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Abstract

The English auction is susceptible to tacit collusion when post-auction inter-bidder

resale is allowed. We show this by constructing a continuum of equilibria where, with

positive probability, one bidder wins the auction without any competition and divides

the spoils by optimally reselling the good to the other bidders. Such equilibria support

a collusive bidding pattern without requiring the colluders to make any commitment on

bidding behavior or post-bidding spoil-division. The equilibria are valid for any number

of asymmetric or symmetric bidders, arbitrary reserve prices, and various resale market

rules. In symmetric environments, these equilibria interim Pareto dominate (among

bidders) the standard value-bidding equilibrium.

1 Introduction

In private-value English auctions that ban resale, it is a dominant strategy for each partici-

pant to bid up to her use value. With resale allowed, value-bidding remains an equilibrium

outcome, but there is no dominant strategy. Resale opens the possibility that some bidders

will optimally drop out at a price below their use values. They prefer to let a competitor

win and buy from her in the resale market. The existence of non-value-bidding equilibria is
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important because the celebrated advantages of the English auction, in particular efficiency,

are based on value-bidding, and because resale is possible in most applications.

In this paper we construct a family of non-value-bidding equilibria for an English auction

that allows inter-bidder resale, and we prove that such equilibria exist in any independent

private value environment (symmetric or asymmetric) for any number of bidders (Proposi-

tion 1). Each equilibrium in this family is identified by the choice of a speculating bidder and

a cutoff type, below which all bidders, except the speculating bidder, bid zero. All bidders

with types above the cutoff bid up to their values. In cases where the speculating bidder wins

the initial auction and has a sufficiently low type, she will offer the item for resale instead

of consuming it. Because the determination of the speculator does not depend on her type

and the resale market retains information asymmetry the final outcome may be inefficient.

Equilibria with a speculating bidder extract additional surplus from the seller, and hence

provide an opportunity for a form of tacit collusion among the bidders. Provided that bidders

are not too asymmetric exante, by using a publicly observed randomizing device (or sunspot)

to select the speculator, the bidders can distribute the surplus in a way that makes every

bidder of every type better off than under the value-bidding equilibrium.1 Furthermore, the

spoil is divided through a continuation equilibrium in the resale market instead of relying on

any pre-auction agreement among the colluders that may require post-auction enforcements.

Thus, resale facilitates noncooperative collusive equilibria that interim Pareto dominate (for

bidders) the standard value-bidding equilibrium (Proposition 2).

Blume and Heidhues (2004) construct equilibria for English auctions without resale that

are similar to our equilibria: a designated bidder bids the cutoff value if her type is below

it, and all other bidders with types below the cutoff bid 0. Their equilibria are in weakly

dominated strategies while ours are not.2 Nevertheless, the similarity suggests that if a public

randomization device is used to determine the designated high bidder, then one can obtain a

collusive equilibrium in the no-resale model that interim Pareto dominates the value-bidding

1Readers who are familiar with U.S. litigation history might draw some parallels between our proposed
use of a sunspots variable and the famous phases-of-the-moon bidding ring that was operated by electrical
equipment suppliers in the 1950s. However, despite some reports, the phases-of-the-moon scheme earned its
designation because it involved an explicit two-week rotation to determine the low bidder. While it perhaps
could have been, bidding was not actually determined by the phase of the moon. See Smith (1961).

2Because resale terms may depend upon initial auction outcomes, a strategy of not bidding up to one’s
value is rationalizable and hence is not dominated. We will expand on this point in the next revision.
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equilibrium, as in our resale model. However, this is not generally true. For a large class of

value distributions, including all strictly concave distributions, high-value bidders are worse

off under collusion if resale is prohibited (Proposition 3). Resale opportunities allow bidders

to realize additional surplus that is distributed among bidders through the resale equilibria

in a way that makes collusion preferable to all bidder types. In this sense, resale is essential

for collusion.

No binding agreement among the colluding bidders is required in the collusive equilibria

we describe. The recommendation made by the sunspot device is not binding. Rather, the

sunspot plays the role of a correlating device in a correlated equilibrium (however private

recommendations are not required). Once the sunspot identifies the speculating bidder it is

in the interest of each bidder to bid accordingly in the initial auction based on the belief

that others will follow their assigned roles. After the initial auction, the colluding bidders

optimally carry out their final allocation through the resale market, without relying on any

form of enforcement.

McAfee and McMillan (1992) identify four obstacles to successful collusion. They point

out that the most significant factor in the downfall of many cartels is the issue of “dividing

the spoils.” Here this is resolved fairly, in a way that is acceptable to all, by the sunspot

device.3 The second obstacle, enforcement, is also avoided here since the participants obtain

collusive payoffs through fully rational, noncooperative equilibrium behavior.4 The fact

that formal agreements and enforcement are not required mitigates the destructive impact

of new entrants, which is the third obstacle described by McAfee and McMillan. Finally,

the equilibria are fairly robust to the introduction of positive reserve prices.5 Hence, actions

3Dividing the spoils is in fact the main issue addressed by McAfee and McMillan (1992), whose solution
also involves randomization. They describe an equilibrium for a first-price auction in which bidders submit
identical bids and allow the auctioneer to randomly determine the winner.

4The simplest collusive mechanisms (eg. Robinson, 1985) require some type of enforcement or punishment
to prevent bidders from cheating on the collusive agreement. More elaborate schemes, cf. Graham and
Marshall (1987), McAfee and McMillan (1992), and Mailath and Zemsky (1991), as well as the more recent
literature on optimal auctions given collusion such as Laffont and Martimort (2000) and Che and Kim (2006),
are incentive compatible. However, they require that bidders participate in some type of pre-auction side
mechanism, selected by an external mediator, to form binding agreements.

5The equilibrium construction generalizes to arbitrary reserve prices. The collusion result holds for
sufficiently small reserve prices. For environments with uniformly distributed use values, we have verified
that the collusion result holds for arbitrary reserve prices in markets with two bidders and in markets with
sufficiently many bidders.
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taken by the seller to destabilize collusion, the final obstacle raised by McAfee and McMillan,

need not eliminate collusive equilibria.

The cutoff-bidding strategy in our equilibria is built upon Garratt and Tröger (2006) for

English and second-price auctions. However, there are nontrivial differences. In Garratt and

Tröger, the player who will become the reseller has no private information, and the other

players have identical prior distributions. In contrast, in this paper every player has private

information and players are asymmetric, i.e., they may have different prior distributions,

and moreover we consider a wider range of resale market structures. Our extension of the

equilibrium construction to the case of asymmetric bidders is made possible by conditioning

the speculating bidder’s bids on the identities of people who stay in the auction. This

information is not available in a sealed-bid format. Hence, our equilibrium construction only

works for a second-price auction when the players are symmetric (see Remark 3 following

Proposition 1).6

In addition to allowing any number of asymmetric bidders,7 the main value-added of this

paper to the auction-resale literature is that it allows a variety of rules that govern how the

bargaining power is distributed among the n bidders during resale.8 That includes giving

all the bargaining power to the reseller (Zheng (2002)), giving all the bargaining power

to the buyers at resale (Haile (2003)), convex combinations between the two (Calzolari

and Pavan (2006)), and English or second-price auctions given a reserve price chosen by

the reseller. We obtain such generality of the resale markets by proving novel, general

comparative statics properties for the continuation equilibria at resale (Section 3).

Recent works by Lebrun (2007) and Hafalir and Krishna (2007) compare revenue in

first- and second-price auctions with resale. Hafalir and Krishna show that in 2-bidder,

asymmetric auctions there exists a “general revenue ranking” in favor of first-price auctions,

provided bidders play the value-bidding equilibrium in the second price auction. Lebrun

6For second-price auctions with symmetric bidders, our construction generalizes the counterpart in Gar-
ratt and Tröger (2006) to the case where the speculator has a private value.

7Except Zheng (2002), the auction-resale literature assumes either that bidders are symmetric or that
there are only two bidders.

8To keep the model closed, we maintain the assumption that a resale mechanism is either exogenous or
optimally chosen by one of the n bidders. Hence the colluding bidders cannot rely on a neutral mediator
to select for them an incentive efficient mechanism to dissolve their partnership efficiently (e.g., Laffont and
Martimort (2000), Cramton, Gibbons, and Klemperer (1987)).
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shows that this ranking does not necessarily hold when behavior (mixed) strategies are

allowed.9 The existence of the additional equilibria described in this paper does not change

the revenue ranking established by Hafalir and Krishna, since the revenue generated by any

of our equilibria is no greater than the revenue received by the seller in the value-bidding

equilibrium.

Collusive equilibria have been constructed for multi-unit auctions by Milgrom (2000),

Brusco and Lopomo (2002) and Engelbrecht-Wiggans and Kahn (2005), however resale does

not play a role.10 In these multi-unit environments bidders signal their preferences in early

rounds and then optimally abstain from bidding on other bidders’ preferred items. Interest-

ingly, the open aspect of the ascending English auction is essential in their construction, as

it is here in the case of ex-ante asymmetric bidders.

2 Model

We consider environments with n ≥ 2 risk-neutral bidders pursuing a single indivisible

private good. Bidder i ∈ N := {1, . . . , n} has a privately known use value, or type, ti ∈ Ti :=

[0, ti] (ti > 0) for the good. From the viewpoint of the other bidders, ti is independently

distributed according to a probability distribution with cumulative distribution function Fi.

We assume that Fi has a density fi that is positive and continuous on Ti and identically 0

elsewhere. We add the standard assumption that the hazard rates are weakly increasing;

i.e., for all i ∈ N , the mapping

t 7→ fi(t)/(1− Fi(t)) is weakly increasing on [0, ti).

The type space is denoted by T := T1 × · · · × Tn.
11 We consider a 2-period game, which

begins after each bidder i ∈ N has privately observed her use value ti ∈ Ti.

In period 1, the good is offered via an English auction with zero reserve price. (Remark 1

after Proposition 1 will extend the result to positive reserve prices.) The auction winner

9For the case where two bidders have different value distributions Lebrun (2007) shows that either auction
format can have higher expected revenue; it depends on equilibrium selection in second-price auction.

10Pagnozzi (2007) analyzes multi-unit auctions with resale in a complete information model.
11We shall use boldface letters to denote multidimensional quantities.
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either consumes the good in period 1, thereby ending the game, or becomes the period-2

seller , who offers the good in period 2 for resale to the losing bidders, called period-2 buyers .

The game ends when period 2 ends.

Our model allows a variety of alternative rules for resale in period 2:

I Myerson’s auction: The period-2 seller commits to a selling mechanism, and resale is

not allowed after the operation of the mechanism. (Remark 2 after Proposition 1 will

partially extend our result to allow repeated resale as in Zheng (2002).)

