Nonparametric Identification of Multinomial Choice
Demand Models with Heterogeneous Consumers®

Steven T. Berry Philip A. Haile
Yale University Yale Unwversity
Department of Economics Department of Economics
Cowles Foundation Cowles Foundation
and NBER and NBER

February 2, 2009

Abstract

We consider identification of nonparametric random utility models of multinomial
choice using “micro data,” i.e., observation of the characteristics and choices of individ-
ual consumers. Our model of preferences nests random coefficients discrete choice mod-
els widely used in practice with parametric functional form and distributional assump-
tions. However, the model is nonparametric and distribution free. It allows choice-
specific unobservables, endogenous choice characteristics, unknown heteroskedasticity,
and high-dimensional correlated taste shocks. Under standard “large support” and in-
strumental variables assumptions, we show identifiability of the random utility model.
We demonstrate robustness of these results to relaxation of the large support condition
and show that when it is replaced with a weaker “common choice probability” condi-
tion, the demand structure is still identified. We show that key maintained hypotheses
are testable.

*We have had helpful conversations on this topic with Hide Ichimura, Rosa Matzkin and Yuichi Kitamura.
We also received useful comments from Sunyoung Park and participants in several conferences and seminars.



1 Introduction

We consider identification of nonparametric random utility models of multinomial choice
using “micro data,” i.e., observation of the characteristics and choices of individual con-
sumers.!  Our model of preferences nests random coefficients discrete choice models widely
used in practice with parametric functional form and distributional assumptions. However,
the model is nonparametric and distribution free. It allows choice-specific unobservables,
endogenous choice characteristics, unknown heteroskedasticity, and high-dimensional corre-
lated taste shocks. Under standard “large support” and instrumental variables assumptions,
we show identifiability of the random utility model, i.e., of (i) the choice-specific unobserv-
ables and (ii) the joint distribution of preferences conditional on any vector of observed and
unobserved characteristics. We demonstrate robustness of these results to relaxation of the
large support condition and show that when it is replaced with a weaker “common choice
probability” condition (defined below), the demand structure is still identified. We also show
that key maintained hypotheses are testable.

Motivating our work is the extensive use of discrete choice models of demand for differ-
entiated products in a wide range of applied fields of economics and related disciplines. Im-
portant examples include transportation economics (e.g., Domenich and McFadden (1975)),
industrial organization (e.g., Berry, Levinsohn, and Pakes (2004)), international trade (e.g.,
Goldberg (1995)), marketing (e.g., Guadagni and Little (1983), Chintagunta, Jain, and Vil-
cassim (1991)), urban economics (e.g., Bayer, Ferreira, and McMillan (2007)), education
(e.g., Hastings, Staiger, and Kane (2007)), migration (e.g., Kennan and Walker (2006)), vot-
ing (e.g., Rivers (1988)), and health economics (e.g., Ho (2007)). We focus in particular on
discrete choice random utility models allowing both unobserved choice characteristics and
heterogeneous tastes, in the spirit of Berry (1994), Berry, Levinsohn and Pakes (1995, 2004),
Nevo (2001), Petrin (2002), and a large related literature. Although this class of models

has been applied to research in many areas, the sources of identification have not been fully

'In Berry and Haile (2008b) we consider identification using market level data, where one observed only
conditional choice probabilities (market shares).



understood. Without such an understanding it is difficult to know what qualifications are
necessary when interpreting estimates or policy conclusions.

Our analysis demonstrates that with sufficiently rich micro data, random utility multino-
mial choice models featuring unobserved choice characteristics are identified without the
parametric or distributional assumptions used in practice—typically, linear utility with in-
dependent additive and/or multiplicative taste shocks drawn from parametrically specified
distributions. Our results may therefore lead to greater confidence in estimates and policy
conclusions obtained in empirical work based on discrete choice models. In particular, para-
metric specifications used in estimation can often be viewed as parsimonious approximations
in finite samples rather than as essential maintained assumptions. We view this as our
primary message. However, our results also suggest that with large samples even richer
specifications (parametric or nonparametric) of preferences might be considered in empirical
work, and our identification proofs may suggest estimation approaches.

An important strategy in our work is modeling utility as a fully general nonparametric
random function of observed and unobserved characteristics. This contrasts with the usual
approach of building up randomness from random coefficients and/or other taste shocks. In
addition to enabling us to consider a very general random utility model, this formulation
leads us to focus directly on identification of the conditional joint distribution of utilities
rather than the joint distribution of random coefficients and/or other taste shocks. The
advantage of this might be unexpected: a natural intuition is that added structure on the
way randomness enters would aid identification. However, whereas the conditional distrib-
ution of utilities has the same dimension as the observable conditional choice probabilities
(i.e., the dimension of the choice set), most random coefficients models involve taste shocks
of dimension strictly larger than that of the choice set. Focusing directly on the joint distri-
bution of utilities naturally leads to primitives with the “correct” dimension without strong
distributional or functional form restrictions.

A second key aspect of our work is our explicit modeling of choice-specific unobservables.

Although this is standard in the applied literature, much of the prior work on identification



of discrete choice models has embedded the sources of randomness in preferences and the
sources of endogeneity in the same random variables. In applications to demand estimation,
an endogeneity problem typically arises because some observed choice characteristics (price
being a leading example) depend on unobserved choice characteristics. For such environ-
ments, explicitly modeling choice-specific unobservables enables one to define counterfactuals
involving changes in endogenous characteristics within a model of heteroskedastic random
utilities. For example, our formulation allows us to characterize demand elasticities, which
require evaluating the effects of a change in price (including resulting changes in the variance
or other moments of random utilities), holding unobserved product characteristics fixed.

A third novel component of our work is its exploration of both identification of the full
model and identification of “demand”—i.e., the mapping from observed and unobserved char-
acteristics to the vector of choice probabilities. For many questions motivating estimation
of discrete choice models, knowledge of this demand structure suffices. Not surprisingly,
identification of demand can be obtained under weaker conditions than those giving full
identification of the random utility model.

