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Abstract

We consider an auction environment in which the object can be sold with

restrictions or without restrictions. Restricting the object generates a direct

bene�t to the seller, but lowers the buyers�willingness to pay. In this environ-

ment, sellers such as the FCC have used a contingent re-auction, whereby they

�rst o¤er the restricted object with a reserve price, and if the reserve is not

met, re-auction the object without restrictions. We characterize the equilibria

of a contingent re-auction, and we derive the optimal mechanism and an e¢ -

cient mechanism, both of which can be implemented through a straighforward

auction design. Our results have implications for how contingent re-auctions

can be improved.
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1 Introduction

The U.S. Federal Communications Commission (FCC) began its Auction 73 for

spectrum licenses in January of 2008. The licenses were o¤ered with substantial

restrictions, which the FCC views as in the public interest, but which presumably

reduce their value to bidders. In the event the reserve prices for the licenses were not

met, the FCC committed to re-auction the licenses without many of the restrictions,

but with the same reserve price. The motivation for this auction format, which has

been referred to as a �do-over auction� in the press, is straightforward: the FCC

believes the contemplated restrictions are in the public interest, but does not want

to sacri�ce too much revenue in the process of imposing those restrictions. If the

restricted licenses can be sold in the �rst auction for a price greater than the reserve,

then the FCC prefers that outcome, but in the absence of bids greater than the

reserve, it prefers to sell the licenses without the restriction.

The recent attempted sale of the Italian airline Alitalia followed a similar pattern,

although the procedure was not formalized to the same extent as that of the FCC.

Alitalia was �rst put up for sale with a series of restrictions, such as limitations on

the ability by the new owner to �re employees. These restrictions were perceived

as desirable by the Italian government, but they reduced the value of the airline to

bidders. After it became clear that no bidder was interested at the proposed price,

the airline was put up for sale again, but with fewer restrictions.1

We refer to the procedures used by the FCC and Alitalia described above as a

contingent re-auction.2 The general problem faced in these situations is as follows:

A seller has an object for sale. The seller can �damage�the object, for example by

restricting its future use. If the restricted object is sold, the seller receives a bene�t

1Alitalia was put on sale on January 2007. A number of bidders initially expressed interest but
they all dropped out by July 2007. The bidders cited �restrictive conditions imposed by the gov-
ernment and a lack of access to the airline�s books. ... These conditions, when originally expressed
ahead of the auction, included maintaining certain sta¤ levels, continued operation of some routes
and tra¢ c rights regardless of pro�tability, preserving Alitalia�s identity, and not selling certain Ali-
talia interests for three years.�See Aude Lagorce, �Alitalia Still Hoping for Rescue,�MarketWatch,
September 12, 2007.
After the failure of the �rst attempt the government has signaled that it may relax some of these

rules and try to sell the company again. See, e.g., �Alitalia boss wants state sell-o¤ �nalised by
Christmas,�Yahoo! News, available at
http://news.yahoo.com/s/afp/20070908/bs_afp/italyairlinecompanyalitalia (checked 9/18/2007).

2This term has been used in the press to describe FCC Auction 73. See, e.g., Stifel and Nicolaus�s
Telecom, Media & Tech Insider, August 24, 2007.
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B in addition to the sale price. If the unrestricted object is sold, the seller receives

no bene�t beyond the sale price. Bidders value the unrestricted object more than

the restricted object and have private values. We refer to this environment as an

�environment with seller-bene�tting restrictions.� In such an environment, e¢ ciency

requires that the object be restricted if B is larger than the di¤erence between the

highest value for the unrestricted object and the highest value for the restricted object,

and that it not be restricted otherwise.

In this paper, we contribute to the theoretical understanding of contingent re-

auctions and propose alternative mechanisms that o¤er improvement over the con-

tingent re-auction in certain environments. The analysis has four components. First,

we characterize the equilibrium of a contingent re-auction involving either two sequen-

tial second-price auctions or two sequential English auctions. Second, we identify an

optimal mechanism for an environment with seller-bene�ting restrictions when buy-

ers�values for the restricted and unrestricted object do not vary independently, so

that the environment is one with one-dimensional types. Third, for the case with

two-dimensional types, which in many environments would create substantial ana-

lytical di¢ culties, we are able to identify a mechanism that achieves the e¢ cient

outcome, and can be implemented with a straightforward selling procedure (the �ex-

clusive buyer�mechanism).3 This e¢ cient mechanism, although it does not maximize

the seller�s revenue, provides the seller with greater expected revenue than the con-

tingent re-auction in some simulations we have performed. The mechanism is an

�exclusive buyer�mechanism in which buyers compete in a second-price auction for

the right to be the single buyer that then chooses between the restricted object for

no additional payment and the unrestricted object for an additional payment of B.

Fourth, for environments with two-dimensional types, we conjecture that an exclusive

buyer mechanism is optimal. In the optimal exclusive buyer mechanism, the second-

stage prices di¤er from those of the e¢ cient exclusive buyer mechanism and are those

associated with the optimal mechanism for an environment with a single buyer.

3We assume no allocative externalities, i.e., a buyer not receiving the object has no preference over
which other buyer receives the object. In environments with allocative externalities (as well as multi-
dimensional information and informational externalities), Maskin (1992) and Jehiel and Moldovanu
(2001) show that every Bayesian Nash equilibrium is (generically) ine¢ cient. In addition, in such
environments, Jehiel et al. (2006) call into question the existence of ex-post equilibrium. However,
Bikhchandani (2006) shows that these non-existence results rely on the assumption of allocative
externalities. In addition, Mezzetti (2004) shows that e¢ ciency can be obtained with two-stage
mechanisms in which payments can be conditioned on reports about the agents�allocation payo¤s.
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Drawing from our theoretical results and numerical simulations, we are able to

make some recommendations for how sellers such as the FCC might improve their

implementation of contingent re-auctions in the future, and we are able to suggest an

alternative mechanism, the exclusive buyer mechanism, which our results show has

superior properties.

We do not know of any economics literature that considers contingent re-auctions

directly, but there is a related literature on auctions with resale. Horstmann and

LaCasse (1997) show that in a common value environment, a seller may choose not

to sell an object, even if it receives bids above the announced reserve price, and then

to re-auction the item after a delay in order to signal its private information about

the value of the object. In contrast, in the environment we consider, the seller has no

private information. Cassady (1967), Ashenfelter (1989), and Porter (1995) indicate

that goods that are not sold at an initial auction are often o¤ered for sale again later,

but in these cases it is the same items that are re-o¤ered, not a modi�ed version as

in the cases we consider. McAfee and Vincent (1997) consider a model in which a

seller cannot commit not to re-auction an object if the announced reserve price is

not met. They show that when the time between auctions goes to zero, the seller�s

expected revenues converge to that of a static auction with no reserve price, and they

characterize the optimal dynamic reserve price policy of the seller. In our model, we

assume that the seller can commit to a reserve price in the second auction, but we

also consider the case of a zero reserve at the second auction.

There is also a literature on auctions with resale, which focuses on environments

in which bidders that win objects at an auction can then resell them after the auction.

See, e.g., Gupta and Lebrun (1999), Haile (2000, 2001, 2003), Zheng (2002), Garratt

and Tröger (2005), Hafalir and Krishna (2007), Garratt, Tröger, and Zheng (2006),

Lebrun (2007), and Pagnozzi (2007). In our model, we assume no resale. Finally, it

is well known in the literature on price discrimination that it can be optimal for a

seller to o¤er both damaged and undamaged versions of a product (Deneckere and

McAfee, 1996). In our model, the seller can only o¤er one version of the product,

either restricted or unrestricted, so there are no price discrimination motivations for

restricting the use of product.

In analyzing the optimal mechanism for an environment with seller-bene�tting

restrictions, we �rst characterize the optimal mechanism under the assumption that

buyers�values for the restricted and unrestricted objects are related in such a way that
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a buyer�s type becomes one-dimensional. In this case, standard mechanism design

techniques apply. There is a large related literature, but we rely particularly on the

results of Myerson (1981).

However, the more general version of our problem involves multidimensional types�

buyers have values for both the unrestricted and restricted versions of the object. As

described in Armstrong (1996) and Rochet and Choné (1998), results for mechanism

design problems with multidimensional types can be di¢ cult to obtain. A number

of papers have contributed to the development of methods for such problems, in-

cluding Rochet (1985), Matthews and Moore (1987), McAfee and McMillan (1988),

Armstrong (1996), and Rochet and Choné (1998), where the last two of these papers

focus on the case of a multiproduct monopolist. More recently, Manelli and Vincent

(2006 and 2007) make progress on the problem of a multiproduct monopolist, with

Manelli and Vincent (2007) characterizing the set of all mechanisms that maximize

the seller�s expected revenue for some seller�s beliefs and Manelli and Vincent (2006)

identifying conditions on the seller�s beliefs such that posted prices maximize the

seller�s expected revenue.

Our paper is related to the classic paper by Mussa and Rosen (1978), which

considers a model in which a monopolist chooses quality. Their model di¤ers from

ours in that there is no bene�t to the seller associated with particular qualities and,

more importantly, they assume one-dimensional types.

The remainder of this paper proceeds as follows. In Section 2, we describe in more

detail the contingent re-auction being used by the FCC. In Section 3, we present a

complete information example to illustrate some of the issues involved. In Section

4, we describe our general model with incomplete information and two-dimensional

types. In Section 5, we characterize the equilibria of a contingent re-auction in the

context of our model. In Section 6, we characterize the optimal mechanism under an

assumption that reduces the type space to one dimension. In Section 7, we consider

the mechanism design problem with two-dimensional types and propose the exclu-

sive buyer mechanism. As we show, there exists an exclusive buyer mechanism that

generates the e¢ cient outcome. We conjecture that a version of the exclusive buyer

mechanism is an optimal mechanism, at least among dominant strategy mechanisms

that never retain the object. The formal demonstration of this is work in progress.

Section 8 provides numerical calculations comparing the various mechanisms. Section

9 concludes with a discussion of implications for the mechanism design in environ-
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ments with seller-bene�tting restrictions.

2 Contingent re-auction of spectrum licenses

On January 24, 2008, the FCC began its Auction 73 o¤ering 1,099 spectrum

licenses in the 698�806 MHz band, which is referred to as the 700 MHz Band. Given

the large number of licenses for sale and the high quality of the spectrum in the 700

MHz Band, this auction was expected to generate signi�cant revenue for the U.S.

government.4 The FCC proposed total reserve prices for the auction of over $10

billion,5 and to date bids totalling approximately $20 billion have been submitted.