II English or second-price auction with a reserve price uniform for all period-2 bidders:

the only policy instrument for the period-2 seller is the reserve price.

III Haile’s (2003) auction in the environments with n > 2: An English auction without

reserve price and with the option for the period-2 seller to reject all the bids after

bidders have all stopped raising their bids. We assume that bids in this auction start

at zero.

IV Player-specific bargaining power in the 2-bidder environment, similar to Calzolari and

Pavan (2006): for some exogenous θ1, θ2 ∈ (0, 1), with θ1 + θ2 = 1, bidder i makes a

take-it-or-leave offer to the other bidder −i with probability θi.

We also allow any combination of the above rules such that each rule is applied with a

predetermined probability.

Every player’s discount factor is δ ∈ (0, 1]. Given type ti, the bidder i’s expected payoff,

from the viewpoint of period 1, is equal to

δs−1ti1i=owner −m1 − δm2,

where 1i=owner is the indicator function for the event that i is the final owner of the good at

the end of the game, s is the period in which i consumes the good, and mr (r = 1, 2) is the

expected value of the bidder’s net monetary payment in period r.
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2.1 Histories, strategies, and beliefs

During a period-1 auction a history is represented by h := (hi)i∈N ∈ [0,∞)n, where hi is the

highest price up to which bidder i has stayed in the auction. Let

Hi :=

{
h ∈ [0,∞)n | hi = max

j∈N
hj and ∃ k 6= i s.t. hk = hi

}

denote the set of nonterminal histories in which bidder i and at least one other bidder remain

active. The model we use for the period-1 English auction is the standard button auction

(Milgrom and Weber, 1982) in which a bidder’s only decision is when to withdraw irreversibly

from the bidding. Accordingly, a bidding strategy profile (βi(· | h))i∈N,h∈Hi
determines, for

any bidder i ∈ N , any nonterminal history h ∈ Hi and any type ti ∈ Ti, the price βi(ti | h)

at which bidder i plans to drop out.

A terminal history records the actual dropout price of each losing bidder in the period-1

auction up to the end of the auction, as well as the identity of the period-1 winner. Let H
denote the set of all possible terminal histories. A resale decision profile is a vector (γh)h∈H,

where γh(t) = 1 if type t of the winning bidder offers the good for resale at the ending history

h, and γh(t) = 0 if the winner consumes the good in period 1.

We restrict attention to equilibria where posterior beliefs remain stochastically indepen-

dent across all players. Hence we model a belief profile, as a mapping that associates to

each history of the game a product of stochastically independent probability distributions

on T1, . . . , Tn.

The part of the belief profile that will play an important role in our analysis is the

post-auction belief profile, denoted by (Gh)h∈H. For any terminal history h, Gh, called the

post-auction belief , is the profile of independent distributions of the bidders’ types that are

held by bidders at the beginning of period 2 when the history of the period-1 auction is h

and that the period-1 winner has decided to offer the good for resale. Since the history of

an English auction is common knowledge, we may assume, without loss of generality, that

the posterior beliefs, including Gh, are common knowledge up to the start of period 2.

As there is no further resale after period 2 and the post-auction belief is commonly known,

the revelation principle for period 2 holds. Thus, we directly formulate a period-2 outcome
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function

((Pij, Qij)i∈N\{j})j∈N

such that, given any post-auction belief J (e.g., Gh), with player j being the period-2 seller,

and given every type profile t ∈ T, the number Pij(t, h) denotes the expected value of the

period-2 monetary transfer from bidder i to player j, and Qij(t,J) denotes the probability

that bidder i obtains the good in period 2, with 1 − ∑
i6=j Qij(t,J) being the probability

with which the period-2 seller keeps the good. The pair (Pij(·,J), Qij(·,J))i∈N\{j} is called

the period-2 outcome given period-2 seller j and post-auction belief J.

2.2 The equilibrium concept

An equilibrium consists of a bidding profile (βi(· | h))i∈N,h∈Hi
, a resale-decision profile

(γh)h∈H, a post-auction belief profile (Gh)h∈H, and a period-2 outcome function (Pij, Qij)i∈N, j∈N\{i}

with the following properties:

a. for any terminal history h ∈ H where the period-1 winner is j, given the post-auction

belief Gh, there exists a Bayesian Nash equilibrium for the period-2 continuation game

that induces the period-2 outcome (Pij(·,Gh), Qij(·,Gh))i∈N\{j};

b. for any terminal history h ∈ H, if bidder i is the period-1 winner in h, then γh

maximizes i’s discounted expected payoff given the post-auction belief Gh and the

expected period-2 outcome;

c. there exists a belief profile B that evolves from the common prior (Fi)i∈N to the post-

auction belief (Gh)h∈H and obeys Bayes’ rule with respect to the bidding profile (βi(· |
h))i∈N,h∈Hi

and resale-decision profile (γh)h∈H whenever possible;

d. for any bidder i, type ti ∈ Ti, and nonterminal history h ∈ Hi, the dropout price

βi(ti | h) maximizes i’s discounted expected payoff given the belief profile B and history

h, provided that everyone else abides to the bidding profile and that the resale-decision

profile and period-2 outcome function are implemented.
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3 Equilibrium properties in the resale game

Let j ∈ N be the period-2 seller and J the post-auction belief (e.g., Gh in an equilibrium

under terminal history h). Let Ji denote the marginal distribution induced by J on i’s type

space Ti, and J−i the marginal distribution on T−i :=
∏

k 6=i Tk.

Suppose a period-2 outcome (Pij(·,J), Qij(·,J))i∈N\{j} is implemented. Then for any

period-2 bidder i (i 6= j) with type ti, the probability with which i obtains the good from

the period-2 seller j is equal to

qij(ti,J) =

∫

T−i

Qij(t,J)dJ−i(t−i),

and the period-2 expected payoff for i is equal to

lij(ti,J) = tiqij(ti,J)−
∫

T−i

Pij(t,J)dJ−i(t−i).

And for any type tj of the period-2 seller, the probability of keeping the good is equal to

qj(tj,J) = 1−
∑

k∈N\{j}

∫

T−j

Qkj(t,J)dJ−j(t−j),

and the period-2 expected payoff is equal to

wj(tj,J) = tjqj(tj,J) +
∑

k∈N\{j}

∫

T−j

Pkj(t,J)dJ−j(t−j).

By the envelope theorem, one can prove that the incentive compatibility of the period-2

outcome implies the following envelope formulas: For any ti, t
′
i ∈ Ti and tj, t

′
j ∈ Tj,

lij(ti,J)− lij(t
′
i,J) =

∫ ti

t′i

qij(x,J)dx, (1)

wj(tj,J)− wj(t
′
j,J) =

∫ tj

t′j

qj(x,J)dx; (2)

By the interim individual rationality of the period-2 outcome, we have, for any ti,∈ Ti

9



and tj ∈ Tj,

tj ≤ wj(tj,J) ≤
∫

T−j

max

{
tj, max

k∈N\{j}
tk

}
dJ−j(t−j), (3)

0 ≤ lij(ti,J) ≤
∫

T−i

(
max

{
ti, max

k∈N\{i}
tk

}
− tj

)
dJ−i(t−i). (4)

If there are expected gains from trade between the period-2 seller and buyers, the period-

2 seller j captures a nonzero share of the gains. More precisely, for any tj ∈ Tj, if tj < max Tj

or tj = 0, then, assuming resale follows any of the rules I-IV described in Section 2,

[(∀i ∈ N \ {j}) max supportJi > tj] =⇒ wj(tj,J) > tj. (5)

Equation (5) is obviously true in the case where the period-2 seller gets to choose the

resale mechanism or pick the reserve price or make an ultimatum offer. Suppose Haile’s

auction is used. If tj < max Ji, then the posterior distribution of j’s type is nondegenerate,

so the price offered by the highest buyer is greater than tj with a positive probability unless

the buyer’s type is almost surely below the seller’s. Hence (5) follows. If tj = max Ji = 0,

with zero being the starting price in Haile’s auction and the additional assumption of having

more than two players in this case, the price of the good is above zero when the highest

period-2 bidder gets to make an ultimatum offer to the period-2 seller, hence (5) follows.

Finally, in the case where rule IV governs resale, there is a positive probability with which

the period-2 seller gets to make the ultimatum offer, then (5) again follows.

3.1 A reseller sells less

Below is a new observation that plays a crucial role in the construction of our equilibria. It

is aligned with the intuition that a monopolist sells less than efficiency requires: for each

type of each player, the probability with which the player is the final owner of the good is

higher when she is the period-2 seller than when she is a period-2 buyer.

A product distribution J := (Ji)i∈N is called regular if three properties are satisfied for

every i ∈ N : (i) the support of Ji is a bounded interval, (ii) Ji has a positive continuous
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density function J ′i on its support supp Ji, and (iii) the virtual utility function, defined by

Vi,J(ti) := ti − 1− Ji(ti)

J ′i(ti)
, ∀ti ∈ supp Ji, (6)

is strictly increasing on supp Ji. Extend Vi,J beyond supp Ji by

Vi,J(ti) :=





ti if ti > max supp Ji

−∞ if ti < min supp Ji.
(7)

Lemma 1 For any j, k ∈ N with j 6= k, let h(j), h(k) ∈ H be terminal histories such that

the period-1 winner is j in history h(j) and is k in h(k). If a post-auction belief profile

(Gh)h∈H and a period-2 outcome function (Pij, Qij)i∈N,j∈N\{i} together satisfy equilibrium

condition (a), and if J is a regular product distribution and J = Gh(j) = Gh(k), then for any

tk ∈ Tk,

qk(tk,J) ≥ qkj(tk,J). (8)

Proofs of all lemmas stated in the text are provided in Appendix A.

3.2 Comparative statics with shifts of beliefs

For any i ∈ N and for any two alternative distribution functions Ji and Hi of i’s type.

We say that Ji is squeezed upward into Hi, denoted by Ji a Hi, if there exists an x in the

support of Ji such that Hi is equal to the posterior distribution derived from Ji conditional

on the event that i’s realized type ti ≥ x. And we say Ji is squeezed downward into Hi,

denoted Hi ` Ji, if there exists a y in the support of Ji such that Hi is equal to the posterior

distribution derived from Ji conditional on the event that i’s realized type ti ≤ y.

For any two alternative product distributions J := (Ji)i∈N and H := (Hi)i∈N of the

type-profile t, we write

J ai H ⇔ [Ji a Hi, [∀k 6= i, Jk = Hk]] ,

H `i J ⇔ [Hi ` Ji, [∀k 6= i, Jk = Hk]] .
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The next lemma says that a player’s period-2 expected payoff is reduced if she is a period-

2 buyer and the belief about her is squeezed upwards, or if she is the period-2 seller and the

belief about her is squeezed downwards. The intuition behind (9) is that a period-2 seller

would ask for a higher price if she believes that bidders are more likely to have high values.