Despite these differences from the prior literature, we rely heavily on several well known
ideas. One is the use of variation in observables to “trace out” the distribution of un-
observables. Antecedents in the discrete choice literature include Manski (1985), Matzkin
(1992, 1993), Lewbel (2000), Honoré and Lewbel (2002), and Briesch, Chintagunta, and
Matzkin (2005), among others. A second idea is the use of exogenous variation in choice
sets to decompose variation in the distribution of utilities into the contributions of observed
and unobserved characteristics. This strategy has been exploited in parametric discrete
choice models by, e.g., Berry (1994) and Berry, Levinsohn and Pakes (1995, 2004). Here
we rely heavily on results from the recent literature on nonparametric identification of re-
gression models using instrumental variables, particularly Newey and Powell (2003) and
Chernozhukov and Hansen (2005).

In the following section we provide some additional discussion of related literature. We

then set up the choice framework and define the observables and structural features of



interest in section 3. Section 4 provides an illustration of key lines of argument in a simple
case: binary choice with exogenous characteristics. Section 5 addresses full identification
in the case of multinomial choice with endogeneity. There we consider two alternative
instrumental variables conditions that deliver full identification of the model. In section 6
we show identifiability of demand under weaker conditions and provide an observation about
robustness of the full identification results to relaxation of support conditions. Section 7
discusses testable restrictions of key maintained hypotheses. In section 8 we show how our
results can be extended to one type of environment in which only market level data are

available. We conclude in section 9.

2 Literature

There is a large literature on identification of discrete choice models and we cannot attempt
a complete review here. However, important early work on identification of discrete choice
models includes Manski (1985, 1987, 1988) and Matzkin (1992, 1993). Manski considered a
semi-parametric linear random coefficients model of binary response, focusing on identifica-
tion of the slope parameters determining mean utilities. Matzkin considered nonparametric
specifications of binomial and multinomial response models with an additively separable taste
shock for each choice. Extensions to nonadditive models can be found in Matzkin (2005,
2007a, 2007b, 2008).

Identification of heterogeneous preferences has been explored using random coefficients
models. Identification of linear random coefficients binary choice models has been considered
by Ichimura and Thompson (1998) and Gautier and Kitamura (2007). Briesch, Chintagunta,
and Matzkin (2005) consider multinomial choice, allowing generalizations of the linear ran-
dom coefficients model. All of these consider models of utility that is linear in at least
one characteristic, which we will also require. We add to this literature by allowing a more

general representation of preferences and providing a more complete treatment of choice



specific unobservables and endogeneity.>

Lewbel (2000) considers identification in a semiparametric model with an additive spe-
cial regressor (which we also have in much of this paper), and allowing for endogeneity or
heteroskedasticity. In particular, he allows for an additive stochastic component whose
distribution can vary with observables. Our model of preferences differs from his in two
main dimensions. First, we relax functional form restrictions; for example, we do not require
mean effects of observables to enter separably from unobservables. Second, we make a dis-
tinction between choice-specific unobservables and individual heterogeneity in preferences.
This enables us to identify important primitive features, including demand elasticities, but
also rules out the possibility that choice sets depend on unobserved consumer tastes. Our
model is appropriate for most applications to demand estimation, but inappropriate evaluat-
ing the treatment effects on discrete outcomes in environments with selection on individual
unobservables.

Honoré and Lewbel (2002) consider a binary panel version of the model in Lewbel (2000),
relying on linearity of the composite error term and focusing on identification of a slope
parameter. Altonji and Matzkin (2005) consider a similar but nonparametric model. For
discrete choice models, their results focus on identification and estimation of local average
responses. Other work considering models similar to that Lewbel (2000) includes Hong and
Tamer (2004), Blundell and Powell (2004), Lewbel (2005), and Magnac and Maurin (2007).
All consider linear semiparametric models, most limiting attention to binary outcomes.

Matzkin (2004) (section 5.1) considers a model incorporating choice-specific unobserv-
ables and an additive preference shock, but in a model without random coefficients or other
sources of heteroskedasticity.® Hoderlein (2008) allows for both heteroskedasticity and en-
dogeneity in the case of binary choice, focusing on identification of an average derivative.

Blundell and Powell (2004), Matzkin (2004), and Hoderlein (2008) limit attention binary

2Concurrent work by Fox and Gandhi (2008) explores identifiability of several related models, including
a flexible model of multinomial choice in which consumer types are multinomial and utility functions are
determined by a finite parameter vector. They suggest that our approach for incorporating choice-specific
unobservables and endogenous choice characteristics could be adapted to their framework.

3See also Matzkin (2007a, 2007b).



choice in semiparametric triangular models, leading to the applicability of control function
methods or the related idea of “unobserved instruments.”* For binary choice demand, trian-
gular models can be appropriate when price depends only on the unobserved demand shock,
but not on a cost shock as well. In the case of multinomial choice, standard supply models
for differentiated products markets imply that each price depends on the entire vector of de-
mand shocks (and cost shocks, if any). This appears to preclude the use of control function
methods except in binary choice applications where there are no supply shocks.’

Finally, we must point out that an important distinction between our work and much
of the prior literature is our neglect of estimation. Although our identification proofs may
suggest new nonparametric or semiparametric estimation approaches, significant additional

work would be needed.

3 Model

3.1 Preferences and Choices

Consistent with the motivation from demand estimation, we describe the model as one in
which each consumer 7 in each market ¢ chooses from a set J; of available products. We
will use the terms “product,” “good,” and “choice” interchangeably to refer to elements of
the choice set. The term “market” here is synonymous with the choice set. In particular,
consumers facing the same choice set are defined to be in the same market. In practice,
markets will typically be defined geographically and/or temporally. Variation in the choice
set will of course be essential to identification, and our explicit reference to markets provides
a way to discuss this clearly.

In applications to demand it is important to model consumers as having the option

to purchase none of the products the researcher focuses on (see, e.g., Bresnahan (1981),

4See also Lewbel (2000), Honoré and Lewbel (2002), Altonji and Matzkin (2005), and Petrin and Train
(2009).

®However, for the case of market level data, Berry and Haile (2008b) uses a related approach of inverting
a multivariate supply and demand system to recover the entire vector of shocks to supply and demand.



Anderson, DePalma, and Thisse (1992), Berry (1994) and Berry, Levinsohn, and Pakes
(1995)). We represent this by choice j = 0 and assume 0 € J; Vt. Choice 0 is often
referred to as the “outside good.” We denote the number of “inside goods” by J; = | J;| — 1.9
Each inside good j has observable (to us) characteristics z;;. Among other things, z;, can
include product dummies and price. Unobserved choice characteristics are characterized by

an index £ ;;, which may also vary across markets; indeed, §;; may also reflect the unobserved

jto
taste for choice j in market ¢. We will assume that ¢, has an atomless marginal distribution
in the population.

