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Abstract

This paper proposes a new approach for dealing with general dependence in
auctions. The method allows both theoretical and numerical characterization of
monotone pure strategy equilibria in first price auctions. Given the close connec-
tion between the theoretical and numerical parts, one can draw conjectures from
the observation of computer experiments (simulations), which can suggest direc-
tions to the development of the theory. This is illustrated by the proof that the set
of first price auctions with dependent private values which have monotonic pure
strategy equilibrium has zero measure.
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1 Introduction
As Maskin (2004) points out, “by any standard measure, auction theory has been an
enormous success.” It has been influential not only in economic theory but also in the
design of real world auctions, frequently involving millions of dollars. This success
may suggest that auctions are well understood, but this is far from being true, even in
the special (but important) case of single object private values auctions. In this case,
there are at least two main issues that remain to be better explored: asymmetries and
dependence of the private information of bidders.

With asymmetric bidders, a complete characterization of the equilibrium strategies
is not possible, even with independent types (see Lebrun, 2006). With dependence,
the problem is not exactly characterization (which is possible in the symmetric case),
∗This paper supersedes the second part of “Affiliation, Equilibrium Existence and the Revenue Ranking
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but equilibrium existence itself. While monotone pure strategy equilibria (MPSE) ex-
istence is established for a special kind of positive dependence (affiliation),1 there is no
MPSE existence results with generic dependence. We know that mixed strategy equi-
libria exists under very mild assumptions (see Jackson and Swinkels, 2005).2 However,
it is not clear whether pure strategy equilibria are common but difficult to prove or, in-
stead, they are rare and because of that it is impossible to give a general existence
result. Since MPSE are more frequently used in auction theory, it is important to better
understand the conditions that lead to MPSE existence. Now, if we want to address
both asymmetry and general dependence, the conclusions seem to be beyond the reach
of purely theoretical results. Thus, new methods are necessary to approach these prob-
lems.

This paper offers a new method, which is based on the simple idea of restricting
the set of considered distributions to a special but sufficiently rich set. See Figure 1.
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Figure 1: Discrete values, such as in (a), capture the relevant economic possibilities in a
private value model, but preclude the use of calculus. We use continuous variables, but
consider only simple density functions (constant in squares), such as in (b).

Let us expand the above explanation. Consider a single object auction with risk
neutral bidders and general dependence of types (private values). We depart from the
observation that the bidder’s values of the (indivisible) object can be specified only up
to cents and are obviously bounded. In other words, there are finitely many different
possible values and the economic problem is well described with discrete distributions.
Nevertheless, to work with discrete values precludes us from using the convenient tools
of differential calculus, which allow, for instance, a characterization of equilibrium
strategies. Maintaining the advantage of continuum variables, but without requiring
unnecessary richness in the set of distributions, we focus on the set of densities which
are constant in small squares. This includes all the economically relevant cases. More-
over, it is dense in the set of all distributions because we can approximate any probabil-
ity density function (pdf), including non-continuous ones, by taking arbitrarily small
squares.

1Affiliation was introduced in auction theory by Milgrom and Weber (1982). See a discussion about
affiliation in de Castro (2007).

2Jackson and Swinkels (2005)’s setup is that of private values, as this paper, but allows for multiple units,
to the contrary of this paper, which focus only on single object auctions.
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For this set of simple pdf’s, we are able to provide an algorithm that completely
characterizes whether or not pure strategy equilibrium exists. Computer experiments
(simulations) allow an exploration of facts about the equilibrium. These experiments
can illuminate directions of research. We illustrate how this can be done, by proving
that pure strategy equilibrium existence in first price auction is a restrictive condition.
In a sense, it holds in a set of zero measure in the set of all distributions.

This (preliminary) version of the paper mainly treats symmetric private values auc-
tions, with two players, but the method can be extended to asymmetric private values
with n players. The paper is organized as follows. Section 2 gives a brief exposi-
tion of the standard auction model. The class of distributions that we propose to use
is described in section 3 and the theorem that states that the set of distributions with
symmetric monotonic pure strategy equilibrium (SMPSE) has zero measure is stated
in section 4. Section 5 presents the equilibrium existence algorithm for symmetric first
price auctions, and illustrates the results with computer experiments (simulations). In
this version, we just make some comments about asymmetric auctions and auctions
with risk aversion in section 6. Section 7 deals with the problem of revenue ranking in
auctions. Section 8 is a brief conclusion. Most proofs are collected in a separate sup-
plement to this paper. The more important and short proofs are given in an appendix,
while lengthy constructions and proofs are presented in a separate supplement to this
paper.

