategies as a result.

It seems plausible that the �rst e¤ect would lead players to bid more aggressively, since now they

are more likely to �nd themselves in an auction with an additional bidder. The second e¤ect,

however, would probably make bidders bid less aggressively. For future reference, we refer to these

e¤ects as the e¤ects of greater competition and the e¤ects of weaker competition, respectively.

As a hypothetical situation, suppose that a change in sj did not a¤ect equilibrium bidding at

the auction stage. Then the e¤ect of stronger competition dominates the e¤ect of weaker compe-

tition �hence b�i is decreasing in sj . The reason for this dominance is that it is always better to
face one less potential competitor than to face one more, irrespective of how weak the additional

competitor may turn out to be. However, equilibrium bidding strategies will change as a result

of the increase in sj , thus potentially a¤ecting results in a way that seems hard to predict. The

important point here is that, while participation decisions are likely to be strategic substitutes,

the e¤ect of weaker competition mentioned above will mitigate the extent to which participation

decisions are substitutes. This reduction will be larger whenever a small change in participation

threshold produces a su¢ ciently large increase in costs. Intuitively, this is likely to be the case

whenever a �rm has initially large uncertainty about its project cost and the signal that it observes

is su¢ ciently informative. Depending on which e¤ect dominates, we would expect b�i(s; x;N) to
either decrease or increase as sj increases.

Now, consider the e¤ect of si on b�i(s; x;N). As before, we can reason that either more aggressive
or less aggressive bidding is plausible as a result of an increase in si. However, there is now an

additional e¤ect to take into account. An increase in si also a¤ects the term dFi(ci j Si = si), thus
resulting in higher costs for player i (due to a¢ liation). Since �i is decreasing in ci, it follows that

this other e¤ect works to decrease b�i(s; x;N).
Finally, consider the equilibrium response to an exogenous increase in the parameter that identi-

�es player i, xi. Suppose that xi measures the distance to the auction site, and that roughly, higher

distances are associated with higher costs. There are two likely e¤ects from the increase of xi on
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b�i(s; x;N). First, facing a weaker opponent, other bidders will bid less aggressively. However, this
less aggressive response is unlikely to compensate for the fact that bidder i bids more aggressively

and faces higher costs. Second, participation cost e(xi) is likely to increase with xi. Hence, an

increase in own distance will decrease b�i(s; x;N). In contrast, an increase in the distance of an
opponent means that one faces weaker competition �only the weaker competition e¤ect is present,

since participation thresholds are being held �xed. It then seems likely that best responses are

decreasing in own distance and increasing in opponents�distances.

Figure 3 shows the e¤ect of an increase in the distance of player 2 under two di¤erent scenarios.

In Figure 3a, where the correlation between the participation signal and project cost is weak, the

participation �best responses�are relatively steep. In contrast, in Figure 3b the correlation between

the participation signal and project cost is strong, and the e¤ect of weaker competition mentioned

above makes best responses �atter. In both cases, an increase in �rm 2�s distance a¤ects �rm

2�s best responses to a greater extent than �rm 1�s best responses. As a result, in the �rst case

(Figure 3a) there is a relatively large change, in the opposite direction, in both �rm�s participation

thresholds, while in the second case (Figure 3b) there is a relatively small change in the equilibrium

participation decision of �rm 1. This di¤erence will be important for some of our counterfactuals.

For example, when evaluating a bid preference program for distant �rms, the extent to which nearby

�rms will reduce their participation will a¤ect the e¢ ciency loss created by such a program.

To summarize, the above discussion clari�es that in order to understand the e¤ect of changes in

distance (or other parameters) on the equilibrium of the game it is important to obtain the following

four relationships from the data: the initial uncertainty about project costs and the precision of the

participation signal (to establish the extent to which participation decisions are substitutes), and

the e¤ect of distance on both projects and participation costs (to determine the extent to which

best responses shift with changes in distance).

7.3 Econometric speci�cation

One of the primitives of interest is F (ci j Si = si; xi), where xi will capture both auction and

�rm characteristics. We assume that xi = m� + zi
, where m is a vector of observed auction

characteristics, zi is a vector of �rm characteristics that could vary across auctions (including

distance to the project site), and (�; 
) are parameters to be estimated. Note, as we mentioned

earlier, that xi only depends on observables.