Each consumer ¢ in market ¢ is associated with a vector of observables z;;;. The j
subscript on z;;; allows the possibility that some characteristics are both consumer- and
choice-specific. ~ This arises, for example, when there are interactions between consumer
demographics and product characteristics (say, family size and automobile size), or from
consumer-specific choice characteristics (say, driving distance to retailer j from consumer
i’s home). We will require at least one such measure for each j > 1. This is standard in
applications that specify consumer preferences as determined in part by consumer charac-

T Let x; = (y,...,75:) and zy = (zi1¢,...,2i5¢). Let x denote the support of

teristics.
(w05 o0 23t -

We consider preferences represented by a random utility model. Each consumer ¢ in
market ¢ has a conditional indirect utility function u; : x — R. However, consumers have
heterogeneous tastes, even conditional on observables. Thus, from the perspective of the
researcher, each utility function u; can be viewed as a random draw from a set U of permis-

sible functions {u : y — R} (we will discuss our assumptions on the set U below). Formally,

we define the random function u;; on y as follows. Let (2, F,P) denote a probability space.

61n applications with no “outside choice” our approach can be adapted by normalizing preferences relative
to those for a given choice. The same adjustment applies when characteristics of the outside good vary
across markets in observable ways.

"Without this—for example if consumer characteristics affect only tastes for the outside good—the identi-
fication problem is identical to that in the case of market-levl data (see Berry and Haile (2008b)), conditional
any consumer characteristics.



Given any (wjtygjw Zijt) <X

wi (250, &y zijt) = (@0, €540 Zige, wi) (1)

8 Without loss, the the draw from the sample

where w;; € €2, and u is measurable in w;;.
space () determining the realized function u;; is specified as independent of the arguments of

the function, (:Bjt, Djt, jt) 2 We add to this an assumption of menu-independent preferences:

Assumption 1. The measure P on €2 does not vary with J; or {(fL‘jt7 &t z,-jt) }jejt'

Relative to the standard formulation of a random function on y, this assumption merely
rules out the possibility that preferences over a given set of good depends on the other goods
available.’

Aside from this menu-independence and the restriction to scalar choice-specific unob-
servables, our representation of preferences is so far fully general. For example, it allows
arbitrary correlation of consumer-specific tastes for different goods or characteristics, as well
as arbitrary heteroskedasticity across products and/or across consumers with different z;;;.
The following example illustrates how our model can be specialized to a more familiar semi-

parametric models.

Example 1. One special case of the class of preferences we allow is generated by the linear

random coefficients random utility model

u (iﬂju Ejm Zijts Wz‘t) = Tjfy + ZijtY + fjt + €ijt- (2)

8Despite the similarity of our notation to that in Matzkin (2007b) and Matzkin (2007a), in our formulation
wy¢ is not a random variable (or random vector) but an elementary event in the sample space Q. Each wy
maps to a different utility function. As the examples below illustrate, in special cases of our model the
realization of w;; could determine the realizations of a large number of random variables with arbitrary joint
distribution.

9 Arbitrary dependence of the distribution of u;;; on (zijuxjh §jt) is permitted through the function wu.

10See Block and Marschak (1960), Falmagne (1978), and Barbera and Pattanaik (1986) for testable re-
strictions that follow from this assumption.



Here the random wvariables (Bgtl), . ,/B,Et](),eilt, e ,etht) can be defined on the probability
space (2, F,P), for example as B(k) = ,6’@ (wit) and €5 = €; (wi). With this specification,
Assumption 1 allows an arbitrary joint distribution of (ﬁzt e 5 em, e ,etht> but re-
quires that it be the same for all i, t, and {(mjt,ﬁjt,zijt) }jzl...J'H This specification of
<5@'t7 {€iji} j> 18 both more general than typically allowed in the literature and more restric-
tive than required by our framework, even within a linear random coefficients model. Also
permitted would be 3, = (6 (Zit, Wit) 5 - - - ,th (zit,wit)) and €, = € (xjt, €t wit), where 2y
18 a vector of individual characteristics that do not vary across j. Indeed, we could generalize

further by specifying €;;; = € (xjt,fjt, zm,wzt) however, then the sum x;3;, + zijiy + 5 Gin

(2) would be redundant and the model would collapse to our completely general specification

(1).
Each consumer ¢ maximizes her utility by choosing good j whenever
w (e, &y zije, wit) > U (Tpe, g 2t wit) Ve € Jp— {5} (3)
Denote consumer ¢’s choice by
Yit = arg 1;2%( u (%’m §jt, Zijt, Wit) .

For much of the paper we will rely on a separability restriction on preferences. Let

Zijt = <zz(;t),zl(]22>, with th € R.  Let z(-tl) denote the vector <zl(11t), Ces SZt) and z ) the
(2)

(2) (2)

matrix (zm, 2 Jtt> We will require that for every z;’ there exist a representation of

' This structure permits variation in J; across markets. In our formulation, the realization of
wj determines a consumer’s utility function. Thus the realization of w;; should be thought of as gener-
ating values of the random variables €;;; = €; (w;;) for all possible choices j, not just those in the current
choice set. Note that under Assumption 1 the joint distribution of {Gz‘jt}j cxc Will be the same regardless of
whether = J; or £ C J;. Thus, a consumer’s preference between two products j and k does not depend
on the other products in the the choice set.



preferences with the form

Ugje = (bitzz(jlt) + [ <5Cjt7 &t Zi(?ga Wit) Vi,j=1,.... % (4)

for some function i that is strictly increasing and continuous in &, and with the random

it

coefficient ¢;, = ¢ (w;;) strictly positive with with probability one.!?

Here we have imposed two restrictions:
1)

i) additive separability in a “vertical” attribute z;.
Yy ijt

(ii) monotonicity in &;.
(1)

ijt

o (2) .
ponent of u; (:th, Ejts zijt), conditional on @i, £, z;;;- This gives z

is independent of the stochastic com-
(1)

ijt

An important implication of separability is that z
the form of a “special
regressor” as in Lewbel (2000). In particular, we rely on the separability restriction to
provide a mapping between units of (latent) utility and units of (observable) choice proba-

bilities.!*  Below we will consider cases with and without a large support assumption on
1)

z;;i- Because unobservables have no natural order, monotonicity in §;, would be without
loss of generality if consumers had homogeneous tastes for characteristics, as in standard
multinomial logit, nested logit, and multinomial probit models. With heterogeneous tastes
for choice characteristics, monotonicity imposes a restriction that ; be a “vertical” rather
than “horizontal” choice characteristic. Thus, all consumers agree that (all else equal) larger
values of {;, are preferred. Of course, our specification allow heterogeneity in tastes for £,

m

and for the vertical observable z;;/. Furthermore, we allow a different representation (4) for

each value of zl(f ) 14 We show in section 7 that both (i) and (ii) have testable implications.