2 Basic model and definitions
Our model and notations are standard. There are n bidders, i = 1, ..., n. Bidder i
receives private information ti ∈

[
t, t
]

which is the value of the object for himself.
The usual notation t = (ti, t−i) = (t1, ..., tn) ∈

[
t, t
]n

is adopted. The values are
distributed according to a pdf f :

[
t, t
]n → R+. For most of this version of the

paper, we will assume symmetry. Thus, unless otherwise pointed, we will assume
that f which is symmetric, that is, if π : {1, ..., n} → {1, ..., n} is a permutation,
f (t1, ..., tn) = f

(
tπ(1), ..., tπ(n)

)
.3 Let f (x) =

∫
f (x, t−i) dt−i be a marginal of

f . Our main interest is the case where f is not the product of its marginals, that is,
the case where the types are dependent. We denote by f (t−i | ti) the conditional
density f (ti, t−i) /f (ti). After knowing his value, bidder i places a bid bi ∈ R+.
He receives the object if bi > maxj 6=i bj . We consider both first and second price
auctions. As Milgrom and Weber (1982a) argue, second price and English auctions are
equivalent in the case of private values, as we assume here. In a first price auction, if
bi > maxj 6=i bj , bidder i’s utility is u (ti − bi) and is u (0) = 0 if bi < maxj 6=i bj . In
a second price auction, bidder i’s utility is u (ti −maxj 6=i bj) if bi > maxj 6=i bj and
u (0) = 0 if bi < maxj 6=i bj . For both auctions, ties are randomly broken.

By reparametrization, we may assume, without loss of generality,
[
t, t
]

= [0, 1].
It is also useful to assume n = 2, but this is not needed for most of the results. For

3For the reader familiar with Mertens and Zamir (1986)’s construction of universal type spaces: we make
the usual assumption in auction theory that the model is “closed” at the first level, that is, all higher level
beliefs are consistently given by (and collapse to) f .
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most of the paper, we assume risk neutrality, that is, u (x) = x. Thus, unless otherwise
stated, the results will be presented under the following setup:

BASIC SETUP: There are n = 2 risk neutrals bidders, that is, u (x) = x, with
private values distributed according to a symmetric density function f : [0, 1]2 → R+.

A pure strategy is a function b : [0, 1]→ R+, which specifies the bid b (ti) for each
type ti. The interim payoff of bidder i, who bids β when his opponent j 6= i, follows
b : [0, 1]→ R+ is given by

Πi (ti, β, b (·)) = u (ti − β)F
(
b−1 (β) | ti

)
= u (ti − β)

∫ b−1(β)

t

f (tj | ti) dtj ,

if it is a first price auction and

Πi (ti, β, b (·)) =
∫ b−1(β)

t

u (ti − b (tj)) f (tj | ti) dtj ,

if it is a second price auction.
We focus attention on symmetric monotonic pure strategy equilibrium (SMPSE),

which is defined as b (·) such that Πi (ti, b (ti) , b (·)) ≥ Πi (ti, β, b (·)) for all β and
ti. The usual definition requires this inequality to be true only for almost all ti. This
stronger definition creates no problem and makes some statements simpler, as those
about the differentiability and continuity of the equilibrium bidding function (other-
wise, such properties should be always qualified by the expression “almost every-
where”). Under our assumptions, the second price auction always has a SMPSE in
a weakly dominant strategy, which is b (ti) = ti. Finally, we say that a b (·) is an
ε-equilibrium if Πi (ti, b (ti) , b (·)) + ε ≥ Πi (ti, β, b (·)) for all β and ti.