We consider the following parameterization. Let the cost of the project be drawn from a normal

distribution truncated to the interval [0; 1],

Ci � N[0;1](xi; h�1c )

where hc is the precision of the distribution.

We assume that �rms observe a signal ki that is not drawn from a uniform distribution, and later

normalize this signal by de�ning a participation signal si that is a function of ki and is uniformly

distributed on the interval [0; 1] �hence consistent with our setup in Section 6. The signal ki is
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drawn from a normal distribution with mean ci with precision hs,

Ki j Ci = ci � N(ci; h�1s ):

Finally, let the other primitive of the game, the participation cost, be given by e(xi) = � + xi�.

The parameters to be estimated are then (�; 
; �; �; hc; hs).

One convenient property of this speci�cation is that the distribution of Ci conditional on signal

ki is also normally distributed, truncated to the interval [0; 1],

Ci j Ki = ki � N[0;1]
�
wxi + (1� w)ki;

�
h�1c + h�1s

��1�
;

where w = (1 + hs=hc)�1 2 (0; 1). Part of the convenience lies in the fact that, for �xed (hc; hs),
the distribution of Ci j ki depends only on one parameter, wxi + (1 � w)ki. Unfortunately, the
same is not true for the primitive of the auction game, Ci j Ki � ki, for which a su¢ cient statistic
for (ki; xi) does not exist. Each bidder in the auction stage will then be characterized by two

parameters, (ki; xi), hence increasing the computational burden when we solve for the equilibrium

of each bidding game. Nevertheless, we can show that any speci�cation where the primitive of the

auction game depends on a unique su¢ cient statistic would be too restrictive for our purposes.

To make the setup consistent with Section 6, we can make a normalization and assume that

the participation signal observed by �rms is si = G(ki), where G(�) is the probability distribution
of ki. Hence, the signal si is distributed uniformly on [0; 1], and in equilibrium the participation

threshold si can be interpreted as the probability that player i participates in the auction.

The speci�cation above is rich enough to allow us to determine the relationships that were

found in the previous section to be important for comparative statics. In particular, hc measures

the initial uncertainty about project costs, hs measures the precision of the entry signal (and

whether there can be selection at all), and (
; �) measure the e¤ect of distance on project and entry

costs, respectively.

7.4 Estimation

We estimate the model using maximum likelihood. The key computational burden we need to

address is that the equilibrium of the participation/bidding game is solved numerically, which is

very time consuming. Following the characterization of equilibrium in Section 6, we need to solve

for the equilibrium of an auction game for �xed characteristics of the �rms, and we then need to

�nd a �xed point of b� to determine equilibrium participation.

There are two ways in which we reduce the computational burden. First, the solution to

the auction stage only depends on the precisions (hc; hs) and on the vector of �rm observables

x = (x1; :::; xN ). In our speci�cation, x depends on parameters (�; 
), but we avoid solving for a

particular bidding game more than once when we compute the likelihood. In addition, the partici-

pation cost parameters (�; �) are not inputs to the bidding game. Therefore, we solve �o­ ine�for

the equilibrium of auctions as a function of (hc; hs; x). We then take (hc; hs; x) and the participa-

tion cost parameters (�; 
) and solve for the �xed point of b�. Once we have solved for equilibria
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as a function of these parameters, we then estimate the parameters of the model using maximum

likelihood. The bene�t is that instead of solving for the equilibrium of the participation/bidding

game at every step of the likelihood maximization routine, we simply look up this solution based

on the �o­ ine�results.

The second way in which we reduce the computational burden is to solve �o­ ine,�as explained

above, but only for a dense grid over (hc; hs; x) and over (�; 
). To the extent that solving for

the equilibrium of the auction game is more computationally intensive than solving for a �xed

point, the �rst set of parameters will be taken from a coarser grid. We then verify that the solution

(participation thresholds and bidding strategies) are smooth in these arguments, and we interpolate

them to cover the entire space of parameter values. Since the number of grid points, which is the

number of auctions we need to solve, increases exponentially in the number of �rms, we have to

restrict the auctions we use for estimation to those where the number of �rms that submit an

intention to bid is not too large. At the moment, we think we can accommodate (in terms of

computation time) auctions with up to �ve �rms.