(1

21f ¢,, < 0 w.p. 1, we replace zl(lt) with —zijt). As long as |¢;;] > 0 w.p. 1, identification of the sign of ¢;,

is straightforward under the assumptions below.

1 . . _
BWe can allow zfjt) to be an index g (c;5:) where ¢;j; is a vector, as long as &t AL cije. Within a market

(so that all x;; and &, are fixed) utilities have the form 5, = g (cije) + ;5 with &, AL g5, If g (+) is linear,
identification of g (-) follows by standard results (e.g., Manski (1985)). Identification of nonlinear g (-) can
be obtained under restrictions considered in Matzkin (1993).

4 Athey and Imbens (2007) point out that the assumption of a scalar vertical unobservable & 4+ can lead
to testable restrictions in some models. In our model, if there were no variation across j in 2t holding

ijt
consumer characteristics fixed, consumers with the same zgf ) but different thl ) must rank (probabalistically)

any products with identical observable characteristics the same way, as Athey and Imbens (2007) point out.

10



3.2 Normalizations

Before discussing identification, we must have a unique representation of preferences for
which the identification question can be posed. This requires several normalizations.

First, because unobservables enter non-separably and have no natural units, we must
normalize the location and scale of £;,. For most of the paper we will assume without loss
that ¢;, has a uniform marginal distribution on (0, 1). We must also normalize the location

and scale of utilities. Without loss, we normalize the scale of consumer ¢’s utility using his
1)

marginal utility from z;;;, yielding the representation

~ 2
(1) M (ij gjtv Zi(jt)a wit)
Uijt = 25 +

\ Vi, j=1,...,J%
" Diy
Letting
~ 2
(2) M <xjt7 gjta Zi(jt)v wit)
H (wjt7 é.jt’ Zijt ) wit) - ¢
it

this gives the representation of preferences we will work with below:

1 2 .

uijt = Zz'(jt) +/’L (xjtagjtﬂzi(jt)awit> VZ,j = 17"'7Jt' (5)

To normalize the location we set u;o; = 0 Vi,t. Treating the utility from the outside good
as non-stochastic is without loss of generality here, since choices in (3) are determined by
differences in utilities and we have not restricted correlation in the random components of

utility across choices.

Their observation does not apply to our model in general. For example, conditional indirect utilities of
the form v;jp = &, + zl(jlt) B, are permitted by our model but do not lead to their their testable restriction.

Nonetheless, we show below that there is a related testable restriction for our more general model.

11



3.3 Observables and Structural Features of Interest

For most results we will require excluded instruments, which we denote by w;;."> The

observables then consist of

(yit7 t: {'Tjta ij Zijt}jEJt) :

To discuss identification, we treat their joint distribution as known. In particular, we take

the conditional probabilities

pijt = Pre (Yir = jlt, {Tres Wie, Zint re ) (6)

as known. Loosely speaking, we consider the case of observations from a large number of
markets, each with a large number of consumers. Thus, interpreting this as a panel setting,
we consider observations for “large 7" and large N.”

We write Prp in (6) to make clear that we do not permit selection on consumer-specific
unobservables. Thus, the choice probabilities we observe are those of the full population of
consumers—i.e., for the population of utility functions defined by draws from {2 governed by
P. This rules out applications where some components of (J;, {Zks, zikt }re7,) are chosen in
response to consumer unobservables.'® Our assumption, which treats & ;¢ as the unobservable
responsible for the endogeneity problem, is appropriate for most applications to multinomial
choice, where the same choices are offered to all consumers in a market.

Our first objective is to derive sufficient conditions for identification of the choice-specific
unobservables and the distribution of preferences over choices in sets J;, conditional on
the characteristics {:vjt, Zijt, & Jt}je 7 In particular, we will show identification of {f jt}

JET:

and of the joint distribution of {u;; }jc7 conditional on any (jg, {@ 1, 230, € jt}je 7 ) in their

Depending on the environment, instruments might include cost shifters excludable from the utility
function, prices in other markets (e.g., Hausman (1996), Nevo (2001)), and/or characteristics of competing
products (e.g., Berry, Levinsohn, and Pakes (1995)). Because the arguments are standard, we will not
discuss assumptions necessary to justify the exlusion restrictions, which we will assume directly.

16 A5 an illustration, in the linear random coefficients model of Example 1, we permit arbitrary correlation
between (8;,€;5:) and (25, x;¢) but view this as a structural feature in the population, not the result of
selection of (z;;¢,2;+) on the prefeence shocks (5;, €;t).

12



support.  These conditional distributions fully characterize the primitives of this model.
We therefore refer to identification of these probability distributions as full identification of
the random utility model.

We will also consider a type of partial identification: identification of demand. For many
economic questions motivating estimation of discrete choice demand models, the joint distri-
bution of utilities is not needed. For example, to discuss cross-price elasticities, equilibrium
markups, or pricing/market shares under counterfactual ownership or cost structures, one
requires identification of demand, not the full random utility structure. Identification of
demand naturally requires less from the model and/or data than identification of the distri-
bution of preferences. In the multinomial choice setting, demand is fully characterized by

the structural choice probabilities

pi (TeoAmje: o zijitsen) = Pr (v = 31T Axje s 2ije e ) - (7)

These conditional probabilities are not directly observable from (6) because of the unobserv-

ables £, which are typically correlated with at least some elements of x;; (e.g., price).

jt

3.4 Examples from the Literature

Our model nests random utility models considered in applied work across a wide range of

fields, including the following examples.

Example 2. Consider the model of preferences for automobiles in Berry, Levinsohn, and

Pakes (2004):

Uit = TPy + &+ €ije

ft = 6]1C+5§0Vft+zzirt ’;,”“ Ek=1,....K

where x;; € R* are auto characteristics, 2, are consumer characteristics. Here B'f, 12“0, and

lgr are all parameters of our function u in (5).