3 The class of distributions
Modeling types as continuous real variables is a widespread practice in auction theory.
The reason for that is clear: continuous variables allow the use of the convenient tools
of calculus, such as derivatives and integrals, to obtain precise characterizations and
uniqueness results. This is a very important advantage that should not be underesti-
mated. (See Remark 8 below for a consequence of this). From this, we are naturally
led to work with continuous density functions to represent the distribution of private
values of bidders. However, the set of continuous density functions is inconvenient in
the sense that it is an excessively big set. Since this set includes so many possibilities,
it is hard to study pure strategy equilibrium existence (MPSE) in such a set. Thus, auc-
tion theorists have to restrict their attention to smaller sets, that is, sets of densities that
satisfy extra assumptions. An example is the restriction to affiliated densities, when
one is interested in dependence (see Milgrom and Weber, 1982). Another example is
the set of assumptions introduced by Maskin and Riley (2000) to study asymmetric
auctions.

The restriction to special set of distributions seems unavoidable, but a basic prob-
lem it brings is that the set considered may not be truly representative of the general
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situation. If some result is true for a particular set of distributions but not in general,
auction theorists may base their conclusions in misleading results. There are at least
two ways to avoid this problem. One is to use sound economic reasons for the re-
striction. The other one is to work with sufficiently rich set of distributions that are
dense in the general set, but there are still tractable. If some continuity properties ex-
ist (as they do), the results may be regarded as representative of the general situation.
In this section we describe a set of distributions that have both advantages: it has a
sound economic reason for its adoption and it is dense in the general set of distribution,
thus providing a reliable picture of the problem through the continuities properties of
equilibria.

Let us first discuss the economic motivation for adopting a set of distributions, and
then describe our proposed set. Observe that the value of the single object in the auction
is expressed up to cents and is obviously bounded. Thus, the number of actual possible
values is finite. From this, why we do not use only a discrete distribution of values?
Because this would prevent us from using the convenient tools of calculus, which are
very helpful in the analysis of auctions, as we discussed above. However, instead of
insisting in the (actual) case of discrete values, we may consider continuous values
but but impose, on the other hand, that the density functions are simple (see Figure
1 in the Introduction). This seems even closer to the reality than the case of general
continuous densities. Thus, we restrict attention to the set of simple functions Dk, as
defined below.

For simplicity, consider an auction between two players. Let D be the set of distri-
butions in [0, 1]2. For k ∈ N, define the transformation T k : D → D by

T k (f) (x, y) = k2

∫ p
k

p−1
k

∫ m
k

m−1
k

f (α, β) dαdβ,

whenever (x, y) ∈
(
m−1
k , mk

]
×
(
p−1
k , pk

]
, form, p ∈ {1, 2, ..., k}. Observe that T k (f)

is constant over each square
(
m−1
k , mk

]
×
(
p−1
k , pk

]
. Let Dk be the image of D by T k,

that is, Dk ≡ T k (D). Thus, T k is a projection from the infinite dimensional space
D over the finite dimensional space Dk. Indeed, Dk is finite dimensional set because
any density function f ∈ Dk can be described by a matrix A = (aij)k×k, as the figure
below illustrates.
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Figure 2: A density f ∈ Dk can be represented by a matrix A = (aij).
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For general k, the description of f ∈ Dk can be made as follows:4

f (x, y) = amp if (x, y) ∈
(
m− 1
k

,
m

k

]
×
(
p− 1
k

,
p

k

]
, (1)

for m, p ∈ {1, 2, ..., k} . The definition of f at the zero measure set of points {(x, y) =(
m
k ,

p
k

)
: m = 0 or p = 0} is arbitrary.

The restriction to the set D∞ ≡ ∪k∈NDk of distributions implies no economic loss
of generality in the problem we are studying. Note also that the closure D∞ is the set
of all densities D. Now we describe how the equilibrium existence problem can be
completely solved in the set D∞.

First, recall the standard result of auction theory on SMPSE in private value auc-
tions: if there is a differentiable symmetric increasing equilibrium, it satisfies the dif-
ferential equation (see Krishna 2002 or Menezes and Monteiro 2005):

b
′
(t) =

t− b (t)
F (t|t)

f (t|t) .

If f is Lipschitz continuous, one can use Picard’s theorem to show that this equation
has a unique solution. Under some assumptions (basically, Property VI’ of the previous
subsection), it is possible to ensure that this solution is, in fact, equilibrium. Now, for
f ∈ D∞, the right hand side of the above equation is not continuous, and one cannot
directly apply Picard’s theorem. We proceed as follows.

First, we show that if there is a symmetric increasing equilibrium b, under mild
conditions (satisfied by f ∈ D∞), b is continuous. We also prove that b is differentiable
at the points where f is continuous. Thus, for f ∈ D∞, b is continuous everywhere
and differentiable everywhere but, possibly, at the points of the form m

k . See figure 3.