The intuition behind (10) is that period-2 buyers would offer lower prices if they believe that

the period-2 seller is more likely to have a low use value.

Lemma 2 Let G be a set of regular joint distributions on T. Suppose that, for any j ∈ N

and J ∈ G, there is a nonempty set Ω(j,J) of period-2 outcomes, each of which is induced by

some Bayesian Nash equilibria of the period-2 continuation game given period-2 seller j and

post-auction belief J. Then there exists a function (Pij, Qij)i∈N\{j} on G with the following

properties: (i) for each J ∈ G, (Pij(·,J), Qij(·,J))i∈N\{j} ∈ Ω(j,J), and (ii) for any i 6= j,

any ti ∈ Ti, any tj ∈ Tj, and any J,H ∈ G,

J ai H ⇒ lij(ti,J) ≥ lij(ti,H), (9)

H `j J ⇒ wj(tj,J) ≥ wj(tj,H). (10)

4 Equilibria for English auctions with resale

In this section, we construct a family of equilibria for the English auction with resale. In

each equilibrium, one of the players, say player 1, is commonly expected to be the designated

winner of the period-1 auction. Bidding strategies depend upon a threshold t∗, which can

take on any value between 0 and t̄ := mini≥2 ti. In period 1, every player bids up to her

own type if it is above t∗; the designated winner with a type below t∗ bids up to a certain

price, to be constructed below; any other player with a type below t∗ quits at zero price.

If someone with type above t∗ wins, resale does not occur. Otherwise, the period-1 winner

with a sufficiently low type offers the good for resale in period 2 according to a continuation

equilibrium analyzed in Section 3. Since the selection of the designated winner does not

depend on her type and informational asymmetries remain at resale, these equilibria are
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inefficient, contrary to the value-bidding equilibrium of English auctions.12

Throughout this section we hold a threshold t∗ ∈ (0, t̄) fixed. Before we present the main

result (Proposition 1), we state some results that are used to specify the period-1 strategy for

player 1. First, we establish the existence of the period-2 continuation equilibrium (Lemma

3). This allows us to apply Lemma 2 and obtain a cutoff type at which the designated winner,

player 1, upon winning in period 1, is indifferent between consuming the good and offering

it for resale. Second, we show that player 1’s resale decision is defined by this cutoff (Lemma

4). Third, we define prices at which each bidder i 6= 1 is indifferent between winning the

auction and waiting for resale and show that these prices lie below the threshold t∗ (Lemma

5).

Lemma 3 For any regular joint distribution J on T, given the post-auction belief J and any

period-2 seller j, there is a Bayesian Nash equilibrium for the period-2 continuation game.

Lemma 3 implies that the hypothesis of Lemma 2 is satisfied. Thus, there exists a

selection function

(j,J) 7→ (Pij(·,J), Qij(·,J))i∈N\{j} (11)

such that, for any period-2 seller j ∈ N and regular joint distribution J as the post-auction

belief, (Pij(·,J), Qij(·,J))i∈N\{j} is the continuation equilibrium outcome in period 2, and

the comparative statics properties (9)–(10) hold.

For any x ∈ T1, let Jx,t∗ denote the belief resulting from updating the prior distributions

conditional on the event that bidder 1’s type is at most x and the other bidders’ types are

below t∗,

Jx,t∗ := F1(· | t1 ∈ [0, x])×
n∏

i=2

Fi(· | ti ∈ [0, t∗]).

If the post-auction belief is Jt∗,t∗ , a period-2 buyer’s highest possible maximum willingness to

pay is t∗, hence the sufficiently high types of bidder 1 prefer consuming the good in period 1

to offering resale in period 2, due to discounting. To find a cutoff between consumption and

12Haile (1999) proves that when resale after an English or second-price auction is allowed, the efficient
value-bidding equilibrium remains valid.
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offering resale, define

τ(t∗) := inf {t1 ∈ T1 : t1 ≥ δw1(t1,Jt1,t∗)} . (12)

Since the set on the right-hand side of (12) contains t∗ and is bounded from below by zero,

τ(t∗) is well-defined. The next lemma says that τ(t∗) is a cutoff such that the types of

bidder 1 below it prefer offering resale to consumption, the types above it have the reverse

preference, and the other bidders take the cutoff into account. Moreover, this cutoff is greater

than zero, implying that the probability for the winner to offer resale is positive.

Lemma 4 Given (11) as the period-2 continuation-equilibrium selection function, for any

t∗ ∈ (0, t), we have 0 < τ(t∗) ≤ t∗ and, for any t1 ∈ T1,

t1 ≥ δw1(t,Jτ(t∗),t∗) if t1 > τ(t∗), (13)

t1 ≤ δw1(t,Jτ(t∗),t∗) if t1 < τ(t∗), (14)

τ(t∗) −→ t∗ as δ −→ 1. (15)

For all bidders i ∈ N \ {1}, let bi(t
∗) denote the price that makes type t∗ of bidder i

indifferent between (i) winning the auction at price bi(t
∗) and consuming the good, and (ii)

participating only in a resale market where bidder 1 is the period-2 seller and the post-auction

beliefs are Jτ(t∗),t∗ :

bi(t
∗) := t∗ − δli1(t

∗,Jτ(t∗),t∗). (16)

The following lemma provides bounds for bi(t
∗).

Lemma 5 For any t∗ ∈ (0, t) and i ∈ N \ {1}, we have 0 < bi(t
∗) ≤ t∗.

Applying lemmas 2-5 the period-1 strategy for the designated winner, player 1, is as

follows. If her type is above the threshold t∗, then she bids up to her type. If her type is

below τ(t∗), then she bids up to maxi∈S1(h) bi(t
∗), where S1(h) := arg maxk∈N\{1}hk denotes

the set of the bidders other than 1 who remain active in the nonterminal history h ∈ H1;
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and she will offer resale if she wins. If her type is between τ(t∗) and t∗, then she bids up

to t∗ and she will not offer resale if she wins.

Proposition 1 For any t∗ ∈ (0, t), there exists an equilibrium for the 2-period game such

that:

(i) player 1’s bidding strategy is, for any nonterminal history h ∈ H1 for player 1,

β1(t1 | h) =





maxi∈S1(h) bi(t
∗) if t1 ≤ τ(t∗)

t∗ if τ(t∗) < t1 ≤ t∗

t1 if t1 > t∗;

(17)

(ii) for any player i ≥ 2, at the initial history 0 = (0, . . . , 0) of the auction,

βi(ti | 0) = 0 if ti ≤ t∗, (18)

and for any nonterminal history h ∈ Hi,

βi(ti | h) = ti if ti > t∗; (19)

(iii) if player 1 wins at zero price in history h, her resale decision is

γh(t1) :=





1 if t1 ≤ τ(t∗)

0 if t1 > τ(t∗);
(20)

(iv) in the off-path event that a player i ∈ N made a commonly observed deviation from the

proposed period-1 strategy, the post-auction belief about ti can be any regular distribution Hi

such that

H1 ` F1 if i = 1

Fi(· | ti ∈ [0, t∗]) a Hi if i 6= 1 and i does not offer resale

Fi(· | ti ∈ [0, t∗]) = Hi if i 6= 1 and i offers resale;

(21)

(v) the period-2 outcome function is the selection function specified by (11).

The proposition is proved in Subsection 4.1. A crucial step in the proof is to show that
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it is not profitable for a bidder i ≥ 2 with a type below t∗ to deviate by outbidding the

designated winner and attempting resale upon winning. To illustrate why such a bidder

will not attempt resale, assume temporarily that there is no discounting, so that it is always

optimal to offer the good for resale upon winning. The deviation switches bidder i’s role from

a period-2 buyer to a period-2 seller, leaving the post-auction beliefs Jτ(t∗),t∗ unchanged. By

(3), wi(t
∗,Jτ(t∗),t∗) = t∗. Hence, (16) implies that type t∗ is indifferent between the two roles:

wi(t
∗,Jτ(t∗),t∗)− bi(t

∗) = li1(t
∗,Jτ(t∗),t∗) if δ = 1. (22)

Rewriting both sides of the equation by the envelope formula (1)–(2) and applying the result

that “a reseller sells less” (Ineq. (8)), we see that the payoff difference between type t∗ and

any type ti < t∗ is larger in the seller role than in the buyer role:

wi(t
∗,Jτ(t∗),t∗)− wi(ti,Jτ(t∗),t∗) ≥ li1(t

∗,Jτ(t∗),t∗)− li1(ti,Jτ(t∗),t∗).

This together with (22) shows that all types below t∗ would rather be a period-2 buyer than

a period-2 seller.

4.1 Proof of Proposition 1

By construction of the proposed equilibrium, especially its item (iv), the post-auction belief

given any terminal history, on or off path, is a regular joint distribution. Thus, the period-2

outcome function (11) specified in item (v) completely describes the continuation equilibrium

outcomes in period 2.

Based on the period-2 continuation equilibrium selection function, there exists a complete

profile of period-1 strategies that satisfies Eqs. (17)–(20) in the proposition. Given any

terminal history of the period-1 auction, there exists an optimal resale decision for the winner

based on the posterior beliefs either derived from Bayes’s rule on the path or specified by

Eq. (21) off the path. In particular, it is easy to verify that player 1’s on-path resale decision

in Eq. (20) is optimal for her. For any bidder i other than player 1 and any nonterminal

history h ∈ Hi where i has deviated from Eq. (18), there exists an optimal dropout price for
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bidder i.

The only thing left to check is that this strategy profile can be constructed in a way that

satisfies Eqs. (17)–(20). We shall verify that separately for bidder 1 in Subsection 4.1.1 and

any other bidder i in Subsection 4.1.2.

4.1.1 Eq. (17) constitutes a best reply for player 1

(a) For player 1, the deviant plan of losing in period 1 and trying to buy the good in

period 2 is suboptimal. If ti ≤ t∗ for all i 6= 1, all other bidders quit at zero price (Eq. (18)),

so if player 1 follows her deviant plan, with ties broken randomly, she loses the opportunity

of winning the good at zero price and earning a nonnegative resale profit. (In the event that

she wins after the tie is broken, the post-auction belief about her is squeezed downward from

the prior, according to (21). Then (10), which is applicable due to the selection function (11)

of continuation equilibria, implies that her continuation payoff is not larger than the one in

the event that she wins without a tie.) If ti > t∗ for some i 6= 1, any such player i bids up

to ti (Eq. (18)) and, if offering resale upon winning, would charge a resale price greater than

or equal to ti, which would not be less than the price paid by player 1 if player 1 wins in

period 1.