13



Example 3. Consider the model of hospital demand in Capps, Dranove, and Satterthwaite
(2003), where consumer i’s utility from using hospital j depends on hospital characteristics
xjt, patient characteristics z;, interactions between these, and patient i’s distance to hospital

J, denoted 2. In particular,
Uije = axje + Bz + il zi + 2ijt + €ijt.
Example 4. Rivers (1988) considered the following model of voter preferences

2 2
uije = Py <Zi(tl) - xﬁ)) + By (Zi(f) - xﬁ)) + €ijt

where zz(tl ) and a:’ﬁ

- (2) (2
tions, z;  and x;,

)are, respectively, measures of voter i’s and candidate j’s political posi-

2
) are measures of party affiliation.  Here the terms <Zz(t1) _ xﬁ?) and

<th2 ) — x?) form the consumer-choice specific observables we call z;j;.

4 Illustration: Binary Choice with Exogenous Charac-
teristics

Typically one will want to allow for endogeneity of at least one component of x;;.However,
to illustrate key elements of our approach, we begin with the simple case of binary choice
with exogenous z;;. Here we can drop the subscript j, with consumer ¢ selecting the inside

good whenever

Zi(tl) + H (33‘,5, gta Zz(t2)> wit) > 0.
We consider identification under the following assumptions.
Assumption 2. &, Il (x4, zy) -

-

Assumption 3. supp zz(tl )]xt, sz ) =R vz,
Assumption 2 merely states that we consider here the special case of exogenous observ-

14



ables. This assumption is dropped in the following section. A “large support” condition
like Assumption 3 is common in the econometrics literature on nonparametric and semipara-
metric identification of discrete choice models (e.g., Manski (1985), Matzkin (1992), Matzkin
(1993), Lewbel (2000)).!” We relax this assumption in section 6, where the analysis will also
clarify the role that the large support assumption plays in the results that do use it.

Here we show that Assumptions 1-3 are sufficient for full identification of the random
utility model. Begin by conditioning on a value of zgf ), which can then be suppressed. We
then rewrite (5) as

Ui = Zi(tl) + i (8)

where we have let p;, = p (24, &;,w;) as shorthand. Holding the market ¢ fixed, all variation
in y;, is due to w;. Thus, conditional ¢, p,;, is independent of zftl) by Assumption 1. Since

the observed conditional probability that a consumer chooses the outside good is

Do (ﬁt, Zz‘t) =Pr <ll¢t < —Zi(tl)|$t, Zz‘t)

Assumption 3 guarantees that the distribution of pu,|t is identified from variation in zi(tl)

within market ¢. Denote this cumulative distribution by F, | (-). This argument can be
repeated for all markets ¢.

In writing u,;,|t, we condition on the values of z; and &,, although only the former is
actually observed. However, once we know the distribution of |t for all ¢, we can recover

the value of each ¢, as well. To see this, let

0 = med [y |t] = med [ (21, &, win) 21, ]

With F), ¢ (-) now known, each ¢, is known. Further, under Assumption 1,

oy=D (l’t,ﬁt) (9)

17As usual, the support of zz(tl ) need not equal the entire real line but need only cover the support of

I (mt, & zl(]?t) , wit). We will nonetheless use the real line (real hyperplane below) for simplicity of exposition.
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for some function D that is strictly increasing in its second argument. Identification of each
¢, then follows standard arguments. In particular, for 7 € (0,1) let 6" (2;) denote the th
quantile of ¢;|x; across markets. By (9), strict monotonicity of D in £,, and the normalization

of &,
0" (zy) = D (x4, 7).

Since 07 (x;) is known for all z; and 7, D is identified on supp z; x (0,1). With D known,
each &, is known as well.
Thus far we have shown identification of F}, ; and of each latent §,. So for any (x,§,)

in their support, the value of

F, (r|we, &) = Pr(p(w, & wi) <l &)
= F/ﬁit|t(7ﬂ)

is known for all r € R. With (8) this proves the following result.

Theorem 1. Consider the binary choice setting with preferences given by (5). Under As-

sumptions 1-3, the distribution of u; conditional on any (x,&,;, zi) € X-

Our argument involved two simple steps, each standard on its own. First, we showed that
variation in zl-(tl) within each market can be used to trace out the distribution of preferences
across consumers holding choice characteristics fixed. It is in this step that the role of idio-
syncratic variation in tastes is identified. Antecedents for this step include Matzkin (1992),
Matzkin (1993), Lewbel (2000), and indeed this idea is used in analyzing identification of a
wide range of qualitative response and selection models (e.g., Heckman and Honoré (1990),
Athey and Haile (2002))."® Second, we use variation in choice characteristics across markets
to decompose the nonstochastic variation in utilities across products into the variation due to

observables and that due to the choice-specific unobservables £;,.  This idea has been used

extensively in estimation of parametric multinomial choice demand models following Berry

18See also Matzkin (2007a, 2007b).
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(1994), Berry, Levinsohn, and Pakes (1995), and Berry, Levinsohn, and Pakes (2004). This
second step is essential once we allow the possibility of endogenous choice characteristics
(e.g., correlation between price and £, ), as will typically be necessary in demand estimation.

Our approach for the more general cases follows the same broad outline.

5 Multinomial Choice: Full Identification

Here we consider the general case of multinomial choice with endogenous characteristics using
the specification of preferences in (5). Let x; = (214,...,24). We consider the following

generalization of the large support assumption:

ijt 15t

Assumption 4. For all J;, supp {z(l)} | {xjt, z(2)} =R/,
=1 Jt J=1,...,J¢

=1,...,

This is a strong assumption, essentially requiring sufficient variation in <zz(11t) e zl(}t)t)

9 Equivalent conditions are

to move choice probabilities through the entire unit simplex.!
assumed in prior work on multinomial choice by, e.g., Matzkin (1993), Lewbel (2000), and
Briesch, Chintagunta, and Matzkin (2005). Such an assumption provides a natural bench-
mark for exploring identifiability under ideal conditions. However, we will also explore
results that do not require this assumption in section 6.

1 .2

Without Assumption 2, we will require instruments. Let z;; = (xjt s Ty ), where x

(1)
jt

denotes the endogenous characteristics. We then let w;; = <x§f),v~vﬁ) denote the vector

of exogenous conditioning variables. We will consider two alternative sets of instrumental

variables conditions below.