0
t0

bids

1
k

2
k

... k−1
k

1

b
(

1
k

)b
(

2
k

)
b (1)

...

Figure 3: Bidding function for f ∈ Dk.

With the initial condition b (0) = 0 and the above differential equation being valid
for the first interval

(
0, 1

k

)
, we have uniqueness of the solution on this interval and,

thus, a unique value of b
(

1
k

)
. Since b is continuous, this value is the initial condition

for the interval
(

1
k ,

2
k

)
, where we again obtain a unique solution and the uniqueness of

the value b
(

2
k

)
. Proceeding in this way, we find that there is a unique b which can be

4For n > 2 players, the density function can be described by an array [f ] ∈ Rkn
. The reader can find

details of this in the supplement of the paper.
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a symmetric increasing equilibrium for an auction with f ∈ D∞. In the supplement to
this paper we prove the following:

Theorem 1 Assume that u is twice continuously differentiable, u′ > 0, f ∈ Dk, f
is symmetric and positive (f > 0).5 If b : [0, 1] → R is a symmetric increasing
equilibrium, then b is continuous in (0, 1) and is differentiable almost everywhere in
(0, 1).6 Moreover, b is the unique symmetric increasing equilibrium. If u (x) = x1−c,
for c ∈ [0, 1), b is given by

b (x) = x−
∫ x

0

exp
[
− 1

1− c

∫ x

α

f (s | s)
F (s | s)

ds

]
dα. (2)

Proof. See the supplement to this paper.

Having established the uniqueness of the candidate for equilibrium, our task is
reduced to verifying whether this candidate is, indeed, an equilibrium. We complete
this task in the section 5.

Remark 2 The benefits of chosing f ∈ D∞ are deeply related to our focus in pure
strategy equilibrium. This kind of equilibrium is the most common in auction theory.
It has an important advantage over mixed strategy equilibria: the latter hardly can
be characterized, even for bimatrix games, while the former is explictly and uniquely
determined in general. Since we already know that mixed strategy equilibrium exist,
and little is said in general beyond its existence, it seems very natural to follow the
standard practice in auction theory and restrict attention to pure strategy equilibrium,
as we do.

Even if the reader insists on considering the more general set of pdf’s D—being
aware that this is a matter of mathematical generality, but not of economic generality—
our set D∞ is still dense in D and, thus, may arbitrarily approximate any conceivable
pdf in D. In fact, the following result shows that equilibrium existence in the set D∞
is sufficient for equilibrium existence in D. This provides an additional justification of
the method.

Theorem 3 Let f ∈ D be continuous and symmetric. If T k (f) has a differentiable
symmetric pure strategy equilibrium for all k ≥ k0, then so does f , and it is the limit
of the equilibria of T k (f) as k goes to infinity.
Proof. See the supplement to this paper.

Although a complete converse of the above theorem is not possible, because the
equilibrium inequality can be approximated by above (see below), the following theo-
rem provides a partial converse.

5In fact, it is not necessary that f has full support. See the supplement of the paper for details.
6b may be non-differentiable only in the points m

k
, for m = 1, ..., k
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Theorem 4 Let f ∈ D be continuous and symmetric and assume that f has a SMPSE.
Then for each ε > 0, there exists kε ∈ N such that bk given by7

b (x) = x−
∫ x

0

exp
[
− 1

1− c

∫ x

α

fk (s | s)
F k (s | s)

ds

]
dα. (3)

is an ε-equilibrium for T k, for all k ≥ kε.
Proof. See the supplement to this paper.

The above result is satisfactory for numerical applications, because numerical cal-
culation will involve errors anyway. Thus, in this case the above restriction is innocu-
ous. It is useful to emphasize, however, that the set D∞ = ∪k∈NDk is meaningful
for analysis of equilibrium in auctions even without numerical simulations. This is
illustrated in the next section.

4 SMPSE are rare
As an illustration of the theoretical advantages of using the set of disbributions Dk
described in the last section, we prove now that when there are two players, the the
measure of the set of densities f ∈ Dk which has SMPSE goes to zero as k → ∞. In
order to formalize this, let λk be the Lebesgue measure on Dk and let Pk be the set of
densities f ∈ Dk which have a SMPSE. We have the following:

Theorem 5 Assume that there are two risk neutral players. Then λk
(
Pk
)
→ 0 as

k →∞.
Proof. See the supplement to this paper.