(b) Suppose player 1’s type t1 > t∗. She gains no profit from winning the good and then

offering resale, because either the losing bidders’ use values are below t∗ and hence below

hers, or some of their values are above t∗ and hence they bid up to their values (Eq. (18)),

meaning that the price paid by player 1 has already reached the highest losing bidder’s

maximum willingness to pay. Coupled with the claim in (a), this implies that it is optimal

for player 1 to try to win and consume the good in period 1; consequently, it is optimal for

her to bid up to her value t1, as prescribed by the equilibrium.

(c) Suppose t1 ≤ t∗.

(c1) It is suboptimal for player 1 to drop out at price zero, thereby losing a positive

probability of winning the good at zero price and earning a nonnegative resale profit. That

is because the events ti ≤ t∗ for all i 6= 1 and losing in a tie (everyone quits at zero price)

both have positive probability.

(c2) Player 1 cannot gain from bidding up to a price above t∗, because her payment
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conditional on winning would exceed her use value and reach the other players’ maximum

willingness to pay (Eq. (18)).

(c3) Before the price clock starts, any positive dropout price less than or equal to t∗

yields the same period-1 outcome for player 1, winning the good at zero price if ti ≤ t∗ for

all i 6= 1 and losing if otherwise, hence the prescribed dropout price is a best reply.

(c4) Suppose the price clock has started and some bidder i 6= 1 continues bidding while

no one has dropped out at a positive price. Since t∗ < t, player 1 believes that bidder i

has a value ti > t∗ and that bidder i will continue bidding up to this value. Thus player 1

believes she will not win, thus securing a nonnegative payoff, so long as she drops out before

the price exceeds t∗. She cannot gain from bidding up to a price above t∗, by (c2). Hence

any dropout price bounded from above by t∗ is a best reply, including the proposed bidding

strategy.

(c5) Suppose the price clock has started and some bidder i 6= 1 has dropped out at a

positive price xi. If bidder i is the last remaining rival against player 1, player 1 wins the

good at the price xi and it is too late for her to change her period-1 bidding strategy. If

bidder i is not the last remaining rival, then the reasoning in (c4) applies to the remaining

rival(s), so player 1 does not want to change her bidding strategy either.13

We have exhausted all possible nonterminal histories for bidder 1.

4.1.2 There exists a best reply for any player i 6= 1 that satisfies Eqs. (18)–(19)

(a) Player i has only three alternative goals:

X := to win and consume the good in period 1,

Y := to buy the good in period 2,

Z := to win in period 1 and offer resale in period 2.

(b) Basic facts:

(b1) If player i wants X, then i bids up to his type ti for any nonterminal history h ∈ Hi.

13The reasoning in (c4) and (c5) is based on the fact that the deviation of a designated “loser” is not
known by others unless he has dropped out at a price in (0, t∗).
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(b2) At the initial history 0 of the auction, if player i wants Y , then i drops out at zero

price. One alternative is for player i to drop out at a bid above b∗i and hope for a reseller

other than player 1. However, such a player must have a value greater than t∗ and hence

she will not resell. The other alternative is for player i to drop out at a positive price below

b∗i . However, such a bid is penalized by an off-path posterior that is an upward squeeze

of the distribution Fi(· | ti ∈ [0, t∗]) according to Eq. (21). As this deviation is unilateral,

Jτ(t∗),t∗ ai H, then (9) implies li1(ti,Jτ(t∗),t∗) ≥ li1(ti,H), i.e., player i cannot gain from this

deviation. Here (9) is applicable by the choice of the period-2 outcome function (11).

(b3) If player i wants Z, then he tops only the bid b∗i . If he wins by topping a higher bid,

then his payment is equal to either t∗ (when tj ≤ t∗ for all j 6∈ {1, i} and τ(t∗) < t1 ≤ t∗, by

Eq. (17)) or some tj > t∗ with tj being the highest use value among all players other than i.

Player i’s resale revenue cannot exceed his period-1 payment in either case.

(c) Let CE (“collusive event”) denote the event “tj ≤ t∗ for all j 6= i” and let ºi denote

player i’s weak preference evaluated by i’s discounted expected payoff, conditional on i’s

type and from the standpoint of the initial history of the auction.

(d) Conditional on CE, ti > t∗ ⇒ X ºi Y and ti < t∗ ⇒ Y ºi X. The relations

hold because given CE, the expected payoff from X is ti − bi(t
∗) (basic fact (b1)) and the

expected payoff from Y is δli1(ti,Jτ(t∗),t∗) (basic fact (b2), with the subscript τ(t∗) due to

player 1’s resale decision (20)). By definition (16) of bi(t
∗), these two payoffs are equal to

each other when ti = t∗. When ti changes from t∗, ti − bi(t
∗) changes at the rate one while

δli1(ti,Jτ(t∗),t∗) changes at the rate δqi1(ti,Jτ(t∗),t∗) (envelope formula Eq. (1)), which is less

than one. Thus, the claim follows.

(e) Conditional on CE, ti < t∗ ⇒ Y ºi Z. To prove that, recall basic fact (b3). If player i

does achieve Z, i outbids player 1 whose type t1 ≤ τ(t∗). This fact together with (21) implies

the post-auction belief is Jτ(t∗),t∗ . Thus, player i’s present expected payoff from achieving Z
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is equal to δwi(ti,Jτ(t∗),t∗)− bi(t
∗). By definition (16) of bi(t

∗),

W := δwi(t
∗,Jτ(t∗),t∗)− bi(t

∗)

≤ wi(t
∗,Jτ(t∗),t∗)− bi(t

∗)

= t∗ − bi(t
∗)

= δli1(t
∗,Jτ(t∗),t∗) =: L.

By Eqs. (1)–(2), ∂wi

∂ti
(ti,Jτ(t∗),t∗) = qi(ti,Jτ(t∗),t∗) and ∂li1

∂ti
(ti,Jτ(t∗),t∗) = qi1(ti,Jτ(t∗),t∗). By

Lemma 1, qi(ti,Jτ(t∗),t∗) ≥ qi1(ti,Jτ(t∗),t∗). Thus, the payoff from achieving Z, δwi(ti,Jτ(t∗),t∗)−
bi(t

∗), decreases from the level W faster than the expected payoff from Y , δli1(ti,Jτ(t∗),t∗),

decreases from the level L. As W ≤ L, the claim is proved.

(f) Conditional on “not CE”, X ºi Z and Y ºi Z. That is analogous to (c2) of

subsection 4.1.1.

(g) Conditional on “not CE”, ti < t∗ ⇒ Y ºi X and ti > t∗ ⇒ X ºi Y . That is because

“not CE” implies that player i would need to pay more than t∗ if he wins in period 1. If

ti < t∗ his payment exceeds his use value, hence Y ºi X follows. Mimicking the last sentence

in paragraph (a) of subsection 4.1.1, we have ti > t∗ ⇒ X ºi Y .

(h) If ti ≤ t∗, dropping out at price zero is a best reply. That is because for player i

with such a type, Y is most preferred whether the event is CE or not (claims (d)–(g)). Then

basic fact (b2) implies the claim, as prescribed by the equilibrium.

(i) If ti > t∗, bidding up to his type ti is a best reply. That is because for such a type of

player i, X is most preferred whether the event is CE or not: If CE, X ºi Y by claim (d),

and X ºi Z since all the other players’ use values are below t∗ and hence below player i’s;

if not CE, X is most preferred by claims (f)–(g). Then basic fact (b1) implies the claim.

Therefore, abiding by Eqs. (18)–(19) is part of bidder i’s best reply. The proposition is

hence proved.
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4.2 Remarks on Proposition 1

Call the equilibrium constructed in Proposition 1, parameterized by the threshold t∗ ∈ (0, t̄),

the t∗-equilibrium.

Remark 1. Proposition 1 can be extended to the case where the English auction in

period 1 has a reserve price r > 0. To do that, slightly modify the English auction with the

following amendment: The auction starts with a price level lower than r (say zero price)

that corresponds to “no sale.” If someone drops out at no-sale, then the price clock pauses

to give others a chance to drop out. Once no more bidders drop out at no-sale, the price

clock jumps to the reserve price r. Then, a t∗-equilibrium exists if r < t, i.e., if the reserve

price does not exceed any bidder’s highest possible type. Let t∗ ∈ (r, t). Let t̂ ∈ T1 be the

type of bidder 1 such that her expected payoff for the entire auction-resale game is zero if

she wins the good at price r and offers the good for resale, given the belief that the types in

[0, t∗] of other bidders participate in the resale market. Clearly t̂ ≤ r. At the equilibrium,

bidder 1 drops out at “no sale” if and only if her type is below t̂. Once bidder 1 has dropped

out at no-sale, other bidders play the value-bidding equilibrium; if bidder 1 does not drop

out at no-sale, then the bidders’ subsequent actions are analogous to the equilibria described

in Proposition 1, where “dropping out at zero price” is replaced by “dropping out at no-

sale.” Resale occurs given the belief that (i) bidder 1’s type is distributed on [t̂, τ ] for some

τ ∈ (r, t∗) and (ii) the other bidders’ types are distributed on [0, t∗].

Remark 2. Proposition 1 can be partially extended to the case where repeated resale is

allowed, i.e., after the period-2 seller has sold the good the next owner may offer resale, and

so on. The t∗-equilibrium outcomes remain valid if the number of players n = 2, because

the period-2 seller has no incentive to re-buy. Cases where n ≥ 3 are complicated, because

the dynamic nature of repeated resale requires that the continuation play during resale be

predicted by perfect Bayesian equilibrium instead of the weaker Bayesian Nash equilibrium

(Zheng (2002), Prop. 1). However, there is at least one nontrivial class of environments where

the t∗-equilibria remain valid under repeated resale. Consider a game where any current

owner of the good can commit to a mechanism that offers the good for sale, expecting that

any buyer has the same option to offer resale, and so on. For such a game, Zheng (2002)
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constructs a perfect Bayesian equilibrium based on certain conditions for the bidder-type

prior distributions; at this equilibrium, any current seller of the good chooses an auction

that eventually implements the Myerson allocation from the current seller’s viewpoint.