More formally, we can denote the data for a given auction to be given by auction characteristics

m and, for each i = 1; :::; N , by �rm-auction characteristics zi, participation decisions Ii, and bids

bi that are observed if Ii = 1. The parameters that we try to estimate are � = (�; 
; �; �; hc; hs), so

the likelihood function for a given auction is given by

L
�
fIigNi=1 ; fbi � Iig

N
i=1 j fizg

N
i=1 ;m; �

�
: (6)

The likelihood for the entire data is simply the product for the likelihood of each auction. Since the

unique role of (�; 
) is to determine the type xi of �rm i in the game, we can write the likelihood

function as

L
�
fIigNi=1 ; fbi � Iig

N
i=1 jhc; hs; x; �; �

�
� L(xj fizgNi=1 ;m; �; 
): (7)

As explained above, for each Z = (hc; hs; x; �; �), we can then solve (�o­ ine�) for the participa-

tion/bidding game to obtain equilibrium participation threshold strategies s�(Z) and equilibrium

bidding strategies (conditional on participation) �s
�
(�jZ), with inverse �s�(�jZ). We can then use

these strategies to write the �rst part of the likelihood function above as

L
�
fIigNi=1 ; fbi � Iig

N
i=1 jZ

�
=

NY
i=1

(1� Ii)Li (Ii = 0jZ) + IiLi (Ii = 1jZ) Pr (bijZ; Ii = 1) (8)

where

Li (Ii = 0jZ) = 1� s�i (Z) (9)

Li (Ii = 1jZ) = s�i (Z) (10)

Pr (bijZ; Ii = 1) = f
�
�s

�
(bijZ)

� d

dbi
�s

�
(bijZ) (11)

where f is the density that corresponds to F (ci j Si � s�i ; xi).
[We are now at the point that we are �nishing running the �rst stage, �o­ ine� auctions, and

getting ready to obtain estimates using the second stage.]
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8 Results

[to be written at some future date]

9 Counterfactuals

[to be written at some future date]

10 Conclusions

[to be written at some future date]
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Figure 1: Illustrative Example of the E¤ects of Distances - Participation

Figure 1: Illustrative Example of the Effects of Distances ­ Participation
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The �gure presents the equilibrium probabilities of participation from the numerical example presented in Section

3. The horizontal axis is the distance of �rm 2 from the site, while the corresponding distance of �rm 1 is set to 0.5.

The parameter �2s a¤ects selection: low values imply better information at the time of participation decisions, and

therefore more selection.
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Figure 2: Illustrative Example of the E¤ects of Distances - Bidding

Figure 2: Illustrative Example of the Effects of Distances ­ Bidding
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The �gure presents the equilibrium expected bid (conditional on participation) from the numerical example

presented in Section 3. The horizontal axis is the distance of �rm 2 from the site, while the corresponding distance of

�rm 1 is set to 0.5. The parameter �2s a¤ects selection: low values imply better information at the time of participation

decisions, and therefore more selection.
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Figure 3: Comparative Statics

2s

1s1

1

1s1

1

2s

br2

br2

br2’
br2’

br1 br1’br1’br1

Figure 3a Figure 3b

Figure 3a shows the �best response�participation functions with a small selection e¤ect, while Figure 3b shows

the case of a large selection e¤ect. The functions bri(sj ; x) are de�ned as the si that solves b�i(si;sj ; x) = 0. The
�gure shows how a change in xj shifts these functions and changes equilibrium participation.
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Table 1: Auction charcateristics

Obs. Mean Std. Dev. 5th Pctile 25th Pctile 50th Pctile 75th Pctile 95th Pctile

Number of Firms "Intending to Bid" 865 5.96 4.11 2 3 5 8 15
Number of Actual Bidders 865 3.86 2.29 1 2 3 5 8

Engineers' Estimate (`000$) 865 888.1 1,097.0 108.9 268.0 528.1 1,082.1 2,836.5
Winning Bid / Engineers' Est. 865 0.943 0.140 0.760 0.863 0.948 1.013 1.124
Winning Bid / Second Lowest Bid 809 0.928 0.071 0.801 0.903 0.947 0.976 0.995