The proof of this theorem follows a simple idea: the equilibrium existence depends
on a series of inequalities, the number of which increases with k. Although some care
is needed for rigorously establishing the result, this simple observation is the heart of
the argument. This gives us the intuition that the equilibrium constraints defining equi-
librium increase faster than the degrees of freedom of the problem, when k increases.

This theorem does not depend on numerical simulations, although it was inspired
by them. Although this concerns SMPSE existence inDk, an analogous theorem holds
for the set of all densities D: the set of distributions with pure strategy equilibrium
has zero measure. A precise statement of this fact requires some care, because D is an
infinite dimensional set. Let us introduce some notation. Let µ be a measure over D
and let µk be the corresponding measure induced on Dk by the projection T k , that is,
ifE ⊂ Dk is a measurable subset, define µk (E) as µ

((
T k
)−1 (E)

)
. Let λk represent

the Lebesgue measure of the finite dimensional set Dk. Of course a measure µ over D
can put all its weight in distributions with SMPSE. In fact, for general µ, the support
can be even just one point. However, if µ is sufficiently “spread”, that is, if µk is

7We denote by fk (s|s) and F k (s|s) the conditional pdf and cdf of T k , respectively.
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absolutely continuous with respect to λk, then the following theorem shows that µ puts
zero measure on the set of distributions with SMPSE.8,9

Theorem 6 Let µ and µk be as described above. Assume that there are two risk neutral
players and there exists M > 0 such that µk ≤Mλk. Then, µ (P) = 0.
Proof. We just sketch the proof here. The proof of Theorem 5 can be adapted to show
that the set of ε-equilibria Pk,ε also satisfy λk

(
Pk,ε

)
→ 0 as k → ∞ and ε → 0.

From Theorem 4, we have P ⊂
(
T k
)−1 (Pk,ε) for sufficiently large k and small ε.

Thus,
µ (P) ≤ µ

(
T k
)−1 (Pk,ε) = µk

(
Pk,ε

)
≤Mλk

(
Pk,ε

)
.

Since λk
(
Pk,ε

)
→ 0, then µ (P) = 0.

The result presented in Theorem 6 may be considered a negative result, because
auction theory usually relies on pure strategy equilibria. This result suggests that the
focus on symmetric monotonic equilibrium may be too narrow. Nevertheless, this is
not yet sufficient to conclude that most of the equilibria are in mixed strategies. In
fact, while we know that mixed strategy equilibria always exist (Jackson and Swinkels
2005), there is the possibility—not considered in our results—that there are equilibria
in asymmetric or non-monotonic pure strategies.

5 SMPSE existence in Dk

In this section we present a fast algorithm to test SMPSE existence for symmetric
densities in Dk. We begin with the two bidders case and then, generalize it to the
n bidders case. Asymmetric auctions are considered in a separated section. In the
supplement to this paper, we also discuss the algorithm with risk averse bidders, that
is, when bidders’ utility are u (x) = x1−c and c > 0.

5.1 Two risk neutral players case
Theorem 1 establishes the uniqueness of the candidate for symmetric increasing equi-
librium for f ∈ D∞ = ∪∞k=1Dk. We have now only to check if the unique candidate
is indeed equilibrium, that is, whether it is an optimal reply. In economics, this is
usually done by checking the second order condition. In auction theory, it is more
common to appeal to monotonicity arguments based on a single crossing condition
(see, among others, Milgrom and Weber, 1982 and especially Athey, 2001). These
methods give sufficient conditions for equilibrium, but these conditions are, in general,
not necessary. Sufficient and necessary conditions would not only provide grounds to
understand what really entails equilibrium existence, but also to work with the more
general possible setup. Thus, we take here another approach, which gives necessary

8The assumption of the theorem is, in fact, slightly stronger than just absolutely continuity.
9 There is an alternative notion of “zero measure” for infinite dimensional sets, introduced by Christensen

(1974). See also Hunt, Sauer and Yorke (1992) and Anderson and Zame (2001). Stinchcombe (2000) discuss
some drawbacks of this approach.
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and sufficient conditions for equilibrium existence. This is done by checking directly
the equilibrium conditions, as we explain next.