The licenses to be auctioned are de�ned by their geographic scope and their loca-

tion in the electromagnetic spectrum. The band plan for the 700 MHz auction de�nes

�ve blocks of licenses: A, B, C, D, and E. The A-block licenses are 12 MHz licenses

de�ned over 176 medium-sized geographic areas referred to as EAs.6 The B-block

licenses are 12 MHz licenses de�ned over 734 small geographic areas referred to as

CMAs.7 The C-block licenses are 22 MHz licenses de�ned over 12 large geographic

areas referred to as REAGs,8 and bidders will also be able to submit bids for the

nationwide package of licenses.9 The D-block is organized as a single 10 MHz nation-

4According to the FCC: �The unique propagation characteristics of this spectrum means that
fewer towers will be needed to serve a given license area, as compared to providing service at higher
frequencies, and thus large license areas may be served at lower infrastructure costs.�Second Report
and Order (FCC 07-132), �Service Rules for the 698-746, 747-762 and 777-792 MHz Bands,�Released
8/10/2007, at paragraph 154. Available at http://fjallfoss.fcc.gov/edocs_public/attachmatch/FCC-
07-132A1.pdf
There will not be any incumbents in the band after the DTV transition is completed on February

17, 2009. See the Digital Television Transition and Public Safety Act of 2005, which is Title II of
the De�cit Reduction Act of 2005, Pub. L. No. 109-171, 120 Stat. 4 (2006).

5See FCC Public Notice (DA 07-3415), �Auction of 700 MHz Band Licenses Scheduled for Jan-
uary 16, 2008; Comment Sought on Competitive Bidding Procedures for Auction 73,� Released
8/17/2007, at paragraph 53. Available at http://fjallfoss.fcc.gov/edocs_public/attachmatch/DA-
07-3415A1.pdf

6A map showing the EAs, or Economic Areas, is available at
http://wireless.fcc.gov/auctions/data/maps/EA_GOM.pdf.

7The CMAs are sometimes divided into Metropolitan Statistical Areas (MSAs) and Rural Service
Areas (RSAs). A map showing the CMAs, or Cellular Market Areas, is available at
http://wireless.fcc.gov/auctions/data/maps/CMA.pdf.

8A map showing the REAGs, or Regional Economic Area Groups, is available at
http://wireless.fcc.gov/auctions/data/maps/REAG.pdf.

9Speci�cally, the FCC has proposed to allow a package bid on the eight licenses covering the 50
U.S. states, excluding the four licenses covering Puerto Rico, the U.S. Virgin Islands, the Gulf of
Mexico, and the U.S. Paci�c territories. See FCC Public Notice (DA 07-3415), paragraph 23.
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wide license.10 The E-block licenses are 6 MHz licenses de�ned over the 176 EAs.

Associated with each block will be a reserve price. The FCC has proposed block-

speci�c aggregate reserve prices of: Block A, $1.81 billion; Block B, $1.38 billion;

Block C, $4.64 billion; Block D, $1.33 billion; Block E, $0.90 billion,11 and stated

that �Because of the value-enhancing propagation characteristics and relatively un-

encumbered nature of the 700 MHz Band spectrum, we believe these are conservative

estimates.�12

For blocks A, B, C and E, the FCC ordered that signi�cant performance require-

ments be attached to the licenses. However, if the reserve price for a block were not

met, the FCC ordered that the block be re-auctioned with less stringent requirements,

at the same reserve price. As described in the service rules order for the auction,13

the performance requirements include the use of interim and end-of-term benchmarks,

with geographic area benchmarks for licenses based on CMAs and EAs,14 and popu-

lation benchmarks for licenses based on REAGs.15 Failure to meet the performance

requirements can result in a reduction in the license term, forfeiture of a license, or

the loss of authorization for unserved portions of the license area.16

In addition, for the C-block licenses, the FCC �will require licensees to allow cus-

tomers, device manufacturers, third-party application developers, and others to use or

develop the devices and applications of their choice, subject to certain conditions.�17

The FCC views this requirement of open platforms for devices and applications as

being for the bene�t of consumers.18

10The D-block license is subject to conditions relating to a public/private partnership, and will
not be the focus of our analysis.
11FCC Public Notice (DA 07-3415), paragraph 53.
12FCC Public Notice (DA 07-3415), paragraph 54.
13Second Report and Order (FCC 07-132), paragraph 153.
14Speci�cally, paragraph 157 states that �licensees must provide signal coverage and o¤er service

to: (1) at least 35 percent of the geographic area of their license within four years of the end of the
DTV transition, and (2) at least 70 percent of the geographic area of their license at the end of the
license term.�
15Speci�cally, paragraph 162 states that �licensees must provide signal coverage and o¤er service

to: (1) at least 40 percent of the population of the license area within four years, and (2) at least
75 percent of the population of the license area by the end of the license term.�
16Second Report and Order (FCC 07-132), paragraph 153.
17Second Report and Order (FCC 07-132), paragraph 195.
18Second Report and Order (FCC 07-132), paragraph 195. As stated in paragraph 198, �Although

wireless broadband services have great promise, we have become increasingly concerned that certain
practices in the wireless industry may constrain consumer access to wireless broadband networks and
limit the services and functionalities provided to consumers by these networks.�And as stated in
paragraph 199, �We are also concerned that wireless service providers appear to have required that
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�This auction provides a window of opportunity to have a signi�cant

e¤ect on the next phase of mobile wireless technological innovation, and on

the evolution of market and institutional arrangements� such as arrange-

ments regarding open platforms for devices and applications to the bene�t

of consumers� that will go along with that innovation. As a result, in light

of the evidence suggesting that wireless service providers are blocking or

degrading consumer-chosen hardware and applications without an appro-

priate justi�cation, we believe that it is appropriate to take a measured

step to encourage additional innovation and consumer choice at this crit-

ical stage in the evolution of wireless broadband services, by removing

some of the barriers that developers and handset/device manufacturers

face in bringing new products to market. By fostering greater balance be-

tween device manufacturers and wireless service providers in this respect,

we intend to spur the development of innovative products and services.�19

In the event that the reserve price for the A, B, C, or E block were not met, the

FCC would o¤er less restricted licenses �as soon as possible�after the �rst auction.20

In particular, the C-block licenses would be o¤ered without the open platform con-

ditions.21 According to the service order (at paragraph 307), �This will address the

possibilities that license conditions adopted today signi�cantly reduce values bidders

ascribe to those licenses and/or have unanticipated negative consequences.�

In the remainder of this paper, we analyze a contingent re-auction in the context of

a theoretical model, and we contrast it with the optimal mechanism in an environment

equipment manufacturers disable certain capabilities in mobile devices, such as Wi-Fi capabilities.
... Despite these technological possibilities and potential consumer advantages, wireless handsets
with Wi-Fi capabilities have been largely unavailable in the United States for reasons that appear
unrelated to reasonable network management or technological necessity.�Paragraph 200 continues:
�We have not found, however, that competition in the CMRS marketplace is ensuring that consumers
drive handset and application choices, especially in the emerging wireless broadband market. For
example, while it is easy for consumers to di¤erentiate among providers by price, most consumers
are unaware when carriers block or degrade applications and of the implications of such actions,
thus making it di¢ cult for providers to di¤erentiate themselves on this score. As a result, while
many commenters assert that market forces require that wireless providers support handsets and
applications that consumers want, there is evidence that wireless service providers nevertheless block
or degrade consumer-chosen hardware and applications without an appropriate justi�cation.�
19Second Report and Order (FCC 07-132), paragraph 201.
20Second Report and Order (FCC 07-132), paragraph 307. No de�nitive resolution is proposed

for the D block should its reserve price not be met.
21Second Report and Order (FCC 07-132), paragraph 311. As discussed in paragraph 312, the

band plan for the reauctioned C-block would also be modi�ed.
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with seller-bene�tting restrictions, and we discuss implications for the FCC�s auction

design.

3 Contingent re-auction with complete informa-

tion

We begin with a simple example to illustrate some of the issues that arise in

a contingent re-auction. The owner of a single object can sell it in restricted or

unrestricted form. There are n potential buyers. Buyer i has private values li and

hi for the restricted and unrestricted object respectively. We assume here that these

values are common knowledge, with h1 > h2 > ::: > hn. We do not want to assume

that the ranking of the values for the restricted object are the same as those for

the unrestricted object, so we let l(j) denote j-th highest value among l1; :::; ln. For

example, l(1) � max fl1; :::; lng. In addition to the sale revenue, the seller receives a
bene�t of B if and only if the object is sold in restricted form.

Thus the seller�s �rst-best outcome entails selling the restricted object to the

bidder with value l(1); for his value, if B + l(1) > h1; and selling the unrestricted

object to bidder 1 for h1 otherwise. For ease of exposition, we ignore ties. Note that

this outcome is e¢ cient.

We model the contingent re-auction as follows. The object is �rst put up for sale

in restricted form in a second-price auction with reserve price r. If no bidder bids

above r, the object is put up for sale in another second-price auction in unrestricted

form and with no reserve price. It is a useful simpli�cation to assume no reserve price

at the second auction, and it guarantees that the object is sold, which is realistic in

environments in which the seller cannot commit to retain the object.

As a preliminary observation, note that, in any equilibrium with undominated

strategies, if the second auction takes place, bidder 1 wins the unrestricted object

and earns h1 � h2. Now consider the �rst auction. The object remains unsold if

the reserve exceeds all bidders�values. If instead r � l(1), the outcome depends on

whether bidder 1 is also the bidder with the highest value for the restricted object: if

l1 < l(1) = lj for j 6= 1, then bidder j wins the restricted object and pays maxfr; l(2)g;
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if instead l(1) = l1; then bidder 1 bids

b1 =

(
0; if l(2) < r and l1 � r < h1 � h2

l1; otherwise.

To see this, note that when l(2) < r; bidder 1 has no competition in the �rst auction,

and thus can choose between buying the restricted object for r and forcing the second

auction for the unrestricted object by bidding zero. Thus bidder 1 suppresses his

bid in the �rst auction whenever he has the highest value for the restricted object

(l1 = l(1)), faces no competition for the unrestricted object (l(2) < r < l(1)), and earns

more by winning the unrestricted object at price h2 than by winning the restricted

object at price r (h1 � h2 > l1 � r).

Proposition 1 In the complete information case, the unrestricted object is sold in
the second auction if l(1) < r or l(2) � r < 0 < l1 � r < h1 � h2. Otherwise, the

restricted object is sold in the �rst auction. The optimal reserve price for the seller

is

r =

8><>:
l(1) � (h1 � h2); if l1 = l(1) and h2 � B +max

�
l(2); l(1) � (h1 � h2)

	
l(1); if l1 6= l(1) and h2 � B + l(1)

1; otherwise.

Proof. The �rst part of the proposition is proven in the text. To determine the

optimal reserve price, note that the seller�s surplus is h2 if l(1) < r or l(2) � r < 0 <

l1 � r < h1 � h2 and maxfl(2); rg+B otherwise. �

An implication of Proposition 1, is that for some parameter values, demand re-

duction reduces the seller�s surplus relative to what it would be if the bidders bid

truthfully in each of the two second-price auctions. Under truthful bidding, the

optimal reserve price is l(1) if h2 � B + l(1) and 1 otherwise, so seller surplus is

max
�
B + l(1); h2

	
. But if B + l(1) > h2 and l1 = l(1); then demand reduction in the

equilibrium bids results in seller surplus of only B+max
�
l(2); l(1) � (h1 � h2)

	
, which

is less than B + l(1).

It is worth pointing out that the demand reduction e¤ect in the contingent re-

auction is di¤erent in nature from the one described by Ausubel and Cramton (2002),

who consider auctions of multiple objects. In their environment, demand reduction
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has a collusive �avor, requiring that all bidders reduce their demand and buy fewer

objects in order to pay a lower price. In our case, there is only one object for sale and

demand reduction occurs only when there is a bidder who is e¤ectively a monopsonist

for the restricted object and thus can refuse to buy the restricted object in order to

force the seller to re-auction the unrestricted object.