5.1 Identification with Fully Independent Instruments

We first explore identification using instrumental variables conditions from Chernozhukov

(1)

and Hansen (2005). Here we assume x;, is continuously distributed across j and ¢, with

19This is only “essentially” required by the large support condition because it does not require continuity
of choice probabilities in zl(tl ),
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conditional density function f,, <x§1)|wﬁ> .20 For the remainder of this section we will con-

dition on a value of (xg), . ,:L‘%)), suppress these arguments in the notation, and let z;

(1)

now denote x;,”. This requires that we rewrite (5)

(1)

Uije = Zijp T [ ('rjtafjtazz‘(;t);wit) Vi,j=1,..., J'.

i.e., with a j subscript on the functions y;, which are different unless xﬁ) is the same for all
5.2 Let
2
00 = Dj (256,€;,) = med [Mj (xjhgjta Zi(jt)ﬂwit> ‘ 'rjt?fjt} (10)

22 Fix some small positive con-

and let f5, (-|2;;, w;;) denote its density conditional on wy;.
stants €,,e; > 0. For each j, for 7 € (0,1) define £, (7) to be the convex hull of functions
m; (-, 7) that satisfy

(a) for all wj,, Pr (0 < my (2, 7) |7, wjt) € [T — €4, 7 + €]; and

(b) for all = in the support of zj;, m; (z,7) € s;(z) = {0 : f5, (6|z, w) > €7 Vw with f,, (z|w) > 0}.

We assume the following
Assumption 5. &, Il (wjq, 2ij:) Vj, t.

Assumption 6. For all j, (i) the random variables z;; and J;; have bounded support;

(ii) for any 7 € (0,1), for any bounded function B, (z,7) = m;(z,7) — D; (x,7) with
m; (-, 7) € L; (1) and ey = 05 — D; (250, 7), E [Bj ()0, 7)1, (250, wji, 7) |wj] = 0 as. only
if B;j (z:,7) = 0 a.s., where 1, (v, w,7) = fol fe; (0Bj (2,7) |z, w) do.

(iii) the density fol fe; (e|w, w) of ¢j; is bounded and continuous in e on R;

(iv) Dj (x,€) € s;(z) for all (z,§) in their support.

20This could be dropped by appealing below to Theorems 2 and 3 (and the associated rank conditions)
in Chernozhukov and Hansen (2005) instead of their Theorem 4. We consider the case of a continous
endogenous characteristic here because price is our leading example.

21Recall that xﬁ) may include product dummies, so in general the functions u; and p1;, need not have any
particular relation.

22Chernozhukov and Hansen’s “rank invariance” property holds here because the same unobservable & jt
determines potential values of ¢;; for all possible values of the endogenous characteristics.
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Assumption 5 is a strong exclusion restriction. Assumption 6 is a particular type of
“bounded completeness” condition (Chernozhukov and Hansen, 2005, Appendix C), ensuring
that the instruments induce sufficient variation in the endogenous variables. This condition
plays the role of the standard rank condition for linear models, but for the nonparametric

nonseparable model 6; = D;(z,£).?* With these assumptions, we obtain the following result.

Theorem 2. Under the representation of preferences in (5), suppose Assumptions 1, 4, 5,
and 6 hold. Then the joint distribution of {w;;:} ;e conditional on any (jt, {(xjt, Zijt, 1) }jej)

i their support is identified.

Proof. Fix [J;, with J, = J. Fix a value of the vector <zz(12t),,zg3f> Let p;; =

W <$]~t, Ejts zi(ft),wit> and observe that

lim DPijt = Pr (Zl(jt) + Hije > O‘szt> :

ZiktH700

@

Holding t fixed, umj_z by Assumption 1 and our conditioning on z Assumption 4

z]t
then guarantees identification of the marginal distribution of each [t for each j. This

implies, for each 7, identification of the conditional median

(5jt = med [M (ijt, fjtawit) |$jt7fjt] = med [M (-rjtagjt»wit) |t] (11)

Thus, the left side of (10) can be treated as observed. Further, the function D; in (10)
must be strictly increasing in £;,. Under Assumptions 5 and 6, Theorem 4 of Chernozhukov
and Hansen (2005) then implies that each function D; (and therefore each realization ¢;;) is

identified. Finally, observe that for any market ¢

1)

Piot = T<Z'z‘(112+#i1t<0a~-> Zige T iy < 0|t

1 1
’ z(1t)> ey Zz(ﬁ)f) (12)

1 1
t, zi(lt),...,zi(JD

23 Chernozhukov and Hansen (2005) discuss sufficient conditions. We also consider an alternative to As-
sumption 6 below.

P
P

(1) (1)
r (Nnt < = Zjgs s Mg < T2

19



so that Assumption 4 implies identification of the joint distribution of (1;14, - . ., ;) [t. Since
each zj; is observed and ¢, is identified, this implies identification of the joint distribution
of (ti1gy-- -, tiy) conditional on any {(:):jt,zijt,fjt)}jeﬂ in their support given [J;. Since

(1)

Uit = Zyjp T Mijes the result follows. 0

5.2 Identification with Mean-Independent Instruments

A possible limitation of Theorem 2 is that Assumption 6 may be difficult to check and/or
interpret. Whether there are useful sufficient conditions on economic primitives delivering
this property is an open question of broad interest in the literature on nonparametric instru-
mental variables regression, but beyond the scope of this paper. However, if we are willing
to impose somewhat more structure on the utility function, we can obtain a more intuitive
sufficient condition. Doing so also enables us to relax the excludability restriction to require
only mean independence.