Let b (·), given by (3) with c = 0, denote the candidate for equilibrium. Let
Π (y, b (x)) = (y − b (x))F (x|y) be the interim payoff of a player with type y who
bids as type x, when the opponent follows b (·). Let ∆ (x, z) represent the expected in-
terim payoff of a player of type xwho bids as a type z, that is, ∆ (x, z) ≡ Π (x, b (z))−
Π (x, b (x)). It is easy to see that b (·) is equilibrium if and only if ∆ (x, y) ≤ 0 for
all x and z ∈ [0, 1]2. In other words, the equilibrium condition require to check an in-
equality for an infinite pair of points. Of course, it is not possible to check an inequality
at an infinite number of points.

If ∆ (x, z) is continuous, then an approximation algorithm could check the inequal-
ity only at some points and, with some confidence, ensure equilibrium existence. Of
course, this method would not be exact in the sense that approximation errors are iner-
ent to the algorithm. However, for n = 2 players, the next theorem shows that when
f ∈ Dk there is an exact algorithm, that does not introduce errors, and it is fast because
it requires only a small number of comparisons.

Theorem 7 Consider Symmetric Risk Neutral Private Value Auction with two players
with f ∈ D∞ = ∪k≥1Dk. There exist an algorithm that decides in finite time if there is
or not a symmetric monotonic pure strategy equilibrium for this auction. For f ∈ Dk,
the algorithm requires less than 3

(
k2 + k

)
comparisons. The algorithm is exact, in

the sense that errors can occur only in elementary operations.10

Proof. See the supplement to this paper.

Remark 8 It is important to compare this result with the best algorithms for solving
simpler games as bimatrix games (see Savani and von Stengel 2006). While best known
algorithms for bimatrix games requires operations that grow exponentially with the
size of the matrix, our operations increases with k2. We do not state that the algorithm
runs in polynomial time because our problem is in continuous variables, not in discrete
ones. “Polynomial time” would be slightly vague here, since errors of approximations
are possible. Nevertheless, as stated, the possible errors are elementary and require
a small number of operations. This allows one to realize the important benefits of
working with continuous variables but density functions in Dk, as we propose. The
characterization of the strategies obtained through differential equations allows one
to drastically reduce the computational effort, by reducing the equilibrium candidates
to one. The fact that we work on Dk allows to precisely characterize a small number
of points to be tested for the equilibrium condition. The speed of the method allows
auction theorists to run simulations for a big number of trials and get a good figure
of what happens in general. From this, conjectures for theoretical results can also be
derived.

10By elementary operations we mean sums, multiplications, divisions, comparisons and square and third
degree roots.
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The proof of this theorem is long, because ∆ (x, y) is not monotonic in the squares(
m−1
k , mk

]
×
(
p−1
k , pk

]
. Indeed, the main part of the proof is the analysis of the non-

monotonic function ∆ (x, y) in the sets
(
m−1
k , mk

]
×
(
p−1
k , pk

]
and the determination of

its maxima for each of these sets. It turns out that we need to check a different number
of points (between 1 and 5) for some of these squares.

5.2 Equilibrium results for n players
The results of the previous subsection are restricted to the case of (symmetric, private
values, risk neutral) 2 players. However, one can use grid distributions (those in D∞)
to study auctions in a much more general setup. In this subsection, we discuss the
extension to the n bidders symmetric case.

The mathematical expression for this case (see the supplement) are obviously more
complex, but the ideas are essentially the same of the n = 2 case. As before, the
equilibrium candidate is unique and we have an expression for it. Thus, SMPSE will
be established if and only if ∆ (x, z) = Π (x, b (z)) − Π (x, b (x)) is non-positive. We
can test the signal of ∆ (x, z) for (x, z) ∈

(
m−1
k , mk

]
×
(
p−1
k , pk

]
, for m, p ∈ {1, ...,

k}. This is simplified to check non-positiveness of a polynomial over [0, 1]2. The only
difference from the n = 2 case is that in this last case the polynomial is of degree 3
and we can analytically solve it. For n > 2, the polynomial (in the two variables, x
and z) has a degree at least n+ 1 and we have to rely in numerical methods for finding
minimal points. The following establishes the existence of an algorithm to solve for
this, that may make errors by approximation:

Theorem 9 Consider symmetric risk neutral private value auction with n players with
f ∈ D∞. There exist an algorithm that decides in finite time if there is or not a
symmetric monotonic pure strategy equilibrium for this auction. Errors are commited
in finding roots of polynomials and in elementary operations.
Proof. See the supplement to this paper.