Both the demand reduction discussed above and the presence of a positive reserve

price at the �rst auction can cause the outcome of the contingent re-auction to be

ine¢ cient. The seller�s only instrument for increasing revenue, the reserve price at

the �rst auction, creates an incentive for demand reduction since there is then a

positive probability that the second auction will occur and it can induce an ine¢ cient

allocation of the object. Nevertheless, the optimal contingent re-auction may have a

positive reserve price.

We explore these issues in a more general model in the remainder of this paper.

4 Environment with incomplete information

We now turn to the general model with privately known values. We maintain the

assumption that the seller has a single object that can be o¤ered either in restricted

or unrestricted form, with an extra bene�t B > 0 for the seller if the restricted version

is sold. We let N � f1; :::; ng denote the set of bidders. For all i 2 N , bidder i has

private values �i = (li; hi) that are obtained as the realization of a random variablee�i having cumulative distribution function F (l; h) and di¤erentiable density f (l; h).
The random variables fe�i; : : : ;e�ng are independent, and identically distributed, with
support

�i �
�
(l; h) 2 R2+ j l 2 [l; �l]; h 2 [h; �h]; l � h

	
:

De�ne � � �i2N�i. We let f (l j h) denote the conditional density of l given h and
let F (l j h) denote the cumulative distribution.

5 Equilibria of the contingent re-auction

In this section, we characterize and establish existence of the equilibria of the

contingent re-auction in the general model with two-dimensional types.

To model a contingent re-auction, assume the seller �rst o¤ers the restricted object
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for sale in a second-price auction with reserve price r and then, if the reserve is not

met, o¤ers the unrestricted object for sale in a second-price auction with no reserve

price. As we show, the analysis changes little if instead an English auction is used at

each stage. For now, we leave the possibility of a reserve price at the second auction

for future research.

We start by observing that in any equilibrium with undominated strategies all

bidders bid truthfully in the second auction, i.e., bidder i bids hi. In light of this fact,

we can establish the optimal strategy in the �rst stage. Essentially, for each value

hi there will be a threshold value gi (hi) such that types with li < g (hi) will prefer

to suppress their bids and wait for the second auction, while types with li > gi (hi)

will bid above the reserve price in the �rst auction. The next proposition makes this

precise.

Proposition 2 All the perfect Bayesian equilibria in undominated strategies of the
contingent re-auction game have the following structure: for each bidder i 2 N; there
is a nondecreasing function gi :

�
h; �h
�
!
�
r; �l
�
such that the bid function in the �rst

auction is given by bi (li; hi) =

(
0; if li < gi (hi)

li; if li � gi (hi) ;
and in the second auction, type

(li; hi) bids hi.

Proof. See Appendix A.

As an example, for the case with two symmetric bidders drawing their values

(l; h) from the uniform distribution on [0; 1]� [3; 4]; one can calculate numerically the
functions gi for various values of the reserve price (this calculation is not trivial� see

Appendix E). The functions gi for six possible reserve prices are shown in Figure 1.

The next result proves that there is no equilibrium in which the bidders bid

truthfully in the �rst auction, where by �truthfully�we mean bidding li whenever

li � r.

Proposition 3 In every equilibrium, there is an open set of types (li; hi) with li > r

who bid bi (li; hi) = 0 in the �rst auction.

Proof. See Appendix A.
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Figure 1: Function gi for the case of two symmetric bidders drawing values (li; hi)
from the uniform distribution on [0; 1] � [3; 4] for six possible values of the reserve
price

The intuition for Proposition 3 is straightforward: in order for a truthful equi-

librium to exist, it must be that all bidders with li greater than r bid li at the �rst

auction. But if li is close to r; bidder i�s expected surplus from the �rst auction is

small relative to his expected surplus at the second auction. Thus, if li is close to r,

bidder i prefers to bid zero, and so a truthful bidding equilibrium does not exist.

Proposition 3 implies that if the seller wants the object to be sold for values li
above a threshold bl; then the reserve price should be set at a level strictly less than bl.
Proposition 3 also implies that in every equilibrium there is �excessive delay�in

the sense that the second auction is reached with a probability strictly higher than

Pr (maxi2N li � r).

Corollary 1 Every equilibrium involves excessive delay due to non-truthful bidding

in the �rst auction.

The results proved so far show that all equilibria of the contingent re-auction

game have a relatively simple structure and that �excessive delay� is part of every

equilibrium. It is worth pointing out that the results of Proposition 3 hold for any

reserve price r > l. In fact, there is a sort of �multiplier e¤ect�similar to the one

discussed in Brusco and Lopomo (2007). When the reservation price is r > l all types

with li 2 [l; r] do not bid in the �rst auction, thus making the probability of reaching
the second auction strictly positive. But this implies that types with li = r + " also

12



prefer to delay if " is su¢ ciently small, since the expected gain in the �rst auction

is small. In turn, this increases the probability that the second auction is reached,

thus potentially convincing other types to delay the bid. What happens when r ! l

depends on the distribution of types, but using arguments similar to the ones in

Brusco and Lopomo (2007) it is possible to produce examples in which

lim
r!l
Pr (second auction is reached j r) > 0.

Since at r = l there is no delay. The implication is that, under some conditions the

imposition of even a minimal reserve price may produce delays.

Up to now, we have not established that an equilibrium exists. We therefore

complete now the analysis by showing the existence of a symmetric equilibrium.

Proposition 4 A symmetric perfect Bayesian equilibrium of the contingent re-auction
game exists.

Proof. See Appendix B.

We now characterize when a contingent re-auction produces a higher expected

social welfare, given by the sum of expected revenue and the social bene�t B, than

a simple one-shot auction either for the restricted or for the unrestricted object. See

Section 7 for comparisons with the exclusive buyer mechanism.

5.1 Comparison with auctioning the unrestricted object

As a necessary condition for a contingent re-auction to maximize the seller�s ex-

pected surplus, we must have

E
�
l(1)
�
+B > E

�
h(2)
�
: (1)

If condition (1) is not satis�ed then the seller prefers to sell the unrestricted object

and forfeit the social bene�t B because the revenue loss from selling the restricted

object is too large. Considering a slightly di¤erent condition, if

E
�
l(2)
�
+B > E

�
h(2)
�
; (2)
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then then there is always a contingent re-auction that does better than a single

auction of the unrestricted object. To see this, note that when (2) is satis�ed, a

contingent re-auction with a reserve price of zero has higher expected surplus for the

seller than a single auction for the unrestricted object. Thus, if the reserve price is

chosen optimally, the contingent re-auction must do better.

Proposition 5 Comparing a contingent re-auction with a single auction for the un-
restricted object, the seller prefers a contingent re-auction if B > E

�
h(2)
�
� E

�
l(2)
�
,

but not if B < E
�
h(2)
�
�E

�
l(1)
�
. If E

�
h(2)
�
�E

�
l(1)
�
� B � E

�
h(2)
�
�E

�
l(2)
�
; the

preference depends on the distribution of types.

5.2 Comparison with auctioning the restricted object

If the restricted object is sold using a single auction with an optimal reserve price

rD; the expected surplus to the seller is

SD (rD) = Pr
�
l(1) > rD

� �
E
�
max

�
l(2); rD

	
j l(1) > rD

�
+B

�
:

For a contingent re-auction with reserve price rC let N (rC) be the event

N (rC) = fli > grC (hi) at least one ig ;

where grC is the function describing the symmetric equilibrium when the reserve price

is rC , and :N (rc) the negation of the event. Thus, :N (rc) is the event in which no
bids are submitted at the �rst auction of a contingent re-auction. Then the expected

surplus to the seller from a contingent re-auction is

SC (rC) = Pr (N (rC)) (E [s (l; h; rC) j N (rC)] +B)+Pr (:N (rc))
�
E
�
h(2) j :N (rC)

��
;

where s (l; h; rC) is the revenue in the �rst auction, which depends on the vectors of

l�s and h�s as well as on the reserve price.

The comparison in this case is complicated because the introduction of the second

auction changes equilibrium behavior in the �rst auction in important ways. On the

one hand, if the object is not sold at the �rst auction, the seller can still secure

some revenue in the second. On the other hand, the existence of the second auction

makes it more likely that the �rst auction will fail. The details of the equilibrium,
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as described by the function g, cannot be ignored and, in general, it is impossible to

determine which one among SD (rD) and SC (rC) is higher.

However, we can say that a contingent re-auction does better when the number

of bidders is su¢ ciently large. We know that in this case the equilibrium approaches

truthful behavior, with all bidders with li > rC bidding in the �rst auction. The

second e¤ect (bidders are more reluctant to bid in the �rst auction) therefore vanishes.

Proposition 6 Comparing a contingent re-auction with a single auction for the re-
stricted object, the seller prefers a contingent re-auction if the number of bidders is

su¢ ciently large.

6 Optimal mechanism with one-dimensional types

In this section, we derive the optimal mechanism under an assumption that re-

duces the type space to one dimension. We assume a deterministic mapping from

a buyer�s value for the unrestricted object to his value for the restricted object so

that buyers� types become one dimensional. In Section 7, we consider the case of

two-dimensional types.

For the purposes of this section, assume that buyer i�s value for the restricted

object is a deterministic function of its value for the unrestricted object, li = �i(hi).

This assumption reduces the type space to a single dimension. The type space for

buyer i is �i �
�
(hi; li) 2 R2 j h � hi � h; li = �i (hi)

	
. As before, let � � �i2N�i.

We consider incentive compatible mechanisms in which buyers report their val-

ues for the unrestricted object, and the mechanism assigns either the restricted or

unrestricted object to a buyer and requires payments.

Let qHi : �! [0; 1] be the probability that buyer i wins the unrestricted object as

a function of the buyers�reports, and let qLi : �! [0; 1] be the probability that buyer

i wins the restricted object as a function of the buyers�reports. Let mi : � ! R be
buyer i�s payment as a function of the buyers�reports.

De�ne �̂i �
�
hi 2 R j h � hi � h

	
and �̂ � �i2N�̂i. Buyer i�s ex-post expected

surplus is

ui (hi; h�i) = hi q
H
i (hi; h�i) + �i (hi) q

L
i (hi; h�i)�mi (hi; h�i) ; (3)
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and the seller�s expected surplus isZ
�̂

Xn

i=1

�
mi (hi; h�i) +B qLi (hi; h�i)

�
dF (h) :

In what follows, we use capital letters denote interim expected quantities, i.e.,

QHi (hi) �
R
�̂�i

qHi (hi; y) dF�i (y) ; Q
L
i (hi) �

R
�̂�i

qLi (hi; y) dF�i (y) ;

Mi (hi) �
R
�̂�i

mi (hi; y) dF�i (y), and Ui(hi) �
R
�̂�i

ui (hi; y) dF�i (y). Note that

using (3),

Ui(hi) = hi Q
H
i (hi) + �i (hi) Q

L
i (hi)�Mi (hi) : (4)

Also de�ne

Ûi (h
0
i; hi) � hi Q

H
i (h

0
i) + �i (hi) Q

L
i (h

0
i)�Mi (h

0
i) :

A mechanism
�
qHi ; q

L
i ;mi

�
i2N satis�es interim incentive compatibility for buyer i; if

8hi; h0i;
Ûi (hi; hi) � Ûi (h

0
i; hi) : (5)

The following lemma is standard in Mechanism Design.