Conditioning on ;r;§2) as in the prior section, suppose (for this subsection only) that each
consumer ¢’s conditional indirect utilities can be represented by

- 1), - 2 :
Uit = ﬁz‘tzz'(jt) g (xjf» Zi(jt)7 Wit) + Vil jt J=1L....% (13)

where (3, is strictly positive with probability one and the expectations F [5,,], F [v,], and

E [ﬂj (xjt, zgt), wit> |z ¢, zz(ft) ] are finite. This imposes a restriction relative to (4) but is still

quite general relative to the prior literature. A representation of preferences equivalent to

(13) is

Uit = ijlt) + (%‘t,fjn Zi(;t),wit) Viej=1,.... % (14)

where now

(2)
122 (%‘t; Z; ‘tawit> .
2 J J /72
I (xjt,fjtazi(jt)awit) = 3. + _ﬁt jt- (15)

Here we will use a different normalization of {;,. Instead of letting {;, have a standard
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uniform distribution, we make the location normalization

El¢,] =0 Vj

and scale normalization

E Df_j = 1. (16)

Both are without further loss of generality. The latter, for example, defines units of the
unobservables ;.
With this structure we can replace the full independence assumption with mean inde-

pendence.
Assumption 7. E [fjt|wjt,z,-jt} =0 V), t, Wi, Zijt-

To show identification of the joint distribution of {uijt}j conditional on {xﬁ, Zijt, € jt}j,
first note that the argument in the proof of Theorem 2 remains valid here through equation
(11). Recall that in that proof we fixed the value of (21(1227 cees zﬁi) With the separable

structure (15) and the normalization (16), for each j we now we let

0jp =FE |::U’j (%tafjtzgt),wit)

t} = Dj (7)) + &t

for an unknown function D; As in the proof of Theorem 2, each dj; is identified from
variation within each market. It is then straightforward to confirm that, under Assumption
7, the following “completeness” condition is equivalent to identification of each function D,

from observation of (8, 1, W;;) (Newey and Powell (2003)).

Assumption 8. For all j and all functions B, (z;;) with finite expectation, E [B; (z;:) |wji| =

0 a.s. implies B; (x;;) = 0 a.s.
We can now state a second result for the multinomial choice model.

Theorem 3. Under the representation of preferences (14), suppose Assumptions 1, 4, and 7

hold. Then the joint distribution of {u;;:}es conditional on any (]t, {(zt, zl-jt,fjt)}jej)
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in their support is identified if and only if Assumption 8 holds.

Proof. From the preceding argument, under the completeness Assumption 8, we have iden-
tification of each D; and therefore of each £;,. The remainder of the proof then follows that
of Theorem 2 exactly, beginning with (12). O

The completeness condition here (Assumption 8) is the analog of the rank condition in

(1) to reveal

linear models. It requires that variation in w;;; induce sufficient variation in Ty

D; (x;;) at all points x;.*

6 Identification of Demand Using Limited Support

The large support assumption (Assumption 4) in the preceding section is both common in
the literature and controversial. Our results using this condition demonstrate that sufficient
variation in the vector (zl(ll ) zf}?) can identify the joint distribution of utilities on their
full support. Although our results describe only sufficient conditions for identifiability, it
should not be surprising that a large support assumption may be needed: if the exogenous
observables can move choice probabilities only through a subset of the unit simplex, we
should only hope to identify the joint distribution of utilities on a subset of their support.
Of course, one would like to understand how heavily the results rely on the tails of the large
support and what can be learned from more limited variation. We explore these questions
here.

We show that more limited variation is sufficient to identify demand, i.e., to identify
the structural choice probabilities p; (jt, {750, §0 2iji }je Jt) at all points of support. We also

show continuity of the identified features with respect to the support of the micro data. In

particular, moving from our limited support condition to the full support condition moves

24 Lehman and Romano (2005) give standard sufficient conditions. Severini and Tripathi (2006) point out
that this condition is equivalent to the following: for any bounded function f; (x;;) such that E[ f; (z;:)] =0
and var (f; (xj:)) > 0, there exists a function h; (-) such that f; (z;;) and h; (wj;) are correlated. Additional
intuition can be gained from the discrete case: as shown by Newey and Powell (2003), when x;; and wj;

have discrete support (il, 2K ) X (Wl, W ) , completeness corresponds to a full rank condition on the

matrix {0y} where oy = Pr(z;; = fck|wjt =w!).
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the identified features of the model smoothly toward the full identification results of the
preceding section.

For multinomial choice we obtain these results under a somewhat more restrictive spec-
ification of preferences than that in (5). Up to this qualification, however, these results
should be a comforting. Demand is identified without the large support condition. And
although we require the large support for full identifiability of the random utility model in
the previous section, the identification is not knife-edge: the tails of the large support are

needed only to determine the tails of the joint distributions of utilities.

6.1 Binary Choice
6.1.1 Identification of Demand

As before, we begin with binary choice to illustrate our main insights. We begin with the
1)

relaxed support condition on z;’, requiring a single “common choice probability” that is

attainable in all markets by the appropriate choice of zz(tl ) in its support.

Assumption 9. For some 7 € (0,1), for every market ¢ there exists a unique z] €supp zi(tl)

such that Pr (yit = 1‘21’(151) = zg) =T.

Here we require sufficient variation in zz-(tl) to push the choice probability to 7 in each

market, not over the whole interval (0,1) in each market.?> This is not innocuous but is
much less demanding than the full support condition.

In the case of binary choice we obtain results using the general specification of preferences
in (5).2° Here, the consumer chooses the inside good whenever (fixing zz(f ) and suppressing
it)

Zi(tl) + 2 (xh 57&7 wit) > 0.

ZTImplicitly we also require a continuous (region of) support for Hj (:ct, &, z,ftz), wit) |z, &4y zl(tz) to gaurantee
uniqueness.

261n the case of binary choice, the additive separability in zz(tl ) is without loss if the utility for the inside

good is strictly increasing in zl(tl ). See Berry and Haile (2008a) for additional results for the special case of

binary choice and threshold crossing models.
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With Assumption 9, for each market ¢t we can identify the value 2], such that

Pr (—N (24, &, wir) < Z§t1)|$t;§t72i(tl))

=T
2 ==
Observe that each z] is the Tth quantile of the random variable —p,, = —pu (2, &, wir)
conditional on ¢, i.e., on (4, &,). Thus, we can write
7 = (2 57) (17)

for some function ¢ (-;7) that is strictly decreasing in &,. This strict monotonicity is the key
idea here: holding z, fixed, markets with high values of z] are those with low values of the
unobservable &,.

Identification of the function ¢ (+;7), and therefore of each &,, follows from (17) as in the
preceding sections, using the nonparametric instrumental variables result of Chernozhukov
and Hansen (2005).  This requires the same type of bounded completeness assumption
made in section 5.1. We state this formally as Assumption 13 in the Appendix. With each

¢, known, the observable choice probabilities reveal the structural choice probabilities

P (wnfty Zit) = Pr (yit = 1|$t,§t7 Zz't) (18)

at all points (zy, &, 2;¢) of support. Thus, we have shown the following result.