Note that we did not make statements about the speed of the method. This is just
because this speed depends on the numerical method used to find roots of polynomials.
We were unable to find good characterizations of the running time of solutions to this
problem.

6 Grid distributions in the general setup
The method can also be applied to the general setup, that is, asymmetric interdependent
values auctions with n risk averse players. For this general case, there is an important
difference with respect to the previous case. With symmetry and risk neutrality, it is
possible to know exactly what is the unique candidate for equilibrium. In the asymmet-
ric case or when there is risk aversion, one has just (a system of) differential equations
for which there is no explicit solution, except in special cases (see Plum, 1992). Thus,
an algorithm for testing for equilibrium has to include the additional step of finding
the solution of the system of differential equations. After finding the candidate for
equilibrium, the same idea of testing the equilibrium conditions are applied.
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It is worth emphasizing that finding numerical solutions to differential equations
has been done before. See Marshall et. al. (1994), for instance. There is absolutely no
novelty in this. However, when one tries to consider all possible continuous functions,
it becomes clear an important limitation of numerical studies: the fact that the set of
different distributions is simply too big to be well explored. Since we cannot explore
a good part of all possibilities, there is the suspicious that the knowledge derived from
these simulations are not representable of the whole picture. This may be a reason for
the low use of numerical methods in auction theory.

However, when one focus attention to the sets Dk for k ∈ N, it is possible to
explore a sufficiently large number of cases, if we have algorithms that are fast enough.
We are not able to theoretically characterize the speed of our algorithm in the general
case, but our simulations show that it is very fast.

In fact, the method can also be potentially applied to setups including interdepen-
dencies of values, that is, when the value functions vi (t) depend on the vector of all
types t = (t1, ..., tn). The idea of using grid functions f ∈ D∞ has to be extended
now to grid functions vi (t). The procedures shall be similar, but it is beyond the scope
of this paper to describe the algorithms for this case. The important point is that the
method is useful even in this more general auction setup.

7 The Revenue Ranking of Auctions
Now, we illustrate how the method described in the previous section can be used to
address the problem of revenue ranking of the first price and second price auctions. Let
us denote by Rf2 the expected revenue (with respect to f ∈ Dk) of the second price
auction.11 Similarly, Rf1 denotes the expected revenue (with respect to f ∈ Dk) of
the first price auction. When there is no need to emphasize the pdf f ∈ Dk, we write
R1 and R2 instead of Rf1 and Rf2 . Below, µ refers to the natural measure defined over
D∞ = ∪∞k=1Dk, as further explained in the supplement to this paper.

The following theorem gives the expression of the expected revenue difference
∆f
R ≡ R

f
2 −R

f
1 between the second and the first price auctions and it is not restricted

to densities in f ∈ D∞.

Theorem 10 Assume that f has a SMPSE in the first price auction. The revenue dif-
ference between the second and the first price auction is given by∫ 1

0

∫ x

0

b
′
(y)
[
F (y|y)
f (y|y)

− F (y|x)
f (y|x)

]
f (y|x) dy · f (x) dx

where b (·) is the first price equilibrium bidding function, or by∫ 1

0

∫ x

0

[∫ y

0

L (α|y) dα
]
·
[
1− F (y|x)

f (y|x)
· f (y|y)
F (y|y)

]
· f (y|x) dy · f (x) dx, (4)

where L (α|t) = exp
[
−
∫ t
α
f(s|s)
F (s|s)ds

]
.

11Remember that, since we are working with private values, second price auctions are equivalent to En-
glish auctions.
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Proof. See the appendix.

In order to make a relative comparison, we define r ≡ Rf
2−R

f
1

Rf
2

, for each f . Gener-

ating a uniform sample of f ∈ Dk, we can obtain the probabilistic distribution of ∆f
R

or of r. The procedure to generate f ∈ Dk uniformly is described in the supplement to
this paper. The results are shown in subsection 7.1 below.