Lemma 1 A mechanism
�
qHi ; q

L
i ;mi

�
i2N satis�es interim incentive compatibility for

buyer i; if and only if it satis�es the following �envelope�and �monotonicity�condi-

tions:

Ui(hi) = Ui (h) +

Z hi

h

�
QHi (x) + �0i (x) Q

L
i (x)

�
dx: (6)

and

x � x0 ) QHi (x) + �0i (x) Q
L
i (x) � QHi (x

0) + �0i (x
0) QLi (x

0) : (7)

Given Lemma 1, buyer i�s ex ante expected surplus can be written asR �h
h
Ui(hi)dFi (hi) = Ui (h) +

R �h
h

�R hi
h

�
QHi (x) + �0i (x)Q

L
i (x)

�
dx
�
dFi (hi)

= Ui (h) +
R �h
h
(1� Fi (hi))

�
QHi (hi) + �0i (hi)Q

L
i (hi)

�
dhi;

(8)

where the �rst equality uses (6), and the second uses integration by parts.

De�ning virtual valuations

vHi (hi) � hi �
1� Fi (hi)

fi (hi)

16



and

vLi (hi) � B + �i (hi)�
1� Fi (hi)

fi (hi)
�0i (hi) ;

we have the following result.

Lemma 2 The seller�s expected bene�t generated ex ante by buyer i isZ �h

h

�
vHi (hi) Q

H
i (hi) + vLi (hi) Q

L
i (hi)

�
dFi (hi)� Ui (h) :

Proof. See Appendix C.

Finally, summing over all buyers, �unpacking�the interim Q�s, and assuming the

lowest type has zero interim expected surplus so that for all i 2 N , Ui (h) = 0, we

can write the seller�s objective function asZ
�̂

Xn

i=1

�
mi (hi; h�i) +B qLi (hi; h�i)

�
dF (h)

=

Z
�̂

Xn

i=1

�
vHi (hi) q

H
i (h) + vLi (hi) q

L
i (h)

�
dF (h) :

Maximizing pointwise, we �nd that the license should be given to the buyer with

the highest virtual valuation:

qHi (h) = �Hi (h) �
(
1; if vHi (hi) > maxf0;maxj 6=i vHj (hj) ;maxj vLj (hj)g
0; otherwise;

(9)

qLi (h) = �Li (h) �
(
1; if vLi (hi) > maxf0;maxj 6=i vLj (hj) ;maxj vHj (hj)g
0; otherwise.

(10)

The functions
�
�Hi ; �

L
i

�
; together with any payment functions mi that satisfy the

envelope condition in (6), i.e.,

Mi (hi) = hi Q
H
i (hi) + �i (hi) Q

L
i (hi)�

Z hi

hi

�
QHi (x) + �0i (x) Q

L
i (x)

�
dx; (11)

constitute a solution if and only if the function

Ai (hi) �
Z
��i

�
�Hi (h) + �0i (hi)�

L
i (h)

�
dF�i (h�i) (12)
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is nondecreasing for all i 2 N . Otherwise we need to �iron� (see Myerson, 1981).

In the next proposition, we establish that under mild conditions on Fi and �i there

exists a mechanism that is ex-post incentive compatible and ex-post individually ra-

tional and that maximizes the seller�s surplus among all interim incentive compatible

and interim individually rational mechanisms. More speci�cally, the conditions (13)

and (14) given in Proposition 7, which we maintain for the remainder of the paper,

guarantee that the ex-post assignment functions �Hi and �
L
i de�ned in (9) and (10)

are such that, for all i 2 N; ai (hi; h�i) � �Hi (hi; h�i) + �0i (hi)�
L
i (hi; h�i) is nonde-

creasing in hi for all h�i, guaranteeing that Ai (hi) is nondecreasing. For the purposes

of Proposition 7, it is useful to de�ne �i(hi) �
1�Fi(hi)
fi(hi)

.

Proposition 7 Suppose that for each i 2 N; the distribution Fi is regular, i.e.,

1� �0i (hi) � 0; (13)

and Fi and �i satisfy

� (1� �0i (hi)) (1� �0i (hi)) < �i (hi)�
00
i (hi) < (1� �0i (hi))�

0
i (hi) : (14)

Then there exist two threshold functions h0i : b��i ! b�i and h1i : b��i ! b�i such
that h0i (h�i) � h1i (h�i) and �

L
i (hi; h�i) = 1 if hi < h0i (h�i) and �

H
i (hi; h�i) = 1 if

h0i (h�i) < hi < h1i (h�i). Moreover, each function Ai de�ned in (12) is nondecreasing.

Hence the mechanism (�;m) ; where

m�
i (hi; h�i) � hi�

H
i (hi; h�i) + �i (hi)�

L
i (hi; h�i)

�
R hi
hi

�
�Hi (z; h�i) + �0i (z)�

L
i (z; h�i)

�
dz;

(15)

satis�es ex-post incentive compatibility and ex-post individually rationality and max-

imizes the seller�s surplus among all interim incentive compatible and interim indi-

vidually rational mechanisms.

Proof. See Appendix C.

The next proposition addresses the e¢ ciency of the optimal mechanism.

Proposition 8 When the optimal mechanism allocates the object in its unrestricted

(respectively restricted) form, it always allocates it to the buyer with the highest value
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for the unrestricted (respectively restricted) object if and only if buyers are symmetric

and h� 1�F (h)
f(h)

(respectively � (h)� 1�F (h)
f(h)

�0 (h)) is increasing in h.

As Proposition 8 shows, the optimal mechanism is not necessarily e¢ cient. How-

ever, the corollary below gives an environment in which, conditional on the form of

the object allocated, it is always allocated to the highest-valuing buyer.

Corollary 2 Conditional on the form of the object allocated, it is always allocated to
the highest-valuing buyer if buyers are symmetric, h� 1�F (h)

f(h)
is increasing in h; and

�0(h) is a constant.

As we now show, in some environments the optimal mechanism can be interpreted

as a type of second-price auction.

6.1 Example: Symmetric buyers with linear �

Assume buyers are symmetric with � (h) = �h for some � 2 (0; 1) and that the
conditions of Proposition 7 hold.

In this case, the virtual valuations are vH (h) = h � 1�F (h)
f(h)

and vL (h) = B +

�
�
h� 1�F (h)

f(h)

�
. In the optimal mechanism, the object is sold in its restricted form if

and only if vL(maxi2N hi) > 0 and vL(maxi2N hi) > vH(maxi2N hi); i.e., if and only

if

�B
�
< max

i2N

�
h� 1� F (h)

f (h)

�
<

B

1� �
:

The object is sold in its unrestricted form if and only if vH(maxi2N hi) > 0 and

vL(maxi2N hi) < vH(maxi2N hi); i.e., if and only if

max
i2N

�
h� 1� F (h)

f (h)

�
>

B

1� �
:

As shown by these expressions, if B is su¢ ciently large, the object is always

sold in its restricted form, and if B is su¢ ciently small, then it is always sold in its

unrestricted form.

De�ne cuto¤ values hr and h� as follows:

hr �
(
h; if h� 1

f(h)
> �B

�

h such that h� 1�F (h)
f(h)

= �B
�
; otherwise
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and

h� �

8>><>>:
�h; if �h < B

1��
h; if h� 1

f(h)
> B

1��

h such that h� 1�F (h)
f(h)

= B
1�� ; otherwise.

Given our assumption that h� 1�F (h)
f(h)

increasing in h; cuto¤ values hr and h� are well

de�ned and hr < h�. Note that hr and h� are independent of the number of buyers

n.

We can describe the optimal mechanism based on the cuto¤ values h� and hr.

The proof follows from the analysis above and (11).

Proposition 9 Order the buyers so that h1 � h2 � ::: � hn. In the optimal mecha-

nism, if h1 < hr; the object is not sold; if hr � h1 < h�; the object is sold in restricted

form; and if h� � h1; the object is sold in unrestricted form. When the object is sold,

it is sold to one of the buyers with the highest value, who pays

m (h1; h2) =

8><>:
�maxfhr; h2g; if hr < h1 < h�

�maxfhr; h2g+ (1� �)max fh�; h2g ; if h� < h1

0; otherwise,

where yi � maxj 6=i hj:

Proposition 9 implies that the optimal mechanism can be implemented through a

modi�ed second-price auction where bidders submit their values for the unrestricted

object. If the highest bid is less than hr, the object is not sold. If the highest bid

is greater than hr but less than h�; the high bidder wins the restricted object and

pays �max fhr; yg ; where y is the second-highest bid. If the highest bid is hi > h�,

the high bidder wins the unrestricted object and pays �maxfhr; yg+(1��)h� if the
second-highest bid is less than h� and pays the second-highest bid if the second-highest

bid is greater than h�. Note that a high bidder with value h� is indi¤erent between

receiving the restricted object, in which case its surplus is �h� � �maxfhr; yg, and
the unrestricted object, in which case its surplus is h� � �maxfhr; yg � (1� �)h� =

�h� � �maxfhr; yg. By the usual second-price logic, it is optimal for buyers to

truthfully report their values for the unrestricted object. However, this auction di¤ers

from the usual second-price auction in that a bidder�s bid can a¤ect the quality of

the object the bidder receives.
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One can show that if hr and h� have interior values, then the e¢ ciency loss

associated with the optimal mechanism isZ hr

h

(�x+B) dF n(x) +

Z h�

B
1��

((1� �)x�B) dF n(x): (16)

The �rst term in (16) is the e¢ ciency loss associated with not allocated the re-

stricted object when the highest valuation for the restricted object is less than hr,

and the second term is the e¢ ciently loss from allocating the restricted object when

e¢ ciency requires that the unrestricted object be allocated.

6.2 Continuation of example: uniform distribution

If we specialize the above example further to the case with F (x) = x; i.e., values

for the unrestricted object are drawn from the uniform distribution on [0; 1], then

hr = max
�
��B
2�

; 0
	
and h� = min

n
B+1��
2(1��) ; 1

o
. Thus, if � = 1; which implies that

�rms value the restricted and unrestricted object equally, then h� = 1; so if the object

is allocated, it is allocated in its restricted form. If � = 1; then as B approaches

zero, the second-price auction that implements the optimal mechanism reduces to a

second-price auction with reserve price 1
2
for the restricted object.

For comparison, in this case the reserve price in the optimal contingent re-auction

is either zero or one, so the optimal contingent re-auction reduces to either a single

auction for the restricted object or a single auction for the unrestricted object. To

see this, note that in the contingent re-auction with reserve price r; in the auction for

the restricted object buyer i bids zero if hi < 2r
2��1 ;

22 so (assuming 2r
2��1 2 [0; 1]) the

restricted object is allocated with probability 1�
�

2r
2��1

�2
and expected seller surplus

is

r

Z 1

�r

Z �r

0

2dxdy +

Z 1

�r

Z y

�r

�x2dxdy +

Z �r

0

Z y

0

x2dxdy +B
�
1� (�r)2

�
;

which one can show is is convex at any internal optimum, implying that the maximum

occurs at the boundary.