Closest Bidder (driving miles) 865 20.6 35.4 1.5 5.9 12.2 25.6 62.5
Second Closest Bidder 809 40.4 47.7 5.5 12.6 29.3 48.6 115.4
Distance Rank of Winner 865 2.14 1.67 1 1 2 3 6
Average Distance (Bidders) 865 44.7 45.0 8.2 20.0 34.5 55.5 107.7
Average Distance ("Intent to Bid") 865 51.6 47.5 11.4 25.4 40.5 61.1 128.2
Average Distance (All) 865 192.1 85.3 128.8 142.3 159.5 191.1 418.5



Table 2: Bidder charcateristics

Obs. Mean Std. Dev. 5th Pctile 25th Pctile 50th Pctile 75th Pctile 95th Pctile Highest

Number of Firms "Intending to Bid" 243 21.21 44.54 1 2 7 20 91 413
Bids Submitted 243 13.75 34.87 0 1 3 11 67 329
Auctions Won 243 3.56 13.11 0 0 0 2 14 157

Average Distance when bid 197 57.4 67.8 9.3 21.2 34.3 60.8 197.2
Average Distance when Intend to Bid 243 62.5 66.1 9.3 24.2 39.9 73.2 216.6
Average Distance (all auctions) 243 192.1 72.1 128.5 153.2 172.2 195.7 371.3



Table 3: Descriptive regressions for the full data

Dependent Variable: Log(Bid Amount)

Dependent Variable: (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Log(Distance to Project) 0.019 (0.003)     0.029 (0.003)     0.019 (0.003)     0.032 (0.003)     0.022 (0.003)     0.024 (0.004)     0.020 (0.003)     0.030 (0.004)     0.023 (0.003)     0.024 (0.003)     0.021 (0.003)     0.029 (0.004)     
Log(Distance of Closest Other Bidder) -0.010 (0.003)     -0.011 (0.006)     -0.006 (0.003)     -0.004 (0.007)     
Log(Distance of Closest Other Participant) -0.014 (0.003)     -0.016 (0.007)     -0.011 (0.003)     -0.007 (0.007)     

Firm Characteristics:
   Log(Auctions Participated) -0.015 (0.002)     -0.006 (0.002)     -0.015 (0.002)     -0.006 (0.002)     -0.014 (0.002)     -0.006 (0.002)     
   Firm Fixed Effects Yes Yes Yes Yes Yes Yes

Auction Characteristics:
Average Distance ("Intent to Bid") 0.988 (0.003)     0.988 (0.003)     0.987 (0.003)     0.988 (0.003)     0.986 (0.003)     0.988 (0.003)     
   Auction Fixed Effects Yes Yes Yes Yes Yes Yes

No. of Observations (Bids) 3,341 3,341 3,341 3,341 3,285 3,285 3,285 3,285 3,314 3,314 3,314 3,314
No. of Auctions 865 865 865 865 809 809 809 809 838 838 838 838
R-Squared 0.973 0.990 0.977 0.992 0.973 0.990 0.977 0.992 0.973 0.990 0.977 0.992

Dependent Variable: Bid dummy (conditional on participation) - Liear Probability Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Log(Distance to Project) -0.071 (0.006)     -0.103 (0.007)     -0.093 (0.007)     -0.124 (0.009)     -0.083 (0.006)     -0.063 (0.009)     -0.099 (0.007)     -0.086 (0.011)     -0.083 (0.006)     -0.118 (0.009)     -0.100 (0.007)     -0.147 (0.011)     
Log(Distance of Closest Other Bidder) 0.058 (0.006)     0.128 (0.019)     0.043 (0.006)     0.100 (0.019)     
Log(Distance of Closest Other Participant) 0.060 (0.006)     -0.051 (0.021)     0.047 (0.006)     -0.072 (0.021)     

Firm Characteristics:
   Log(Auctions Participated) 0.072 (0.005)     0.057 (0.006)     0.068 (0.005)     0.054 (0.006)     0.066 (0.005)     0.056 (0.006)     
   Firm Fixed Effects Yes Yes Yes Yes Yes Yes