Embedded in our model, Zheng’s equilibrium corresponds to a continuation (perfect

Bayesian) equilibrium that captures the dynamics of repeated resale. As long as a post-

auction belief satisfies Zheng’s conditions on the prior distributions in his model, the con-

tinuation equilibrium induces the Myerson allocation with respect to the post-auction be-

lief. Then one can extend properties (1)–(5), (8), and (9)–(10) and hence establish a t∗-

equilibrium, provided that Zheng’s conditions are satisfied by our on-path post-auction

beliefs
∏n

i=2 Fi(· | ti ∈ [0, t∗]).14 These conditions can be expressed as conditions on our

prior distributions. If n ≥ 4, these conditions are satisfied if and only if the distribution

F3(· | t3 ∈ [0, t∗]) = · · · = Fn(· | tn ∈ [0, t∗]) has a weakly decreasing density and dominates

F2(· | t2 ∈ [0, t∗]) in terms of the hazard rate.15

Remark 3. The t∗-equilibrium construction makes essential use of the transparent dy-

namic nature of an English auction, because the designated winner’s dropout price depends

on the set of the other bidders who have not dropped out (the upper branch of Eq. (17)).

This dependence is important in our construction because bidders drawn from different dis-

tributions need different prices bi(t
∗) to be kept obedient to the threshold t∗ (Eq. (16)). For

exactly this reason, the t∗-equilibrium construction does not generally extend to second-

price auctions except for the case where bidders 2 to n are ex-ante symmetric, implying

b2(t
∗) = · · · = bn(t∗).

Remark 4. Equilibria with small t∗ are more robust than equilibria with large t∗ in

the sense that, at a t∗-equilibrium, common knowledge of prior probability distributions is

14The reason is that, in establishing a t∗-equilibrium, we need only to consider Fi(· | ti ∈ [0, t∗]) as the
posterior distribution for any player i. This is the posterior distribution for any i on the equilibrium path
given that resale is offered. For off-path events of the period-1 auction, the post-auction beliefs are specified
by (21). In the first branch of (21), the only post-auction belief affected is that of player 1, who is still the
period-2 seller in that off-path event. This change is immaterial because the belief about a seller does not
affect the Myerson allocation. In the second branch of (21), the post-auction belief of every player j remains
to be Fj(· | tj ∈ [0, t∗]) except the deviant losing bidder i. Let “ti = t∗” be the post-auction belief of i,
then the resale price offered to i is at least t∗, making it unprofitable for i to deviate (hence step (b2) in
subsection 4.1.2 follows). The third branch of (21) does not alter anyone’s post-auction belief.

15See Mylovanov and Tröger (2006, Corollary 1). Their paper also characterizes the weaker conditions in
the case of n = 3, which corresponds to the 2-bidder case in Zheng (2002).
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required only on the interval [0, t∗].

Remark 5. The t∗-equilibria are not the only equilibria that differ from the value-bidding

equilibrium. There also exist “extreme equilibria” where bidder 1’s planned drop-out price

is so high that, for every bidder i ≥ 2, even the highest type ti finds it optimal to drop out at

the beginning of the auction.16 Extreme equilibria require common knowledge of the entire

prior distributions, for the resale continuation game. Moreover, there are practical reasons

why extreme equilibria might not be played. First, in an extreme equilibrium, the good is

always sold at zero price at the initial auction. That would make a regulator suspicious

of bidding collusion, which the bidders may want to avoid. Second, if low-type bidders

have a budget constraint that prevents them from bidding up to the highest possible type,

a designated winner’s bidding strategy in an extreme equilibrium is not credible. (Brusco

and Lopomo (2006) made this point previously in a no-resale model.) A t∗-equilibrium, by

contrast, can survive a budget constraint if t∗ is less than the budget.

5 The interim Pareto dominance of collusion

By randomizing over the choice of the designated winner, any t∗-equilibrium in Proposition 1

can be transformed into a t∗-collusive equilibrium for the auction-resale game which, from

the viewpoint of the bidders in the initial auction, interim Pareto-dominates the value-

bidding equilibrium for a nondegenerate range of t∗ (Proposition 2). A public randomization

device, or sunspot (see Shell, 1977 and Cass and Shell, 1989), may be used. As in the case

of correlated equilibrium, once the randomization is complete (i.e., the designated winner

is determined) it is in the best interest of all players to play their assigned roles, given

their belief that others will do so. Consequently, collusive bidding is self-enforced as an

equilibrium without relying on any repeated-game setup, pre-auction inter-bidder transfers,

or post-auction (possibly illegal) enforcement to divide the spoil.

A t∗-collusive equilibrium is collusive in its nature because the sunspot assignment of

roles among the bidders is a form of tacit collusion and because the equilibrium makes every

16Zheng (2000, Section 5.2) constructs an extreme equilibrium in a second-price-auction-type mechanism
with reserve prices. See also Garratt and Tröger (2006).
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type of every bidder better-off than the (socially) efficient value-bidding equilibrium. The

possibility of resale plays a pivotal role in this construction. In the same environment where

the interim bidder-Pareto superiority of collusion is established, we shall show that, should

resale be banned, there are always some bidder types who strictly prefer the value-bidding

equilibrium to the collusive equilibrium (Proposition 3).

Throughout this section, we assume that there is a sunspot which has n possible states,

each with probability 1/n, and whose realization, commonly observed, takes place after

the bidders have been privately informed and before the period-1 auction starts. For any

t∗ ∈ (0, t̄), a t∗-collusive equilibrium is: Enumerate the possible sunspot states by the names

of the bidders; if the realized state is j, then player j is the designated winner, and the

t∗-equilibrium, with player j taking the role of player 1 in Proposition 1, is played. Clearly

this constitutes an equilibrium.

Next we establish the interim bidder-Pareto superiority of a t∗-collusive equilibrium for

all sufficiently small t∗ in a symmetric, no-discounting environment.

Proposition 2 If resale is governed by rule I defined in Section 2, if

F1 = · · · = Fn, δ = 1, (23)

and if t∗ > 0 is sufficiently close to 0, then every type of every bidder is strictly better-off in

a t∗-collusive equilibrium than in an equilibrium where everybody bids their value.

The proof is in Appendix C. To provide some intuition for Proposition 2 we now show

that under resale rule I, if each bidder’s type is uniformly distributed on [0, 1], with no

discounting, then for any t∗ ∈ (0, 1) the t∗-collusive equilibrium interim Pareto dominates

(for the bidders) the value-bidding equilibrium. This illustrates the essential idea behind the

proof of Proposition 2, which is to use a linearization, Eq. (39).

First we provide a lemma, which is also useful for the proof of Proposition 2.

Lemma 6 Suppose that condition (23) holds. If type t∗ is better-off (resp. strictly better-

off) in the t∗-collusive equilibrium, then all types above t∗ are also better-off (resp. strictly

better-off).
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To evaluate the uniform distribution case, pick any t ∈ [0, t∗]. In the value-bidding

equilibrium, a type-t bidder’s expected payoff is

U val(t) =

∫ t

0

F (x)n−1dx =

∫ t

0

xn−1dx =
tn

n
.17

For any x ∈ [0, t∗], let

V∗(x) := x− F (t∗)− F (x)

f(x)
= 2x− t∗, so V −1

∗ (x) =
x + t∗

2
.

In the t∗-collusive equilibrium, a bidder’s payoff depends on whether or not she is selected

as the designated winner. As the resale mechanism is assumed to be chosen by the period-2

seller, the period-2 outcome is the Myerson allocation according to V∗. For any x ∈ [0, t∗],

the probability with which a type-x designated winner is the final owner of the good is equal

to

F (V −1
∗ (x))n−1.

Thus, by the envelope theorem, in the t∗-collusive equilibrium, the expected payoff for a

designated winner of type t ∈ [0, t∗] is

Uw(t) = t∗F (t∗)n−1 −
∫ t∗

t

F (V −1
∗ (x))n−1dx

= t∗n −
∫ t∗

t

(
x + t∗

2

)n−1

dx

= t∗n −
∫ t∗

t+t∗
2

2yn−1dy

= t∗n − 2

n

(
t∗n −

(
t + t∗

2

)n)
,

and the expected payoff Ul(t) for a designated loser of type t ∈ [0, t∗] is nonnegative by

individual rationality in the resale continuation game,

Ul(t) ≥ 0.

17The derivation of this expected payoff and ones that follow are explained in more detail in the proof of
Proposition 2.
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A type-t bidder’s expected payoff in the t∗-collusive equilibrium is

U col(t) =
1

n
Uw(t) +

n− 1

n
Ul(t),

and the bidder’s net gain from the t∗-collusive equilibrium relative to the value-bidding

equilibrium is

∆(t) := U col(t)− U val(t)

=
1

n

[
t∗n − 2

n

(
t∗n −

(
t + t∗

2

)n)]
+

n− 1

n
Ul(t)− 1

n
tn

≥ 1

n

[
t∗n − 2

n

(
t∗n −

(
t + t∗

2

)n)]
− 1

n
tn since Ul(t) ≥ 0.

Let

y :=
t

t∗
.

Since t ∈ [0, t∗], y ≤ 1 and n ≥ 2,

∆(t) ≥ t∗

n

[
1− 2

n
+

2

n

(
y + 1

2

)n

− yn

]

≥ t∗

n

[
1− 2

n
+

2

n
yn − yn

]

=
t∗

n

(
1− 2

n

)
(1− yn)

≥ 0.

This fact, combined with Lemma 6, establishes the desired result.

Below we provide some remarks on Proposition 2:

Remark 1. The collusion result extends to environments with a discount factor sufficiently

close to 1; this follows from Proposition 1 and Eq. (15).

Remark 2. The collusion result extends to environments with asymmetric bidders that are

approximately symmetric in an appropriate sense; this follows from continuity and Proposi-
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tion 1. By using a non-uniformly distributed sunspot variable it may be possible to extend

the collusion result to a larger class of asymmetric environments. In some very asymmetric

environments, however, collusion is not possible if a small t∗ is used. Consider environments

with at least two private-value bidders and a pure speculator as in Garratt and Tröger (2006):

if t∗ is small, then the initial seller’s revenue in a t∗-equilibrium is larger than in the value-

bidding equilibrium, which means that the bidders’ aggregate payoff is smaller (Garratt and

Tröger, 2006, online supplement, Proposition 5).

Remark 3. The uniform example shows that the gains to playing a collusive equilibrium

can be quite large. Table 1 shows the gains to a bidder with type t∗ = .9 in an environment

with F uniform on [0, 1], for various numbers of participants. The gains to type t∗ are the

minimum gains over all types in this example.

n U val(.9) U col(.9) % increase

2 0.405 0.50625 25

5 0.1181 0.19043 61.24

10 0.03487 0.06277 80.01

Table 1: F (t) = t, t∗ = .9

Remark 4. The collusion result extends to an English auction with a small reserve price.