Moreover, we can also obtain theoretical results about what happens for Dk for a
large k and even for D∞ = ∪∞k=1Dk. Nevertheless, for the last case, one has to be
careful with the meaning of the “uniform” distribution. In the supplement to this paper
we show that a natural measure can be defined forD∞, which is analogous to Lebesgue
measure, although it cannot have all the properties of the finite dimensional Lebesgue
measure.

In this fashion, we are able to obtain previsions based on simulations and also
theoretical results. One possible objection to this approach is that it considers too
equally the pdf’s in the sets Dk. But this is just because we are not assuming any
specific information about the context where the auction runs—in some sense, this is a
“context-free”approach. If one has information on the environment where the auction
runs, so that one can restrict the set of suitable pdf’s, then the uniform measure should
be substituted by the empirical measure obtained from this environment. Obviously,
the method can be easily adapted to this, once one has such “empirical measure” of the
possible distributions.

Now, we present the results that one can obtain using this approach.

7.1 Numerical results
[TO BE INCLUDED]

8 Related literature and conclusion
In this paper we advocated for the use a special class of distributions with dependence
and symmetry in auction theory. This class of distribution is more general than nor-
mally considered ones, but can be treated both with theoretical and numerical methods.
We illustrated the potential applications with theoretical results and computer experi-
ments (simulations). It is shown that a fast algorithm exists for determining symmetric
pure strategy equilibrium existence in auctions with n players.

13



Appendix
Proof of Theorem 10.
The dominant strategy for each bidder in the second price auction is to bid his

value: b2 (t) = t. Then, the expected payment by a bidder in the second price auction,
P 2, is given by:

P 2 =
∫
[t,t]

∫
[t,x]

yf (y|x) dy · f (x) dx =

=
∫
[t,t]

∫
[t,x]

[y − b (y)] f (y|x) dy · f (x) dx+
∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx,

where b (·) gives the equilibrium strategy for symmetric first price auctions. Thus, the
first integral can be substituted by

∫
[t,t]

∫
[t,x]

b
′
(y) F (y|y)

f(y|y) f (y|x) dy ·f (x) dx, from the

first order condition: b
′
(y) = [y − b (y)] f(y|y)

F (y|y) . The last integral can be integrated by
parts, to:

∫
[t,t]

∫
[t,x]

b (y) f (y|x) dy · f (x) dx

=
∫

[t,t]

[
b (x)F (x|x)−

∫
[t,x]

b
′
(y)F (y|x) dy

]
· f (x) dx

=
∫

[t,t]
b (x)F (x|x) · f (x) dx−

∫
[t,t]

∫
[t,x]

b
′
(y)F (y|x) dy · f (x) dx

In the last line, the first integral is just the expected payment for the first price
auction, P 1. Thus, we have

D = P 2 − P 1

=
∫
[t,t]

∫
[t,x]

b
′
(y)

F (y|y)
f (y|y)

f (y|x) dy · f (x) dx

−
∫

[t,t]

∫
[t,x]

b
′
(y)F (y|x) dy · f (x) dx

=
∫
[t,t]

∫
[t,x]

b
′
(y)
[
F (y|y)
f (y|y)

f (y|x)− F (y|x)
]
dy · f (x) dx

=
∫

[t,t]

∫
[t,x]

b
′
(y)
[
F (y|y)
f (y|y)

− F (y|x)
f (y|x)

]
f (y|x) dy · f (x) dx

Remember that b (t) =
∫
[t,t]

αdL (α|t) = t −
∫
[t,t]

L (α|t) dα, where L (α|t) =

exp
[
−
∫ t
α
f(s|s)
F (s|s)ds

]
. So, we have
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b
′
(y) = 1− L (y|y)−

∫
[t,y]

∂yL (α|y) dα

=
f (y|y)
F (y|y)

∫
[t,y]

L (α|y) dα.

We conclude that

D =
∫

[t,t]

∫
[t,x]

f (y|y)
F (y|y)

∫
[t,y]

L (α|y) dα
[
F (y|y)
f (y|y)

− F (y|x)
f (y|x)

]
f (y|x) dy · f (x) dx

=
∫

[t,t]

∫
[t,x]

[∫
[t,y]

L (α|y) dα

]
·
[
1− F (y|x)

f (y|x)
· f (y|y)
F (y|y)

]
· f (y|x) dy · f (x) dx

This is the desired expression. �
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