Auction Characteristics:
   Log(Engineers' Estimate) -0.045 (0.006)     -0.033 (0.007)     -0.042 (0.006)     -0.042 (0.006)     -0.041 (0.006)     -0.032 (0.007)     
   Auction Fixed Effects Yes Yes Yes Yes Yes Yes

No. of Observations (Intentions to Bid) 5,155 5,155 5,155 5,155 5,099 5,099 5,099 5,099 5,128 5,128 5,128 5,128
No. of Auctions 865 865 865 865 838 838 838 838 838 838 838 838
R-Squared 0.078 0.239 0.216 0.373 0.092 0.254 0.222 0.385 0.095 0.238 0.224 0.373



Table 4: Descriptive regressions for auctions with at least two nearby (< 15 miles) biddres who intend to bid

Dependent Variable: Log(Bid Amount)

Number of Firms "Intending to Bid" (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Log(Distance to Project) 0.013 (0.004)    0.019 (0.003)    0.011 (0.005)    0.018 (0.004)    0.013 (0.004)    0.019 (0.004)    0.011 (0.005)    0.017 (0.005)    0.013 (0.004)    0.019 (0.003)    0.011 (0.005)    0.019 (0.005)    
Log(Distance of Closest Other Bidder) 0.005 (0.005)    0.001 (0.009)    0.002 (0.005)    -0.005 (0.009)    
Log(Distance of Closest Other Participant) 0.001 (0.005)    0.002 (0.011)    0.002 (0.006)    0.005 (0.013)    

Firm Characteristics:
   Log(Auctions Participated) -0.006 (0.003)    -0.008 (0.003)    -0.006 (0.003)    -0.008 (0.003)    -0.006 (0.003)    -0.008 (0.003)    
   Firm Fixed Effects Yes Yes Yes Yes Yes Yes

Auction Characteristics:
Average Distance ("Intent to Bid") 0.986 (0.004)    0.985 (0.005)    0.986 (0.004)    0.985 (0.005)    0.986 (0.003)    0.985 (0.005)    
   Auction Fixed Effects Yes Yes Yes Yes Yes Yes

No. of Observations (Bids) 1,431 1,431 1,431 1,431 1,427 1,427 1,427 1,427 1,431 1,431 1,431 1,431
No. of Auctions 298 298 298 298 294 294 294 294 298 298 298 298
R-Squared 0.973 0.992 0.977 0.993 0.973 0.992 0.977 0.993 0.973 0.992 0.977 0.993

Dependent Variable: Bid dummy (conditional on participation) - Liear Probability Model

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

Log(Distance to Project) -0.104 (0.009)    -0.096 (0.010)    -0.105 (0.011)    -0.114 (0.012)    -0.103 (0.009)    -0.056 (0.011)    -0.105 (0.011)    -0.071 (0.013)    -0.104 (0.009)    -0.102 (0.012)    -0.106 (0.011)    -0.130 (0.014)    
Log(Distance of Closest Other Bidder) 0.020 (0.011)    0.234 (0.031)    0.011 (0.011)    0.204 (0.030)    
Log(Distance of Closest Other Participant) 0.017 (0.012)    -0.051 (0.045)    0.007 (0.012)    -0.101 (0.046)    

Firm Characteristics:
   Log(Auctions Participated) 0.046 (0.008)    0.030 (0.009)    0.047 (0.008)    0.028 (0.009)    0.046 (0.008)    0.030 (0.009)    
   Firm Fixed Effects Yes Yes Yes Yes Yes Yes

Auction Characteristics:
   Log(Engineers' Estimate) -0.031 (0.010)    -0.022 (0.011)    -0.032 (0.010)    -0.022 (0.011)    -0.031 (0.010)    -0.022 (0.011)    
   Auction Fixed Effects Yes Yes Yes Yes Yes Yes

No. of Observations (Intentions to Bid) 2,360 2,360 2,360 2,360 2,356 2,356 2,356 2,356 2,360 2,360 2,360 2,360
No. of Auctions 298 298 298 298 298 298 298 298 838 838 838 838
R-Squared 0.076 0.200 0.273 0.421 0.077 0.224 0.273 0.436 0.077 0.200 0.273 0.423
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