This follows from Remark 1 after Proposition 1, by continuity. For larger reserve prices

r, the question is whether bidders can collude so that the interim expected payoff of any

bidder-type above r is larger than in the value-bidding equilibrium with reserve price r

(where bidders with use values below the reserve price abstain). We have three results for

environments where the type distribution F is uniform. First, if n = 2, then such an interim

Pareto-dominating equilibrium exists for any reserve price below 1.18 Second, if n ≥ 4, then

an equilibrium that interim Pareto-dominates value-bidding exists if the optimal reserve

price under value-bidding, 1/2, is used. Third, an interim Pareto-dominating equilibrium

18We suspect the result extends to n ≥ 3, but the computations would be more complex.
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exists for any reserve price arbitrarily close to 1 if types are uniformly distributed on [0, 1]

and the number of bidders is sufficiently large.

Remark 5. The collusion result goes through if resale is conducted using a standard auc-

tion with optimal reserve price (Rule II). This is true because we assume ex-ante symmetric

bidders in Proposition 2 and hence, the outcome is identical to that of the Myerson optimal

auction.

5.1 The importance of resale

Equilibria with a bidding structure similar to our t∗-equilibria exist in the model that bans

resale (Blume and Heidhues (2004)). There, bidders with use value above t∗ bid their use

values, all bidders except a special bidder bid 0 if their use values are below t∗, and the

special bidder bids t∗ if her use value is below t∗. Based on the apparent similarities to

our construction, one might conjecture that, if a public randomization device is used to

determine the designated high bidder, then one can obtain a collusive equilibrium in the

no-resale model that interim Pareto dominates the value-bidding equilibrium, as in our

resale model. However, for a large class of value distributions including all strictly concave

distributions this is not the case. Without the possibility of resale, a high-value bidder gains

too little from collusion.

For any t∗ ∈ (0, 1], call the counterpart of our t∗-collusive equilibrium in the no-resale

model the t∗-collusive no-resale equilibrium.

Proposition 3 Suppose resale is not permitted, that condition (23) holds with the identical

distribution denoted by F , and F is strictly concave. Then for any t∗ ∈ (0, 1], there exits a

type t′ < t∗ such that any bidder of type t > t′ strictly prefers the value-bidding equilibrium

to the t∗-collusive no-resale equilibrium.

Proof. In a t∗-collusive no-resale equilibrium, where each bidder is selected as the special

bidder with equal probability, the expected payoff for a type-t∗ bidder equals

U∗(t∗) = F (t∗)n−1 1

n
t∗.
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The payoff of type t∗ in the value-bidding equilibrium equals

U val(t∗) =

∫ t∗

0

F (t)n−1dt.

Strict concavity of F implies

∀0 < t < t∗ :
F (t)

t
>

F (t∗)
t∗

.

Therefore,

U val(t∗) >
F (t∗)n−1

(t∗)n−1

∫ t∗

0

tn−1dt =
F (t∗)n−1

(t∗)n−1

1

n
(t∗)n = U∗(t∗). (24)

By the continuity of U∗ and U val, Ineq. (24) implies that there exists a t′ ∈ (0, t∗) such that

U val(t) − U∗(t) > 0 for all t ∈ (t′, t∗]. That establishes the preference in favor of the value

bidding equilibrium for all types t ∈ (t′, t∗].

Now consider a bidder of type t > t∗. A bidder with type t > t∗ has a different payoff

in the t∗-collusive no-resale equilibrium than under value bidding only if the highest value

among everyone else, call it y, is less than t∗. In this case, under collusion, he gets the good

for price zero with probability 1/n and he gets it for price t∗ with probability 1 − 1/n. In

contrast, under value bidding, he gets the good for sure (in the event that y ≤ t∗ ) at a price

equal to y. He prefers value biding if the expected value of y, conditional on the event that

y ≤ t∗, is less than (1− 1/n)t∗. This is true since

E[y|y < t∗] = t∗ − 1

F (t∗)n−1

∫ t∗

0

F (y)n−1dy

= t∗ − 1

F (t∗)n−1

∫ t∗

0

yn−1

(
F (y)

y

)n−1

dy

< t∗ − 1

(t∗)n−1

∫ t∗

0

yn−1dy

= t∗ − t∗

n

= (1− 1/n)t∗,

where the inequality follows from the strict concavity of F .
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A The proofs of Lemmas 1-6

Proof of Lemma 1. We consider each of the four rules for resale described in Section 2.

Rule I: The period-2 seller picks the resale mechanism. Then Myerson’s (1981) charac-

terization of optimal auctions is applicable.19 By the regular assumption of J, the resale

mechanism is the Myerson auction based on the virtual utility functions Vi,J defined by (6)–

(7), which awards the good in descending order of Vi,J(ti) down to the period-2 seller’s type.

Then “player k gets the good given history h(j)” implies

Vk,J(tk) ≥ max{max
i6=j,k

Vi,J(ti), tj},

which implies tk > maxi6=k Vi,J(ti), which in turn implies “player k keeps the good given

history h(k).”

Rule II: The resale mechanism is an English or second-price auction with a uniform reserve

price r chosen by the period-2 seller. Here “player k gets the good given history h(j)” implies

tk ≥ max{maxi 6=j,k ti, r}, which, since r is greater than or equal to a period-2 seller’s type,

implies tk ≥ ti∀i 6= k, hence player k keeps the good given history h(k).

Rule III: The resale mechanism is Haile’s auction. Then the reasoning is analogous to

that for rule II, as a period-2 seller rejects all the bids if they are below her type.

Rule IV: Player-specific bargaining power in the 2-bidder environment. If the period-2

seller is the resale-offer proposer, the reasoning is the 2-player special case of rule I. If the

period-2 buyer is the proposer, the reasoning is the 2-player special case of rule II.

Proof of Lemma 2. We consider each of the four rules for resale described in Section 2.

Rule I: As in the proof of Lemma 1, under this rule, the resale mechanism in any period-

2 continuation equilibrium is the Myerson auction according to the virtual utility func-

tions defined by (6)–(7) based on the post-auction belief. Property (10) holds with equality

(wj(tj,J) = wj(tj,H)) because in the Myerson auction, the belief about the period-2 seller

19In contrast to Myerson’s assumptions, we allow for the possibility that the period-2 seller is privately
informed about her type. As shown in Milovanov and Tröger (2007), the resulting informed-principal game
has an equilibrium such that the period-2 seller offers the same resale mechanism as when her type is publicly
known, as assumed by Myerson.
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has no effect on bidders’ actions. To verify (9), let J ai H, i.e., Ji a Hi and Jk = Hk for all

k 6= i. Then Vk,J = Vk,H for all k 6= i, and Vi,J ≥ Vi,H by the definition of upward squeezing

and Eqs. (6)–(7). Thus, for all ti ∈ Ti,

qMyerson

ij (ti,H) ≤ qMyerson

ij (ti,J).

Property (9) follows from (1) together with the fact that in a seller-optimal mechanism, the

expected payoff for the lowest type of bidder i is zero.

Rule II: The resale mechanism is an English or second-price auction given a reserve

price r chosen by the period-2 seller. Here property (10) holds with equality (wj(tj,J) =

wj(tj,H)) because the belief about the period-2 seller has no impact on bidding behavior.

Property (9) follows from Proposition 4 in Appendix B, which says that, given the existence

of the equilibria for the period-2 continuation game, there is a monotone selection such that

an upwards squeeze of the belief about a bidder makes the period-2 seller either increase the

reserve price or leave it unchanged.

Rule III: The resale mechanism is an English auction without reserve and with an op-

tion for the period-2 seller to reject all the bids after the bidding process has stopped

(Haile (2003)). Given any post-auction belief, the continuation game has an equilibrium:

the period-2 seller sells the good at the highest bid if it exceeds her type and rejects all bids

if the highest bid is below her type; every period-2 bidder stays in until the current price

reaches his type and, once he is the only bidder left in the auction, bids up to an ultimatum

offer, optimally chosen based on his belief about the seller’s type. At this equilibrium, the

belief about a bidder’s type does not affect the bidding behavior, hence (9) holds with equal-

ity (lij(ti,J) ≥ lij(ti,H)). Property (10) holds because a downward squeeze of the belief

about the period-2 seller’s type implies period-2 buyers think that the seller is more willing

to accept low prices than without the squeeze, so they offer the seller lower prices.

Rule IV: Player-specific bargaining power in the 2-bidder case. If the player who gets

to propose in period 2 is the period-2 seller, then we are back to a special case of rule I. If

the proposer in period-2 is the period-2 buyer, then we are back to a special case of rule III

where the only remaining period-2 bidder makes an ultimatum offer to the period-2 seller.
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Hence both properties (9) and (10) hold.

Proof of Lemma 3. The existence of equilibrium under resale rule I is well known.

Under rule II, given any reserve price, value-bidding constitutes an equilibrium. The equi-

librium under resale rule III has been sketched in the proof of Lemma 2. (Haile (2003)

has details.) Rule IV is a special case of either rule I, if the period-2 seller gets to be the

proposer, or rule III, if the period-2 buyer proposes.

Proof of Lemma 4. By definition of τ(t∗), τ(t∗) ≤ t∗. To prove that τ(t∗) > 0, observe

that w1(0,J0,t∗) > 0 by (5). Hence t̂ := δw1(0,J0,t∗) > 0. Thus, for all t < t̂,

t < δw1(0,J0,t∗)
(2)

≤ δw1(t,J0,t∗)
(10)

≤ δw1(t,Jt,t∗),

implying τ(t∗) ≥ t̂ > 0. Here (10) holds due to the continuation-equilibrium selection

function (11).

To prove (13), let t > τ(t∗). By Eq. (12), there exists v ∈ (τ(t∗), t) such that

v ≥ δw1(v,Jτ(t∗),t∗). (25)

From (2) and q1(s,Jτ(t∗),t∗) ≤ 1,

w1(t,Jτ(t∗),t∗)− w1(v,Jτ(t∗),t∗) ≤ t− v. (26)

Putting (25) and (26) together we obtain t ≥ δw1(t,Jτ(t∗),t∗).

To prove (14), we first claim that

τ(t∗) ≤ δw1(τ(t∗),Jτ(t∗),t∗). (27)

Suppose not. Then, by the proved fact τ(t∗) > 0 and the continuity of w1(·,Jτ(t∗),t∗), there

exists a t ∈ (0, τ(t∗)) close enough to τ(t∗) such that

t > δw1(t,Jτ(t∗),t∗)
(10)

≥ δw1(t,Jt,t∗),
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contradicting the definition of τ(t∗). Hence Ineq. (27) holds. Thus, if we define

φ(t) := t− δw1(t,Jτ(t∗),t∗),

we know that ϕ(τ(t∗)) ≤ 0. Furthermore, by (2), the derivative

φ′(t) = 1− δq1(t,Jτ(t∗),t∗) ≥ 0.

Thus, φ(t) ≤ 0 for all t ∈ [0, τ(t∗)), i.e., (14) is true.