Figure 2 below is coarse, but it shows hr and h� for di¤erent values of B, shown

across the horizontal axis, and di¤erent values of �, as indicated by the legend. Thus,

for each value of �; there are two curves, the lower one showing hr as a function of

22The cuto¤ is g such that (�g � r)Fn�1(g) =
R g
0
Fn�1(y)dy.
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B and the upper one showing h� as a function of B. If the highest value among the

bidders is below the lower curve, the object is not allocated. If it is between the

curves, the object is allocated in restricted form. And if it is above the upper curve,

the object is allocated in unrestricted form. As shown in the �gure, as B increases,

hr decreases and h� increases so the range of values for which the object is allocated

in restricted form increases.
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0.5 ­ Average of hr
0.5 ­ Average of h*
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0.9 ­ Average of hr
0.9 ­ Average of h*
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alpha
Data

Figure 2: Curves hr and h� as a function of B. For high values below the lower curve,
the object is not allocated. For high values between the curves, the object is allocated
in restricted form. For high values above the upper curve, the object is allocated in
unrestricted form.

In this example, a bidder�s expected payment is

E[M(hi)] =
n� 1

n(n+ 1)
+
1� �

n
(h�)n +

�

n
(hr)n � 2(1� �)

n+ 1
(h�)n+1 � 2�

n+ 1
(hr)n+1 :

Figure 3 shows the seller�s expected revenue as a function of B; shown on the

horizontal axis, and �; as given by the legend. The seller�s expected revenue, as

a function of B; has a kink corresponding to the point where, in expectation, the

seller would allocate the unrestricted rather than the restricted object. As shown in

the �gure, expected revenue decreases with B because as B increases the optimal

mechanism is more likely to allocated the object in restricted form.

Total expected surplus to the seller is nE[M(hi)] + B Pr (hr < maxi2N hi < h�) ;

which is shown in Figure 4 as a function of B; shown on the horizontal axis, and �;

as given by the legend. As shown in the �gure, the seller�s total expected surplus is
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Figure 3: Seller�s expected revenue from the optimal mechanism as a function of B

increasing in B.
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Figure 4: Total expected surplus to the seller, including expected revenue and the
expected bene�t from the sale of the restricted object, as a function of B

We summarize the results for this example in the following proposition.

Proposition 10 If B > 1� �, the optimal mechanism is a second-price auction for

the restricted object (with a reserve price if B < �). If B < 1 � �, the optimal

mechanism is the auction described in Proposition 9. It is never optimal to auction

the unrestricted object (unless B = 0 and � = 1).

This last point of Proposition 10 is important because it says that if there is some

restriction that is socially valuable, then it is never optimal to auction the unrestricted
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object. The optimal mechanism is always either an auction for the restricted object

or the mechanism of Proposition 9, which allows the possibility that the restricted or

unrestricted object could be allocated.

To compare the results of the optimal mechanism with the contingent re-auction,

we have done some calculations for the case with two bidders, � = 3
4
and B = 0:1.

In this case, the optimal reserve price in the contingent re-auction is r = 0, so the

object is always sold in restricted form. In the optimal mechanism, hr = 0:433 and

h� = 0:7. Table 1 provides some preliminary comparisons.

Table 1: Comparisons of mechanisms for two symmetric buyers

with hi uniform on [0; 1]; li = 3
4
hi; and B = 0:1

probability
restricted
object is

sold

probability
unrestricted

object is
sold

probability
of no sale

expected
seller

revenue

expected
seller

surplus

expected
bidder

surplus

expected
total

surplus
1 0 0 0.250 0.350 0.250 0.600

(r  = 0)

0.490 0.510 0 0.342 0.391 0.268 0.659
(h r  = 0, h * = 0.7)
change relative to optimal
contingent re­auction 36.6% 11.6% 7.2% 9.8%

optimal mechanism 0.302 0.510 0.188 0.401 0.431 0.168 0.599
(h r  = 0.433, h * = 0.7)
change relative to optimal
contingent re­auction 60.4% 23.2% ­32.9% ­0.2%

0 1 0 0.333 0.333 0.333 0.667
(r  = 1)
change relative to optimal
contingent re­auction 33.2% ­4.9% 33.2% 11.2%

0.160 0.840 0 0.672
change relative to optimal
contingent re­auction ­81.4%

optimal contingent re­auction

first­best

optimal mechanism
s.t. must sell

most efficient cont re­auction

As shown in Table 1, the expected seller surplus is 23.2% higher in the optimal

mechanism versus the optimal contingent re-auction. The improvement is only 11.6%

if we require that the seller never retain the object. The optimal mechanism is

slightly less e¢ cient that the optimal contingent re-auction (0.2% lower expected

total surplus). The table also shows that the optimal contingent re-auction allocates

the object in restricted form far more often than in the �rst-best (with probability 1

versus 0.16). Finally, the table shows that the e¢ ciency of the optimal mechanism

subject to the seller never retaining the object and the e¢ ciency of the most e¢ cient

contingent re-auction, which has r = 1; is close to the �rst-best level.

In work in progress, we are trying to quantify the impact of assumptions such as

those made in this Section that reduce the type space to a single dimension. This
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may give us a better understanding of when it is and is not appropriate to focus on

one-dimensional environments in generally multi-dimensional problems.

7 Exclusive buyer mechanism

In this section, we describe the exclusive buyer mechanism. In the exclusive buyer

mechanism, buyers bid for the right to be the sole buyer to choose between purchasing

either the restricted or unrestricted object at �xed incremental prices. We show that

there exists an exclusive buyer mechanism that produces the e¢ cient outcome.23

In addition, we conjecture that there is an exclusive buyer mechanism that is an

optimal mechanism, at least within the class of dominant strategy mechanisms that

never retain the object. The formal demonstration of this is work in progress.

In work in progress, we are considering the relation between our exclusive buyer

mechanism and the optimal mechanism of Myerson (1981), which can also be imple-

mented as an exclusive buyer mechanism.

7.1 E¢ cient mechanism

The e¢ cient allocation has qHi = 1 if hi > max fmaxj 6=i hj;maxj B + ljg and qLi =
1 if B + li > maxfmaxj hj;maxj 6=iB + ljg. This can be implemented by an exclusive
buyer mechanism in which there is a second-price auction with no reserve price for

the right to face the choice between the restricted object for no incremental payment

and the unrestricted object for an incremental payment of B. (Equivalently, given the

assumption of private values, an ascending-bid auction, including the simultaneous

multiple round format of the FCC, can be used.)

To see this, note that bidder i has value max fli; hi �Bg from winning the second-
price auction. Thus, the winner of that auction will be the buyer with the maximal

value of max fli; hi �Bg. If buyer i is the winning bidder and li > hi � B; then

e¢ ciency requires that buyer i receive the object in restricted form. If buyer i is the

winning bidder and li < hi�B; then e¢ ciency requires that buyer i receive the object
in unrestricted form. With an incremental price of B for the unrestricted object in

the second stage of the exclusive buyer mechanism, this is the outcome.

23Regarding e¢ ciency in environments with budget balance constraints, see Williams (1999) and
Krishna (2002, Chapter 5).

25



Proposition 11 The e¢ cient outcome can be implemented with an exclusive buyer
mechanism using a second-price auction with no reserve price in the �rst stage, and

in the second stage incremental payment of zero for the restricted object and B for

the unrestricted object.

The e¢ cient mechanism described in Proposition 11 is (ex post) outcome equiva-

lent to a VCG mechanism (see Vickrey, 1961; Clarke, 1971; Groves, 1973; and Green

and La¤ont, 1977), but it is an indirect mechanism that can be implemented with

a simple auction. Implementation of the e¢ cient mechanism requires only that the

mechanism designer know B. In addition, this mechanism can accommodate arbi-

trarily many possible restrictions.

The FCC has experience o¤ering bidding credits (refunds) to certain bidders, so

it may be worth noting that the e¢ cient outcome can also be achieved using an

exclusive buyer mechanism with a price of �B (i.e., a refund of B) for the restricted

object and a price of zero for the unrestricted object. In this case, the minimum bid

in the initial auction could be set at B. Furthermore, the FCC�s existing auction

software should be able to accommodate exclusive buyer mechanisms being o¤ered

simultaneously for multiple licenses using their simultaneous multiple round auction

format, although with multiple licenses and externalities across licenses the outcome

need not be e¢ cient.

7.2 Optimal mechanism

We develop the optimal mechanism in two steps: �rst, we solve the seller�s ex-

pected surplus maximization problem for the case of a single buyer, and then we show

that auctioning the right to be the (sole) participant in this mechanism is optimal

among all interim incentive compatible and interim individually rational mechanisms.

Suppose the seller faces a single buyer. To de�ne the optimal mechanism in

the present environment, we require an assignment functions qH (�) and qL (�) and

payment function m (�) (since we have only one buyer, interim and ex-post quantities

coincide, so we use small letters and drop all buyer�s subscripts). We assume qH ; qL,

and m are twice continuously di¤erentiable.

Since there is only one object for sale, the assignment function must satisfy the
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constraint that the object be sold only once, 8 (h; l) 2 �,

qH(h; l) + qL(h; l) � 1: (17)

Incentive compatibility requires, 8 (h; l) ; (h0; l0) 2 �;

h qH (h0; l0) + l qL (h0; l0)�m (h0; l0) � h qH (h; l) + l qL (h; l)�m (h; l) ; (18)

and individual rationality requires, 8 (h; l) 2 �;

0 � h qH (h; l) + l qL (h; l)�m (h; l) : (19)

In this environment, the buyer�s ex-post expected surplus is

u (h; l) = max
h0;l0

�
h qH (h0; l0) + l qL (h0; l0)�m (h0; l0)

	
:

Lemma 3 All constraints in (19) are satis�ed i¤ u (h; l) � 0:

Proof. See Appendix D.

In what follows, we set u (h; l) = 0; as this is optimal for the seller. Thus, the

seller�s problem can be stated as

max
qH ;qL;m

Z
�

�
m (h; l) +BqL (h; l)

�
dF (h; l) ;

subject to (17) and (18).

As we now show, the optimal one-bidder mechanism is characterized by a threshold

�� such that bidders with h� l < �� choose the restricted object and pay incremental

cost l and those with h� l > �� choose the unrestricted object and pay incremental

cost ��.

We focus on mechanisms in which the object is always sold, where (17) holds with

equality. In this case, we have the following substantial simpli�cation.

Lemma 4 Suppose that
�
qH ; qL;m

�
satis�es (17) with equality, and (18). Then each

of the functions qH ; qL; and m depend only on the di¤erence � = h� l:

Proof. See Appendix D.
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We can now prove that the optimal mechanism for the case of a single buyer

consists of just two quality-price choices. To do so, we let � denote the marginal

c.d.f. of �, and to simplify the analysis we assume � is regular, i.e., we assume the

function  (�) � �� 1��(�)
�0(�) is increasing. The function  +B is the virtual valuation.

Proposition 12 The seller�s expected surplus is maximized by
�
qH�; qL�;m�� ; where

qH�(�) = 1 � qL�(�) =

(
1; if � > ��

0; if � < ��
and m� (�) =

(
0; if � < ��

��; if � > ��
and �� is

de�ned by  (��) = B; if B < 1; and �� = 1, if 1 � B.

Proof. See Appendix D.

Using Proposition 12, note that �� is increasing in B so that when the seller�s ben-

e�t from the restriction is large, the object is more likely to be allocated in restricted

form. When B is su¢ ciently large, the unrestricted object is never o¤ered.

In the �rst-best allocation, the buyer receives the unrestricted object with prob-

ability 1 if � > B and the unrestricted object otherwise. Note that, for generic

distributions, we have �� = 1��(��)
�0(��) +B > B. Thus, we have the following corollary.

Corollary 3 The optimal one-buyer mechanism assigns the restricted object too often
(and the unrestricted object not often enough) relative to the �rst best.

To give a simple example, if F is uniform on �; then � (�) = 2���2; which implies
that �� = 2

3
B + 1

3
. For example, if B = 1

2
; then �� = 2

3
; so the unrestricted object

is allocated if h� l > 2
3
and otherwise the restricted object is allocated. In contrast,

in the �rst-best allocation, the buyer would receive the unrestricted object whenever

h� l > 1
2
.

The buyer�s surplus from participating in the mechanism just characterized is

ui (h; l) =

(
h� ��; if �� < �

l; if �� > �:

As is well known, the �privileged buyer�auction (with no reserve price) yields the

expected value of the second order statistic among u1; :::; un. We conjecture that
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a second-price auction for the right to participate in the optimal one-buyer mecha-

nism described above constitutes an optimal mechanism, at least within the class of

dominant strategy mechanisms that never retain the object.

If this conjecture is correct, then the optimal exclusive buyer mechanism dom-

inates the contingent re-auction as far as expected seller surplus is concerned, and

possibly expected total surplus as well. We have established that the e¢ cient exclu-

sive buyer mechanism dominates the contingent re-auction as far as expected total

surplus is concerned, and possibly expected seller surplus as well. Comparing the op-

timal and e¢ cient exclusive buyer mechanisms, of course neither dominates in terms

of both expected seller surplus and e¢ ciency.

8 Comparisons

This section remains a work in progress; however, we are able to provide some

initial calculations. The numbers reported here are subject to re�nement.

Consider an environment with two symmetric bidders drawing their values (l; h)

from the uniform distribution on [0; 1]� [3; 4]. Assume bene�t to the seller of B = 3:3
if the object is sold in restricted form. In this case, one can use the numerically

calculated function g shown in Figure 1 to show that for the contingent re-auction the

seller�s optimal reserve price from the set R � f0; 0:1; 0:2; 0:3; 0:4; 0:5; 0:6g is r = 0:5.
This reserve maximizes the seller�s expected surplus (revenue plus the bene�t from

selling the restricted object) over the reserve prices in the set R. Increases in B result

in lower optimal reserve prices so that the object is more likely to be sold in restricted

form, and decreases in B result in higher optimal reserve prices so that the object

is less likely to be sold in restricted form. The contingent re-auction that maximizes

expected total surplus (again restricting attention to r 2 R) has r = 0:3, so that the
probability that the restricted object is sold is closer to the �rst-best level.

Table 2 shows the results of a Monte Carlo simulation based on 10,000 simulated

auctions. We will re�ne these results in the future, but they provide rough estimates.

Error introduced because of the coarseness of our estimate of g; coarseness in the

reserve prices allowed, and approximation in the parameters of the optimal exclusive

buyer mechanism.
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Table 2: Comparisons of mechanisms for two symmetric buyers

with (l; h) uniform on [0; 1]� [3; 4] and B = 3:3

probability
restricted
object is

sold

probability
unrestricted

object is
sold

probability
of no sale

expected
seller

revenue

expected
seller

surplus

expected
bidder

surplus

expected
total

surplus
0.708 0.292 0 1.368 3.704 0.266 3.969

(r  = 0.5)

0.747 0.253 0
(r  = 0.5)
change relative to optimal
contingent re­auction 6% ­13%

most efficient contingent re­auction 0.883 0.117 0 0.764 3.678 0.304 3.982
(r  = 0.3)
change relative to optimal
contingent re­auction 24.75% ­59.96% ­44.14% ­0.69% 14.35% 0.32%

0.710 0.290 0 1.373 3.715 0.277 3.992
(exclusive buyer with δ* = 3.18)
change relative to optimal
contingent re­auction 0.27% ­0.65% 0.36% 0.30% 4.27% 0.57%

0.812 0.188 0 1.028 3.709 0.289 3.998
(exclusive buyer with δ* = 3.3)
change relative to optimal
contingent re­auction 15% ­36% ­24.85% 0.14% 8.92% 0.73%

optimal contingent re­auction with
truthful bidding

optimal contingent re­auction

optimal mechanism s.t. seller can't
retain object

efficient mechanism

As shown in Table 2, the optimal contingent re-auction allocates the object in

unrestricted form too often relative to the e¢ cient outcome. The imposition of the

reserve price and the resulting strategic bidding both decrease the probability that the

object is allocated with restrictions. For the example used, the e¢ cient mechanism

allocates the restricted object with probability 0.812, but the optimal contingent re-

auction only allocates the restricted object with probability 0.708. To see how much

of this e¤ect is due to strategic bidding, note that with truthful bidding in the optimal

contingent re-auction, the restricted object is allocated with probability 0.747. So the

e¤ect of the reserve price itself and strategic bidding appear roughly equal. The most

e¢ cient contingent re-auction allocates the object in restricted form more often than

the �rst-best, but this �overshooting�may be because we only allow the reserve price

to vary along a fairly coarse grid. Improvements on this are work in progress.

The optimal exclusive buyer mechanism conditional on the seller not retaining

the object consists of �rst stage with a second-price auction with no reserve price

and a second stage with price zero for the restricted object and price 3.18 for the

unrestricted object. Comparing the optimal exclusive buyer mechanism with the

optimal contingent re-auction, we see only a small increase in expected seller surplus
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(0.30%), but a larger (4.27%) increase in expected bidder surplus.

Comparing the e¢ cient exclusive buyer mechanism with the contingent re-auction,

we see a large decrease in expected seller revenue (�24:85%), a small increase in
expected seller surplus (0.14%), a larger increase in expected bidder surplus (8.92%),

and a small increase in total expected surplus (0.73%). Thus, in this example, the

e¢ cient exclusive buyer mechanism dominates the contingent re-auction for both

the seller and the buyers. The increase in total surplus from moving to an e¢ cient

mechanism is shared by both the seller and the buyers.

9 Conclusion

The conclusions presented here remain preliminary.

Based on our results, we can o¤er some comments regarding the contingent re-

auction that may improve its implementation should sellers choose to use that mech-

anism. Recall that the contingent re-auction requires that the seller specify a reserve

price for the initial auction for the restricted object, and potentially also a reserve

price for the unrestricted object, although as a simpli�cation in our analysis we as-

sume a zero reserve price for the unrestricted object.

� Comments on the contingent re-auction

� Strategic underbidding is most likely to be a problem when there are a

small number of bidders, bidders believe they have some chance of winning

the unrestricted object, and bidders have values for the restricted object

that are less than or not substantially greater than the reserve price.

� If the reserve price at the �rst auction is set so that r+B is greater than or
equal to the expected revenue at the second auction, then the contingent

re-auction is at least as good (in expectation) as just holding a single

auction for the unrestricted object with no reserve.

� If B is greater than the expected revenue at the second auction, then a

single auction for the restricted object with no reserve is better than a

contingent re-auction.

Moving away from the contingent re-auction, for some environments, we can char-

acterize the optimal mechanism. For example, if buyers are symmetric and their
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values for the restricted object are simply a �xed fraction � of their values for the

unrestricted object, then the optimal mechanism can implemented through an auc-

tion in which each bidder submits one bid, the high bidders wins, and receives the

restricted object if its bid is above the reserve price but below a threshold set by the

seller, and receives the unrestricted object if its bid is above the threshold. If the

high bidder wins the restricted object it pays � times the second-highest bid (or the

reserve price if there are no other bids above the reserve price), and if the high bidder

wins the unrestricted object, it pays an amount calculated based on reserve price, the

threshold, and the second-highest bid.

In a more general environment with two-dimensional types, we conjecture that an

exclusive buyer mechanism is optimal, at least among dominant strategy mechanisms

that never retain the object. Our numerical results suggest that the exclusive buyer

mechanism o¤ers some improvement over the contingent re-auction, although the

improvement for the seller does not appear large. Interestingly, in our example,

although the parameters of the exclusive buyer mechanism are chosen to maximize the

seller�s expected surplus, the mechanism is slightly more e¢ cient that the contingent

re-auction and so the buyers are also able to bene�t from the change. Additional

increases in seller revenue may be possible if we consider mechanisms in which the

seller sometimes retains the object.

Finally, we identify an easily implemented e¢ cient mechanism for our general en-

vironment. It is an exclusive buyer mechanism de�ned by a second-price auction with

no reserve price and then prices of zero and B for the restricted and unrestricted ob-

jects, respectively. Thus, a seller interested in maximizing expected total surplus, can

do so with no knowledge of the number of bidders or the underlying type distributions.

The mechanism can be adapted to accommodate multiple possible restrictions. Fur-

thermore, in our numerical example, although the seller forfeits substantial revenue

in the e¢ cient exclusive buyer mechanism relative to the contingent re-auction, the

seller�s expected surplus actually increases slightly. Thus, at least in our example, the

seller can achieve an increase in e¢ ciency and an increase it its own expected surplus

simultaneously by switching from a contingent re-auction to the e¢ cient exclusive

buyer mechanism. In the example, such a switch also provides bene�ts to buyers,

whose expected surplus increases.

In future work, we hope to expand and improve upon the results presented here. A

particularly interesting extension would allow allocative externalities, where a buyer
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that does not receive the object might have preferences over which buyer does receive

it and whether the object is allocated in restricted or unrestricted form. Also, in

our model some of the results for one-dimensional environments do not extend to the

general multi-dimensional environment, so we hope to explore more generally when

is it and is it not appropriate to focus on one-dimensional environments in generally

multi-dimensional problems.

To conclude, our primary recommendation is that sellers in environments with

seller-bene�tting restrictions consider using an exclusive buyer mechanism, either one

tailored to maximize e¢ ciency or seller surplus, depending upon the seller�s objec-

tives. It appears that a type of exclusive buyer mechanism is currently being used by

Japan�s Nippon Professional Baseball. Japanese players are o¤ered to Major League

Baseball in a system described by Wikipedia as follows:

�TheMLBO¢ ce of the Commissioner then holds a four-day-long silent

auction among its teams. The highest resulting bid on the player is sent

to the Japanese team, which may or may not choose to accept it. If

the bid is accepted, the bid amount is publicly revealed and the winning

Major League team is granted the exclusive rights to negotiate with the

player.�24

Recently, the Red Sox paid $51.11 million for the opportunity to negotiate with

Daisuke Matsuzaka, who they then signed to a six-year, $52 million contract.25 This

system has much of the �avor of the exclusive buyer mechanism, where buyers bid to

be the privileged buyer to have an opportunity to buy the object for sale.