To prove the limit result (15), let ε > 0 and define

δ := sup
t≤t∗−ε

t

w1(t,J0,t∗)
.

By (2), w1(t,J0,t∗) is continuous in t. Hence, (5) implies that δ < 1. For all δ > δ and

t ≤ t∗ − ε,

δw1(t,Jt,t∗)
(10)

≥ δw1(t,J0,t∗) > δw1(t,J0,t∗) ≥ t.

Then, by the definition of τ(t∗), we have τ(t∗) ≥ t∗ − ε.

Proof of Lemma 5. By Lemma 4, τ(t∗) > 0. Hence (4) implies li1(t
∗,Jτ(t∗),t∗) < t∗,

so (16) implies 0 < bi(t
∗). The inequality bi(t

∗) ≤ t∗ follows from the lower bound 0 in (4).

Proof of Lemma 6. Let t ≥ t∗. For any player i with type t, the only way his expected

payoffs are different between the t∗-collusive-equilibrium and the value-bidding equilibrium

is if the highest type t
(1)
−i of his rivals is below t∗. When this occurs, since t ≥ t∗, bidder

i is the final owner of the good in either equilibrium, hence the bidder’s payoff-difference

between the two equilibria is equal to the difference in expected payments in each case. This

payment-difference is the same for all t ≥ t∗: in the t∗-collusive-equilibrium, bidder i pays

zero with probability 1/n and pays bi(t
∗) with probability (n − 1)/n; in the value-bidding

equilibrium, bidder i pays t
(1)
−i .
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B Optimal reserve prices in English or second-price

auctions

Let us consider the following game: A seller, player 0, is to offer an item for sale through

an English or second-price auction with a reserve price r uniform for all bidders; there are n

bidders, named 1, . . . , n; the use-value (“type”) ti of the item for bidder i is independently

drawn from a commonly known distribution Fi, with positive density fi on its support [ti, ti].

Assume that the virtual utility function Vi(ti) := ti − (1 − Fi(ti))/fi(ti) is well-defined and

strictly increasing on [ti, ti] for each bidder i.

Only the value-bidding equilibrium will be considered.

For each bidder i, let F
(1)
−i denote the distribution function for max{tj : j 6= i}. Given

the reserve price r and the value-bidding equilibrium, the probability with which a type-ti

bidder i wins is equal to F
(1)
−i (ti)1ti≥r. By the envelope theorem, the surplus for this bidder

is equal to

Ui(ti) = (1ti≥r)

∫ ti

r

F
(1)
−i (x)dx (28)

and the expected payment delivered by this bidder is equal to

pi(ti) = (1ti≥r)

(
tiF

(1)
−i (ti)−

∫ ti

r

F
(1)
−i (x)dx

)
.

At this equilibrium, the seller’s surplus extracted from bidder i is equal to

Eti

[
pi(ti)− t0F

(1)
−i (ti)1ti≥r

]
= Eti

[
(1ti≥r) F

(1)
−i (ti)(ti − t0)

]
(29)

−Eti

[
(1ti≥r)

∫ ti

r

F
(1)
−i (x)dx

]
.

If r < ti, then
∫ ti

r
F

(1)
−i (x)dx = 0, otherwise F

(1)
−i > 0 on a positive-measure subset of [r, ti],

and consequently the seller is better-off by raising the reserve price to ti, which generates the

same probability of sale (since bidder i bids at least ti) and increases the expected revenue

conditional on a sale (since the highest type of i’s rivals is probably below ti). Thus, we may
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assume, without loss of generality due to (28) and (29), that

r ≥ ti ∀i = 1, . . . , n. (30)

By (30), the third expected value in Eq. (29) is equal to

(
1ti≥r

) ∫ ti

r

∫ ti

r

F
(1)
−i (x)fi(ti)dxdti =

(
1ti≥r

) ∫ ti

r

∫ ti

x

F
(1)
−i (x)fi(ti)dtidx

= Eti

[
1− Fi(ti)

fi(ti)
(1ti≥r) F

(1)
−i (ti)

]
.

Then, by Eq. (29), the seller’s surplus extracted from bidder i is equal to

Eti

[
(Vi(ti)− t0) (1ti≥r) F

(1)
−i (ti)

]
.

Thus, the total surplus for the seller, extracted from all the bidders, equals

n∑
i=1

Eti

[
(Vi(ti)− t0) (1ti≥r) F

(1)
−i (ti)

]
=

n∑
i=1

∫ max{ti,r}
r

F
(1)
−i (ti)fi(ti) (Vi(ti)− t0) dti

=
n∑

i=1

∫ ti

r

F
(1)
−i (ti)fi(ti) (Vi(ti)− t0) dti,

where the second equality follows from the fact that fi(ti) = 0 if r > ti > ti. (Extend Vi by

Vi(x) := x for all x > ti.) Therefore, an optimal reserve price r∗ maximizes

π(r | (ti)n
i=1) :=

n∑
i=1

∫ ti

r

F
(1)
−i (ti)fi(ti) (Vi(ti)− t0) dti

=
n∑

i=1

∫ ti

r

(∏

j 6=i

Fj(ti)

)
fi(ti) (Vi(ti)− t0) dti (31)

over all r ≥ max {t0, maxi=1,...,n ti}. The notation π(· | (ti)
n
i=1) signifies the possible depen-

dence on the parameters (ti)
n
i=1.

The question that emerged with regards to Rule II in the proof of Lemma 2 is how the

seller’s optimal reserve price r∗ varies with an upward squeeze of Fi, i.e., an increase in ti

(without upsetting ti ≤ ti).
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Lemma 7 If r∗ is an optimal reserve price given (ti)
n
i=1 (:= (tk, t−k) for any bidder k) and

if tk < t′k ≤ r∗, then r∗ is an optimal reserve price given (t′k, t−k).

Proof. With tk replaced by t′k ∈ (tk, tk], Fk(·) and fk(·) are replaced by Fk(·)/Fk(t
′
k) and

fk(·)/Fk(t
′
k), and Vk is unchanged on [t′k, tk]. Thus, by Eq. (31), for any r ≥ max {t′k, maxi6=k tk},

π(r | t′k, t−k) =
∑

i 6=k

∫ ti

r

Fk(ti)

Fk(t
′
k)

( ∏

j 6=k,i

Fj(ti)

)
fi(ti) (Vi(ti)− t0) dti

+

∫ tk

r

(∏

j 6=k

Fj(tk)

)
fk(tk)

Fk(t
′
k)

(Vk(tk)− t0) dtk

=
1

Fk(t
′
k)

π(r | tk, t−k) by factoring out Fk(t
′
k).

Since r∗ maximizes π(r | tk, t−k) over all r ≥ max {t0, maxi=1,...,n ti} and maxi=1,...,n ti ≤
max {t′k, maxi6=k ti}, r∗ also maximizes π(r | t′k, t−k) over all r ≥ max {t0, max {t′k, maxi6=k ti}}.
Any r < max {t0, max {t′k, maxi6=k ti}} is ruled out by the boundary condition (30).

Lemma 8 If r∗ is an optimal reserve price given (tk, t−k) and if tk increases to any t′k such

that tk ≥ t′k > r∗, then any optimal reserve price given (t′k, t−k) is greater than r∗.

Proof. This follows directly from the boundary condition (30).

Proposition 4 For any bidder k, there is a monotone selection tk 7→ r∗(tk), with r∗(tk)

being an optimal reserve price given (tk, t−k), such that for all tk ≤ tk, (i) r∗(tk) weakly

increases in tk and (ii) the surplus Uj(tj) of any bidder j of any type tj, given the reserve

price r∗(tk), weakly decreases in tk.

Proof. Claim (i) follows directly from the previous lemmas. Claim (ii) follows from claim (i)

and Eq. (28).

The choice of an optimal reserve price, uniform for all bidders, is different from the

counterpart in the Myerson auction, where the seller can discriminate across bidders. To

illustrate the difference, consider a 2-bidder case such that the optimal reserve r∗ is an

interior solution. With only two bidders, the first-order necessary condition is

F2(r
∗)f1(r

∗)(t0 − V1(r
∗)) + F1(r

∗)f2(r
∗)(t0 − V2(r

∗)) = 0. (32)
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Unless V1(r
∗) = V2(r

∗) = t0, the seller may have to sell the good to a bidder who would

bring a marginal loss to the seller. To see that, suppose t0 − V1(r
∗) < 0. Then Eq. (32)

implies t0 − V2(r
∗) > 0. With t0 − V1(r

∗) < 0, the seller’s marginal profit from bidder 1 is

positive, so she would like to offer more sale to bidder 1. Restricted to a single reserve price

for both bidders, however, the seller cannot do that without simultaneously offering more

sale to bidder 2, to whom the seller is losing marginally since t0−V2(r
∗) > 0. So her optimal

reserve has to strike a balance between the marginal profit and loss, instead of eliminating

the marginal loss.

C The proof of Proposition 2

Let F := Fi, as Fi is identical for all i and consider any type t ≤ t∗. The probability that a

bidder of type t obtains the good in the value-bidding equilibrium is F (t)n−1. Hence, by the

envelope theorem, type t’s payoff in the value-bidding equilibrium is

U val(t) =

∫ t

0

F (x)n−1dx.

The probability that a designated winner of type x ≤ t∗ gets the good in a t∗-equilibrium is

qw(x) = F (V −1
∗ (x))n−1, (33)

where V −1
∗ denotes the inverse of the (post-auction) virtual utility function V∗ defined by

V∗(x) := x−
1− F (x)

F (t∗)
f(x)
F (t∗)

= x− F (t∗)− F (x)

f(x)
(x ∈ [0, t∗]). (34)

To understand (33), observe that bidder 1 wins the auction if and only if all other bidders’

types are below t∗ and, given that she wins, finally keeps the good if and only if all other

bidders’ virtual utilities are below x, that is, if and only if all other bidders’ types are below

V −1
∗ (x).

The payoff of a designated winner of type t∗ in a t∗-equilibrium equals t∗F (t∗)n−1, because

she obtains the good at price 0 and consumes it whenever she wins the auction. Together
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with (33), the envelope theorem implies that the payoff of a designated winner of type t ≤ t∗

in a t∗-equilibrium is

Uw(t) = t∗F (t∗)n−1 −
∫ t∗

t

qw(x)dx

= t∗F (t∗)n−1 −
∫ t∗

t

F (V −1
∗ (x))n−1dx. (35)

The probability that a designated loser of type x ≤ t∗ gets the good in a t∗-equilibrium is

ql(x) = F (V∗(x))F (x)n−2, (36)

because she obtains the good if and only if, given the information that her type is below

t∗, her virtual utility V∗(x) exceeds the designated winner’s type, and all remaining bidders’

types are below x. By (36) and the envelope theorem, the payoff for a designated loser of

type t ≤ t∗ in a t∗-equilibrium is

Ul(t) =

∫ t

0

q2(x)dx =

∫ t

0

F (V∗(x))F (x)n−2dx. (37)

Putting (35) and (37) together, the payoff of type t ≤ t∗ in a t∗-collusive equilibrium is

U col(t) =
1

n
Uw(t) +

n− 1

n
Ul(t) (38)

In the following, we will consider t∗-collusive equilibria with t∗ close to 0. To this end, the

linearization of F at 0 will be very useful:

F (x) = f(0)x + h1(x), (x ≥ 0), (39)

where |h1(x)|/x → 0 as x → 0. Also, for any k ≥ 0, we will use O((t∗)k) to denote any

function h(x, t∗) h(t, t∗)) such that supx∈[0,t∗] |h(x, t∗)|/(t∗)k → 0 as t∗ → 0.

The proof proceeds via a series of lemmas. The next lemma approximates the payoffs in

a value-bidding equilibrium.
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Lemma 9 For all t∗ and all t ≤ t∗,

U val(t) = f(0)n−1 1

n
tn + O((t∗)n).

Proof. From (33) and (39),

U val(t) =

∫ t

0

F (x)n−1dx

=

∫ t

0

(f(0)x + h1(x))n−1dx

=

∫ t

0

(f(0)n−1(x)n−1 + h2(x)) dx

= f(0)n−1 1

n
tn +

∫ t

0

h2(x) dx,

where |h2(x)|/(x)n−1 → 0 as x → 0.

Let ε > 0. If t∗ is sufficiently small, then |h2(x)| ≤ ε (x)n−1 for all x ≤ t∗. Therefore

∣∣∣∣
∫ t

0

h2(x)dx

∣∣∣∣ ≤
∫ t

0

|h2(x)| dx ≤ ε

∫ t

0

xn−1dx ≤ ε (t∗)n,

which completes the proof.

Define

κ(t∗) :=
f(0)

minx∈[0,t∗] f(x)
(t∗ ∈ [0, t]). (40)

Observe that κ(t∗) → 1 as t∗ → 0.

The next lemma provides an approximate lower bound for the virtual valuation function

if t∗ is small.

Lemma 10 For all t∗ ∈ [0, t] and all t ∈ [0, t∗],

V∗(t) ≥ t− κ(t∗)(t∗ − t) + O(t∗).
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Proof. Using (34) and (39),

V∗(t) = t− f(0)t∗ + h1(t
∗)− f(0)t− h1(t)

f(t)

= t− f(0)

f(t)
(t∗ − t) + h(t, t∗)

≥ t− κ(t∗)(t∗ − t) + h(t, t∗), (41)

where

h(t, t∗) :=
h1(t

∗)− h1(t)

f(t)
. (42)

Observe that (39) implies

supx∈[0,t∗] | h1(x) |
t∗

≤ sup
x∈[0,t∗]

| h1(x) |
x

→ 0 as t∗ → 0.

Hence, defining f(t∗) := minx∈[0,t∗] f(x), we have

supx∈[0,t∗] |h(x, t∗)|
t∗

≤ 1

f(t∗)

( |h1(t
∗)|

t∗
+

supx∈[0,t∗] |h1(x)|
t∗

)
→ 0

as t∗ → 0.

Next we establish a result concerning the inverse virtual valuation function that is anal-

ogous to Lemma 10.

Lemma 11 For all t∗ ∈ [0, t] and all t ∈ [0, t∗],

V −1
∗ (t) ≤ t + κ(t∗)t∗

1 + κ(t∗)
+ O(t∗).

Proof. Let h be defined as in (42). Rewriting (41) in inverse form,

t ≥ V −1
∗ (t)− κ(t∗)(t∗ − V −1

∗ (t)) + h(V −1
∗ (t), t∗)

= V −1
∗ (t)(1 + κ(t∗))− κ(t∗)t∗ − y(t, t∗)(1 + κ(t∗)), (43)
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where

y(t, t∗) := −h(V −1
∗ (t), t∗)

1 + κ(t∗)
. (44)

Solving (43) for V −1
∗ (t) yields

V −1
∗ (t) ≤ t + κ(t∗)t∗

1 + κ(t∗)
+ y(t, t∗).

Using (44) and the fact that V −1
∗ (t) ∈ [0, t∗],

supx∈[0,t∗] |y(x, t∗)|
t∗

≤ supx∈[0,t∗] |h(x, t∗)|
(1 + κ(t∗))t∗

→ 0 as t∗ → 0,

because h(x, t∗) = O(t∗).

For all y ∈ [0, 1] and k > 0, let

φ1(y, k) = 1− 1 + k

n
+

(y + k)n

n(1 + k)n−1
.

Lemma 12 For all t∗ ∈ [0, t] and all t ∈ [0, t∗],

Uw(t) ≥ f(0)n−1(t∗)nφ1(
t

t∗
, κ(t∗)) + O((t∗)n).

41



Proof. Using (39) and Lemma 11,

∫ t∗

t

F (V −1
∗ (x))n−1dx

=

∫ t∗

t

(
f(0)V −1

∗ (x) + h1(V
−1
∗ (x))

)n−1
dx

≤
∫ t∗

t

(
f(0)

x + κ(t∗)t∗

1 + κ(t∗)
+ O(t∗)

)n−1

dx

= f(0)n−1

∫ t∗

t

(
x + κ(t∗)t∗

1 + κ(t∗)

)n−1

dx + O((t∗)n)

= f(0)n−1

(
1 + κ(t∗)

n
(t∗)n − (t + κ(t∗)t∗)n

n(1 + κ(t∗))n−1

)
+ O((t∗)n)

= f(0)n−1(t∗)n

(
1 + κ(t∗)

n
− ( t

t∗ + κ(t∗))n

n(1 + κ(t∗))n−1

)
+ O((t∗)n).

Hence, the result follows from (35) and the fact that t∗F (t∗)n−1 = f(0)n−1(t∗)n +O((t∗)n).

For all y ∈ [0, 1] and k > 0, let

φ2(y, k) :=
1 + k

n
yn − k

n− 1
yn−1 +

kn

n(n− 1)(1 + k)n−1
if y >

k

1 + k
,

(45)

and otherwise φ2(y, k) := 0. It is easy to check that φ2 is continuous.

Lemma 13 For all t∗ ∈ [0, t] and all t ∈ [0, t∗],

Ul(t) ≥ f(0)n−1(t∗)nφ2(
t

t∗
, κ(t∗)) + O((t∗)n).

Proof. Using (39),

F (V∗(x)) = f(0)V∗(x) + h1(V∗(x)) if V∗(x) > 0,

and F (V∗(x)) = 0 otherwise. Hence, using that V∗(x) ∈ [0, t∗] if V∗(x) > 0,

F (V∗(x)) = f(0) max{0, V∗(x)}+ O(t∗).
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Therefore, using Lemma 10,

F (V∗(x)) ≥ f(0) max{0, x− κ(t∗)(t∗ − x)}+ O(t∗).

Hence,

∫ t

0

F ((V∗)(x))F (x)n−2dx

≥ f(0)n−1

∫ t

0

max{0, x− κ(t∗)(t∗ − x)}xn−2dx + O((t∗)n). (46)

Observe that the following equivalence holds:

x− κ(t∗)(t∗ − x) > 0 ⇔ x >
κ(t∗)

1 + κ(t∗)
t∗.

Suppose first that t/t∗ > κ(t∗)/(1 + κ(t∗)). Using (37) and (46),

Ul(t) ≥ f(0)n−1

∫ t

κ(t∗)
1+κ(t∗) t∗

(x− κ(t∗)(t∗ − x))(x)n−2dx + O((t∗)n)

= f(0)n−1(t∗)n

(
1 + κ(t∗)

n
(

t

t∗
)n +

κ(t∗)n

n(n− 1)(1 + κ(t∗))n−1

− κ(t∗)
n− 1

(
t

t∗
)n−1

)
+ O((t∗)n)

= f(0)n−1(t∗)nφ2(
t

t∗
, κ(t∗)) + O((t∗)n).

If t/t∗ < κ(t∗)/(1 + κ(t∗)), then (37) and (46) yield

Ul(t) ≥ O((t∗)n)

= f(0)n−1(t∗)nφ2(
t

t∗
, κ(t∗)) + O((t∗)n),

because φ2(t/t
∗, κ(t∗)) = 0.
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Lemma 14 If k is sufficiently close to 1, then

min
y∈[0,1]

1

n
φ1(y, k) +

n− 1

n
φ2(y, k)− 1

n
yn > 0.

Proof. By continuity, it is sufficient to consider k = 1; i.e., to show for all y ∈ [0, 1],

1

n
φ1(y, 1) +

n− 1

n
φ2(y, 1)− 1

n
yn > 0. (47)

Defining

ψ(y) := φ1(y, 1)− yn = 1− 2

n
+

(y + 1)n

n 2n−1
− yn,

we have

ψ′(y) =
(y + 1)n−1

2n−1
− nyn−1 = yn−1

(
1

2n−1
(1 +

1

y
)n−1 − n

)

︸ ︷︷ ︸
strictly decreasing in y

.

Hence, there exists y∗ such that ψ′(y) > 0 if y < y∗ and ψ′(y) < 0 if y > y∗. Therefore, ψ

takes its minimum on [0, 1] at 0 or at 1. Because ψ(0) > 1− 2/n ≥ 0 and ψ(1) = 0,

1

n
φ1(y, 1)− 1

n
yn =

1

n
ψ(y) > 0 if y < 1. (48)

From (45),
∂

∂y
φ2(y, 1) = 2yn−1 − yn−2 = yn−2(2y − 1) > 0 if y >

1

2
.

Hence, if y > 1/2, then φ2(y, 1) > 0, because φ2(
1
2
, 1) = 0. Combining this with (48) and

the fact that φ2(y, 1) = 0 if y < 1/2, we obtain (47).

For all t∗ ∈ [0, t] and all t ∈ [0, t∗], using (38), Lemmas 9, 12, and 13,

U col(t)− U val(t)

f(0)n−1(t∗)n
≥ 1

n
φ1(

t

t∗
, κ(t∗)) +

n− 1

n
φ2(

t

t∗
, κ(t∗))− 1

n
(

t

t∗
)n + O(1).

(49)

If t∗ is sufficiently close to 0, then κ(t∗) is arbitrarily close to 1, and thus (49) together with
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Lemma 14 implies that

min
t∈[0,t∗]

(U col(t)− U val(t)) > 0.

This together with Lemma 6 proves Proposition 2.
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