24http://en.wikipedia.org/wiki/Posting_system
25�Matsuzaka, Red Sox reach agreement on six-year deal,�ESPN.com news services, February 23,

2007, http://sports.espn.go.com/mlb/news/story?id=2696321.

33



A Appendix �Characterization proofs

Proof of Proposition 2. It is obvious that, for each bidder i = 1; :::; n; the only

bid in the second auction that is consistent with an undominated strategy is hi.

Consider the �rst auction. Let bj (lj; hj) denote the bidding functions used in the

�rst auction by all bidders j 6= i and consider the optimization problem for bidder

i. The key observation is that by bidding bi � r, bidder i rules out the possibility

of a second auction. Therefore, conditional on bidding on or above the reserve price,

bidder i�s incentives are the same as in a standard second-price auction, where the

only undominated bid is li.

The previous observation implies that, for any type (li; hi) of bidder i; only two

bids can be optimal in the �rst auction: 0 and li. Clearly, the optimal bid is 0

if li < r. For all other types, the expected payo¤ from bidding 0 is V 2
i (hi) =

E
h
s2i

�
hi;eh�i;el�i; b�i�i ; where

s2i (hi; h�i; l�i; b�i) �
(
hi �maxj 6=i hj; if maxj 6=i hj < hi and maxj 6=i bj (lj; hj) < r;

0; otherwise,

because in this case the second auction takes place only if all other bidders also bid

below r; i.e. maxj 6=i bj (lj; hj) < r; and bidder i wins the second auction only if he has

the highest value for the unrestricted object. Bidding li � r instead yields expected

payo¤ V 1
i (li) = E

h
s1i

�
li;eh�i;el�i; b�i�i ; where

s1i (li; h�i; l�i; b�i) �
(
li �max fr; maxj 6=i ljg if maxj 6=i bj (lj; hj) < li

0; otherwise.

Note that V 2
i (hi) does not depend on li, and V

1
i (li) does not depend on hi. Fur-

thermore, since Pr [maxj 6=i lj < r] is strictly positive, V 1
i (li) is strictly increasing in li

over the interval
�
r; �l
�
and V 2

i (hi) is strictly increasing in hi over the interval
�
h; h
�
.

This implies that if there is a type (li; hi) such that V 2
i (li) � V 1

i (hi) ; then for all

types (l0i; hi) with l
0
i > li we have V 2

i (l
0
i) > V 1

i (hi). This in turn implies that for hi
there is a threshold value gi (hi) 2

�
r; �l
�
such that for each li > gi (hi) ; the bidder

prefers to participate in the �rst auction rather than delay, and for each li < gi (hi) ;

the bidders prefer to o¤er zero. The function gi (hi) is non-decreasing because V 2
i (hi)

is increasing in hi. �
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Proof of Proposition 3. Suppose not. By Proposition 2 the equilibrium bidding

functions in the �rst auction must be such that gi (hi) = r for each i and hi 2
�
h; h
�
.

Suppose that all bidders other than i use this strategy and consider the best response

of type (r + "; hi) of bidder i, with hi > h. The expected payo¤ from bidding zero in

the �rst auction is

V 2
i (hi) =

Z h

h

� � �
Z h

h

Z r

l

� � �
Z r

l

�
hi �max

j 6=i
hj

�
1maxj 6=i hj<hi�j 6=if (lj; hj) dl�idh�i;

and the expected payo¤ from bidding li � r in the �rst auction is

V 1
i (r + ") �

Z h

h

� � �
Z h

h

Z r+"

l

� � �
Z r+"

l

(r + "� r)�j 6=if (lj; hj) dl�idh�i < ":

(See the proof of Proposition 2 for expressions for V 2
i and V

1
i .) For hi > h; V 2

i (hi) > 0,

which implies that there is some value "(hi) > 0 such that V 1
i (r + ") < V 2

i (hi) for

each " < "(hi). This implies that it is not a best response for types (li; hi) with

li 2 (r; r + "(hi)) to bid their value in the �rst auction. �

B Appendix �Existence proof

Proof of Proposition 4. Proposition 2 shows that every equilibrium can be char-

acterized by a collection of �threshold functions�fg1 (h1) ; : : : ; gn (hn)g. We want to
show that it is possible to �nd a function g such that gi = g for each bidder is an

equilibrium. Consider the function

g (h) =

(
k; if h � k

k + � (h� k) ; if h > k;
(B.1)

where k > r, and � :
�
k; h
�
! R satis�es � (0) = 0 and � 0 (x) � 1 for x � h.

Let z (h) denote the marginal densities of h and let Z (h) denote the cumulative

distribution. The expected surplus for type (l; h) when bidding 0 in the �rst auction,

if all other bidders bid according to g; can be written as

V 2 (h; g) =

Z h

h

� � �
Z h

h

Z g(h1)

l

� � �
Z g(hn)

l

�
h�max

j 6=i
hj

�
�j 6=if (lj; hj) dl�idh�i: (B.2)
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De�ning

s� (l; l�i; h�i; g) � max
��

l � r
�
�j 6=i1lj<g(hj)

�
�
�
max
j 6=i

lj

��
1�

�
�j 6=i1lj<g(hj)

���
; 0

�
;

bidding li � r yields an expected value equal to

V 1 (l; g) =

Z h

h

� � �
Z h

h

Z �l

l

� � �
Z �l

l

s� (l; l�i; h�i; g)�j 6=if (lj; hj) dl�idh�i: (B.3)

Consider the case k = �l. In this case, V 2 and V 1 are independent of g and we have

V 2
�
h; �l
�
=

Z h

h

� � �
Z h

h

Z l

l

� � �
Z l

l

�
h�max

j 6=i
hj

�
�j 6=if (lj; hj) dl�idh�i:

=

�
h� E

�
max
j 6=i

hj j hj < h each j 6= i

��
(Z (h))n�1

and V 1
�
l; l
�
= (l � r). Since

dV 2(h;l)
dh

= (Z (h))n�1, the function V 2
�
h; l
�
is strictly

increasing and it has slope less than 1. The highest value l compatible with a given h

is h and the function V 2
�
h; l
�
= (h� r) increases with slope 1 and takes value zero

at h = r. Since V 1
�
r; l
�
> 0 = V 2

�
r; l
�
, we conclude that if

V 1
�
l; l
�
=
�
l � E

�
maxj 6=i hj j hj < l each j 6= i

�� �
Z
�
l
��n�1

� l � r

= V 2
�
l; l
�
;

(B.4)

then there exists an equilibrium in which all types bid zero in the �rst auction and

compete in the second auction, i.e., an equilibrium with total postponement. We

record this result in the following lemma.

Lemma B.1 If (B:4) holds, then there exists an equilibrium in which bidders do not
bid in the �rst auction, and bid their values in the second auction, i.e., delay occurs

with probability one.

In general the condition is easier to satisfy if r is large and it is in fact trivially

satis�ed if r = l. Furthermore, as n increases E
�
maxj 6=i hj j hj < l each j 6= i

�
in-

creases and
�
Z
�
l
��n�1

decreases, thus making the condition more di¢ cult to satisfy.

A simpler form of the condition is available for the case l = h, so that Z
�
l
�
= 1. In
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this case the condition can be written as r � E [maxj 6=i hj] ; i.e., the reserve price in

the �rst auction must be greater than the expected payment in the second auction

for the highest type.

Suppose now that condition (B.4) is violated, that is

V 2
�
l; l
�
< V 1

�
l; l
�
; (B.5)

so that Lemma (B.1) does not apply. We want to show that there is an equilibrium

with k < l.

Since g can be represented by the real number k and the function � we now

write V i (�; k; �) rather than V i (�; g). In such an equilibrium, each type (g (h) ; h)
with h � k has to be indi¤erent between bidding its value in the �rst auction and

bidding zero. In particular, type (k; k)has to be indi¤erent between bidding in the

�rst auction and waiting. Thus V 2 (k; k; �) = V 1 (k; k; t). Since for hj � k we have

g (hj) = k; it follows that

V 2 (k; k; t) =

Z k

h

� � �
Z k

h

Z k

l

� � �
Z k

l

�
k �max

j 6=i
hj

�
�j 6=if (lj; hj) dl�idh�i:

Furthermore, since g (hj) � k for li = k; we have

V 1 (k; k; t) =

Z h

h

� � �
Z h

h

Z g(h1)

l

� � �
Z g(hn)

l

(k � r)�j 6=if (lj; hj) dl�idh�i:

For a given t; both functions are continuous in k over
�
k; l
�
. At k = r we have

V 1
i (r; r; t) = 0 < V 2 (r; r; t), and condition (B.5) implies that at k = l we have

V 1
�
l; l; t

�
> V 2

�
l; l; t

�
. We therefore conclude that for each function � ; there is a

k� 2
�
r; l
�
such that V 2 (k�; k�; �) = V 1 (k�; k�; �).

An additional condition for g (h) to be an equilibrium is that for each h > k; the

type (g (h) ; h) be indi¤erent between bidding in the �rst auction and postponing.

Thus, V 2 (h; k; �) = V 1 (g (h) ; k; �) ; and given the assumption of di¤erentiability
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dV 2(h;k;�)
dh

= dV 1(g(h);k;�)
dl

g0 (h) ; which implies g0 (h) =
dV 2(h;k;�)

dh
dV 1(g(h);k;�)

dl

; where

dV 2 (h; k; �)

dh
=

Z h

h

� � �
Z h

h

Z g(h1)

l

� � �
Z g(hn)

l

�j 6=if (lj; hj) dl�idh�i

=

�Z h

h

F (g (x) j x) z (x) dx
�n�1

and

dV 1 (l; k; �)

dl
=

Z h

h

� � �
Z h

h

Z maxfl;g(h1)g

l

� � �
Z maxfl;g(h1)g

l

�j 6=if (lj; hj) dl�idh�i

=

 Z h

h

F (max fl; g (x)g j x) z (x) dx
!n

:

Then the integral equation to be solved is

g0 (h) =

0@ R h
h
F (g (x) j x) z (x) dxR h

h
F (max fg (h) ; g (x)g j x) z (x) dx

1An�1

:

We are now ready to establish the main result of this section.

Lemma B.2 For each n there is a symmetric perfect Bayesian equilibrium described
by a function

gn (h) =

(
kn; if h � kn

kn + �n (h� k) ; if h > kn;

where kn > r, and �n is strictly increasing, di¤erentiable and such that �n (0) = 0 and

� 0n (x) � 1 for x � h. As n ! 1 all symmetric equilibria converge to the constant

function g1 (h) = r.

Proof of Lemma B.2. To prove existence, consider the problem with a �xed n. If

inequality (B.4) is satis�ed then there is an equilibrium with g (h) = l. Thus, suppose

that it is not satis�ed. For each given k 2
�
r; l
�
consider the integral equation

g0 (h) =

0@ R h
h
F (g (x) j x) z (x) dxR h

h
F (max fg (h) ; g (x)g j x) z (x) dx

1An�1

(B.6)
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de�ned over the interval
�
k; h
�
with initial condition g (k) = k. Under regularity

assumptions on the probability distribution there is a unique solution for each k, call

it g�k. Clearly the solution has
dg�k(h)

dh
2 (0; 1). In fact, de�ne y (h) � 1

1+
R h
h F (rjx)z(x)dx

;

and observe that for each h < h we have y (h) < 1. Observe that for every increasing

function g we haveR h
h
F (g (x)jx) z (x) dxR h

h
F (max fg (h) ; g (x)gjx) z (x) dx

=

R h
h
F (g (x)jx) z (x) dxR h

h
F (g (h)jx) z (x) dx+

R h
h
F (g (x)jx) z (x) dx

<

R h
h
F (g (h)jx) z (x) dxR h

h
F (g (h)jx) z (x) dx+

R h
h
F (rjx) z (x) dx

< y (h) :

It follows that g0 (h) is bounded above by (y (h))n�1.

The solution is an equilibrium if we can �nd k� 2
�
r; l
�
such that

	(k) � V 2 (k; g�k)� V 1 (k; g�k) = 0. (B.7)

The function 	 is continuous in k. Clearly 	(r) < 0 and, since inequality (B.4) is

not satis�ed, 	
�
l
�
> 0. Thus, a solution exists.

Consider now the behavior of the solution as n goes to in�nity. Inequality (B.4)

can be written as�
l � E

�
max
j 6=i

hj j hj < l each j 6= i

�� �
Pr
�
hj < l

��n�1
> l � r:

Since the LHS goes to zero as n!1 while the RHS is constant and strictly positive,

the inequality is not satis�ed for n large enough. Thus, for n large the solution must

be obtained as a solution of the integral equation (B.6) and the equation (B.7).

Since for each h we have g0n (h) � (y (h))
n�1 and y (h) < 1 for each h < h it follows

that limn!1 g
0
n (h) = 0; i.e., the solution must tend to a constant function. Notice

further that for each n the solution must satisfy
V 2n

�
k�n;g

�
k�n

�
V 1n

�
k�n;g

�
k�n

� = 1, which in turn implies

lim
n!1

V 2
n

�
k�n; g

�
k�n

�
V 1
in

�
k�n; g

�
k�n

� = 1: (B.8)
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Let k�1 = limn!1 k
�
n. We want to show that k

�
1 = r. Since we have established that

limn!1 g
�
n (h) = k�1 for each h, we have

lim
n!1

V 2
n

�
k�n; g

�
k�n

�
V 1
n

�
k�n; g

�
k�n

�
= lim

n!1

(k�1 � En [maxj 6=i hj j hj < k�1; lj < k�1 each j 6= i])

(k�n � r)
lim
n!1

�
Pr (hj < k�1; lj < k�1)

Pr (lj < k�1)

�n�1
;

where En denotes the expectation taken when there are n bidders. Since the second

limit is zero, the only way in which (B.8) can be satis�ed is if

lim
n!1

(k�n � En [maxj 6=i hj j hj < k�n; lj < k�n each j 6= i])

(k�n � r)
=1;

but for this to be the case the denominator must converge to zero, thus establishing

limn!1 k
�
n = r. �

Using Lemma B.2, Proposition 4 follows. �
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C Appendix �Optimal mechanism proofs

Proof of Lemma 2. The seller�s expected bene�t generated ex ante by buyer i isZ �h

h

�
Mi (hi) +B QLi (hi)

�
dFi (hi)

=

Z �h

h

�
hi Q

H
i (hi) + �i (hi) Q

L
i (hi)� Ui (hi) +B QLi (hi)

�
dFi (hi)

=

Z �h

h

�
hi Q

H
i (hi) + (�i (hi) +B) QLi (hi)

�
dFi (hi)�

Z �h

h

Ui (hi) dFi (hi)

=

Z �h

h

�
hi Q

H
i (hi) + (�i (hi) +B) QLi (hi)

�
dFi (hi)

�Ui (h)�
Z �h

h

(1� Fi (hi))
�
QHi (hi) + �0i (hi) Q

L
i (hi)

�
dhi

=

Z �h

h

0@ �
hi � 1�Fi(hi)

fi(hi)

�
QHi (hi)+�

�i (hi) +B � 1�Fi(hi)
fi(hi)

�0i (hi)
�
QLi (hi)

1A dFi (hi)� Ui (h)

=

Z �h

h

�
vHi (hi) Q

H
i (hi) + vLi (hi) Q

L
i (hi)

�
dFi (hi)� Ui (h) ;

where the �rst equality substitutes for Mi(hi) using (4), the second equality re-

arranges, and the third equality uses (8), the fourth equality rearranges, and the

last equality uses the de�nitions of vHi and v
L
i . �

Proof of Proposition 7. Conditions (13) and (14) guarantee that vLi and v
H
i are

nondecreasing. To see this, note that (13) and (??) imply that dv
H
i (hi)

dhi
= 1��0i (hi) � 0

and dvLi (hi)

dhi
= (1� �0i (hi))�

0
i (hi)� �i (hi)�

00
i (hi) > 0. In addition, since

vHi (hi)� vLi (hi) = hi � �i (hi)� (B + �i (hi)� �i (hi)�
0
i (hi)) ;

condition (14) guarantees that

d
�
vHi (hi)� vLi (hi)

�
dhi

= (1� �0i (hi)) (1� �0i (hi)) + �i (hi)�
00
i (hi) > 0.

Thus, vLi crosses the x-axis at most once from below and v
H
i at most once from above.

This implies the existence of the two threshold functions and the monotonicity of
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Ai. It is routine to verify that the payment functions de�ned in (15) satisfy ex-

post incentive compatibility and ex-post individually rationality. Finally, (�;m�)

is optimal among all interim incentive compatible and interim individually rational

mechanisms because it satis�es interim incentive compatibility and interim individual

rationality and the assignment functions � solve the �relaxed�problem (subject to only

�local�interim incentive compatibility). Q.E.D.

D Appendix �Exclusive buyer proofs

Proof of Lemma 3. As it is well known (Rochet, 1987; or Milgrom and Segal,

2002), the inequalities in (18) imply that the buyer�s rent function u(h; l) satis�es for

almost all (h; l) 2 �;

ru (h; l) =
"

@u(h;l)
@h

@u(h;l)
@l

#
=

"
qH (h; l)

qL (h; l)

#
(D.1)

and for all (h; l) ; (h0; l0) 2 �; u (h; l)�u (h0; l0) =
R
P
q (� ) � d� ; where the integral is a

line integral of the gradient vector �eld q =
�
qH ; qL

�0
along any path P from (h0; l0)

to (h; l). Since q � 0; by (D.1) we immediately have that u (h; l) � u (h; l) for all

(h; l) 2 T ; hence all constraints in (19) are satis�ed i¤ u (h; l) � 0. �

Proof of Lemma 4. Using the equality in (17) yields

h qH (h0; l0) + l qL (h0; l0)�m (h0; l0) = h qH (h0; l0) + l
�
1� qH (h0; l0)

�
�m (h0; l0)

= (h� l) qH (h0; l0) + l �m (h0; l0)

= l + � qH (h0; l0)�m (h0; l0) :

Changing variables (h; l)! (h; �) (with slight abuse of notation we keep similar nota-

tion), we rewrite (18) as, 8 (�; l) 2 �, w (�; l)�w (�0; l0) � (l � l0)+(� � �0) qH (�0; l0),

where w (�; l) � l + � qH (�; l) �m (�; l) for (�; l) 2 � �
�
(x; y) 2 R2

+ j x+ y � 1
	
.

By the envelope theorem we have for almost all (�; l) 2 �;

rw (�; l) =
"

@w(�;l)
@�

@w(�;l)
@l

#
=

"
qH (�; l)

1

#
:
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Now conservativeness implies @qH(�;l)
@l

= 0. Recall that we assume that w is twice

continuously di¤erentiable. The set of all twice continuously di¤erentiable convex

functions on � is dense in the set of all convex functions on �. Thus, qH must be

independent of l, and (18) implies(
l + � qH (�)�m (�; l) � l + � qH (�)�m (�; l0)

l0 + � qH (�)�m (�; l0) � l0 + � qH (�)�m (�; l)

)
,
(
�m (�; l) � �m (�; l0)
�m (�; l0) � �m (�; l)

)
;

which implies m (�; l0) = m (�; l). �

Proof of Proposition 12. The standard characterization of incentive compatibility
now yields that qH must be nondecreasing, and 8� 2 [0; 1] ; 8l 2 [0; 1� �], w (�; l) =

l+
R �
0
qH (x) dx (see the proof of Lemma 4 for the de�nition of w). Taking expectations

with respect to l and � and rearranging yields

E [w (�; l)] = E [l] +

Z 1

0

(1� � (�)) qH (�) d�: (D.2)

Now using (??) and (D.2) we can write the seller�s expected surplus as

E
�
m (�) +B

�
1� qH (�)

��
= E

�
hqH (�) + (l +B)

�
1� qH (�)

�
� w (�; l)

�
= E

�
(h� l �B) qH (�)

�
+B �

Z 1

0

(1� � (�)) qH (�) d�

= B +

Z 1

0

�
� �B � 1� � (�)

�0 (�)

�
qH (�) d� (�) :

The result then follows. �

E Appendix �Calculation of g

Consider the case of two symmetric bidders, where each bidder i draws its type

�i = (hi; li) according to the same c.d.f. with rectangular support �1 = [hL; hH ] �
[lL; lH ]. Any symmetric equilibrium of the contingent re-auction is characterized by

an indi¤erence function g : [hL; hH ]! [lL; lH ] ; where (recall that F is the conditional
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c.d.f. of l)

g0 (h) =

R h
hL
FY jX (g (x) j x) dFX (x)R hH

hL
FY jX (max fg (h) ; g (x)g j x) dFX (x)

: (E.1)

The equation in (E.1) can be rewritten as a second order di¤erential equation,

where g (hL) = r; which provides one initial condition. It is immediate to see that

g0 (hL) = 0 for any r � 0; and for r = 0; g (h) � 0 is a solution of (E.1), i.e., no reserve
implies no delay. We can also show that for any r > 0; 8h 2 (hL; hH) ; 0 < g0 (h) < 1.

With F uniform, we have

g0 (h) =

R h
hL
g (x) dx

hg (h) +
R hH
h

g (x) dx
=

G (h)

hg (h) +G (hH)�G (h)
; (E.2)

where G (h) �
R h
hL
g (x) dx.

One can then �nd a numerical solution x (� j �) of the second-order ODE x00 (h) =
x (h)

hx0 (h) + �� x (h)
; h 2 [hL; hH ], with initial conditions x (hL) = 0 and g (hL) = r;

for each � 2
�
r; r + 1

2
(hH � hL)

�
. Since g0 2 [0; 1] impliesG (hH) 2

�
r; r + 1

2
(hH � hL)

�
;

we only look at solutions G where � is in (a grid within) that range. Then �nd the

value of �� such that �� = x (hH j ��). The function g (h) = x0 (h j ��) is a solution
to (E.1).

To solve the di¤erential equation we �rst convert the above second-order ODE into

a pair of �rst-order ODEs. This is a standard operation (Euler�s method). We can
then solve this system numerically, by discretizing the interval [tL; tH ] ; and solving

the resulting di¤erence equations recursively.
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