Theorem 4. In the binary choice model with preferences given by (5), suppose Assumptions
1, 5, 9, and 13 hold. Then the structural choice probabilities p (xy,&,, zi) are identified at

all points (x4, &,, zit) in their support.

6.1.2 Continuity of the Identified Features

Theorem 4 required only one common choice probability. If there is more than one, each
provides additional information about the distribution of w;¢|x¢, 2, &,. In particular, we

can identify a function ¢ (+;7) for each common choice probability 7, each then determining
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the 7th quantile of —p (x4, &, wir) |24, &, Since

Uy = ZZ'(tl) + 1 (2, &y win)

this determines the corresponding quantiles of the distribution of u;; conditional on (x4, &, zi)-
In the limit—i.e., with sufficient variation in z to make every 7 € (0,1) a common choice
probability—all quantiles of the distribution of u;; conditional on (x4, &,, z;) are identified,
and we are back to full identification as in Theorem 2. This illustrates the notion of “con-

tinuity” described above and shows the tails of zgjlt) under the large support assumption are

used only to identify the tails of the conditional distributions of utilities.

6.2 Multinomial Choice

For multinomial choice we will require a different representation of preferences:

1 2 o

Uije = M (Zz(]t) + fjta Ljt, Zi(jt)’wit> Vi,j=1,..., 7 (19)

where p is assumed strictly increasing in its first argument. This is similar to (13) in
requiring that zfjlt) and £, be perfectly substitutable. Here we require all consumers to have

the same marginal rate of substitution between zgg and & ;;, but we allow the index zgjlt) +&5
to enter the utility function in a fully nonparametric way.

A key implication of (19) is that choice probabilities depend on the sums

1
Aijt = Zi(j) + &Gt

rather than on each 2%

;¢ and &, separately. Letting A; = (Nites -5 Aigt), X¢ = (T1gy -+, Tgr),

and zgf ) = (zl(ft) e zfii), we can then write the structural choice probabilities as

pj (Al‘n Xis Zz(tQ)) :
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Following Gandhi (2008), we make the following “strong substitutes” assumption.

Assumption 10. Consider any (Xt7 zl(t2 )> and any A; such that p; ()\t,xt, z£t2 )> > 0 for all

J € J. For any strict subset K C J, there exists k € K and j ¢ K such that p, <}\t, Xy, zE?)

is strictly decreasing in Aj;.

Given the monotonicity of u;;; in Aj, this is a natural regularity condition requiring that
in every binary partition of 7, there is some substitution between cells of the partition. This
is guaranteed if there are always consumers on the margin of indifference between every pair
of choices. This holds in standard models like the random coefficients multinomial logit but
is stronger than necessary. For example, in a pure vertical model a given product substitutes
with at most two others, yet the condition holds.?”

Let A7 denote the J — 1 dimensional unit simplex. With Assumption 10 we can follow
the argument used to prove Theorem 2 of Gandhi (2008) to show the following lemma, which
generalizes the well-known invertibility results for linear discrete choice models from Berry

(1994).28

Lemma 1. Consider any choice probability vector p = (py,...,ps) on the interior of A”.

Under Assumptions 1 and 10, for any (xt,zg)> there is at most one vector A € R’ such

that p; ()\,Xt, zg)) =p, forall j .

Proof. Fix <Xt, zg )> and suppress them in the notation. Now suppose, contrary to the claim,
that for some A # X', p; (X) = p; (\') = p; for all j. Note that since we have normalized

the utility of the outside good to zero for all choice sets, we can define Ag= }\6 =0as a

2TFor example, consider a 5 good vertical model and K = {2,3,4}. Good 3 does not substitute with
goods outside of K, but goods 2 and 4 do. Thus the condition holds. It requires only that there be some
element of I that substitutes with some good outside K. This will be true here for any proper subset
KcJg=H{0,1,...,5}.

28See Berry and Pakes (2007) for an alternative set of sufficient conditions. Berry (1994) and Berry and
Pakes (2007) show existence and uniqueness of an inverse choice probability in models with an additively
separable d;;. Gandhi (2008) relaxes the separability requirement. Our lemma addresses only uniqueness
conditional on existence. Under our maintained assumption that the model is correctly specified, given any
observed choice probability vector, there must exist a vector (d1,...,d ) that rationalizes it. Gandhi (2008)
provides conditions gauranteeing that an inverse exists for every choice probability vector in A7,  Our
uniqueness result differs from his only slightly, mainly in recognizing that the argument applies to a more
general model of preferences.
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notational convention without loss. Without loss, let )\; > )\; for some j € J. Because
0 € J, there must then exist a strict subset of choices K C J such that /\;- > \;Vj € K and
)\; < \Vj € J — K. For this subset K let £ € K be the index of a product referred to (as

“kE”) in Assumption 10. Now define a new vector A* by

ANoo= A,
M= AV £k
Monotonicity of u;;; in d;; implies that p; (A*) < p; (A) for all j € J — K. Furthermore,

Assumption 10 implies

DOITCORED SIEY

jeET-K JjeET-K

so that (since probabilities must sum to one)

Dop N> ().

jex jex

But then by monotonicity of u;j; in Aj;;, we have

PIACOEDDINC SIS YAV

jex jek jex
which contradicts the hypothesis p; (A) = p; (X') = p; for all j. O

Finally, we generalize the previous common choice probability assumption in the natural

way.

Assumption 11. For all J;, there exists ¢ = (qo,q1,--.,qs) € A such that for every

market ¢ there is a unique vector z{ = (27,,...,2{,) Esupp (zz(llt), e Zz%?t) such that ¢; =

Pr(yi = J |T16s - - s Tats Zitty - - - ,Ztht)z(:):zg forall j =1,...,J,.
K3

If o (zz(]l) + i, Tt Zz(th)7 wit) is continuously distributed conditional on (zfjlt) + &ty Tt Z;;t))y

uniqueness of z{ is guaranteed by Lemma 1. Beyond this, the requirement of Assumption 11
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is that the vector (zl(llg, ey zf}i) have sufficient support to drive the choice probability vector

to ¢ in each market. Note that the value of ¢ satisfying this condition need not be known
a priori, since this is observable. Indeed, the existence of the common choice probability is
directly testable. This condition, while still demanding sufficient .J-dimensional micro data,
is clearly weaker than the full support condition, which essentially requires all elements of

A7t to be common choice probabilities.

Theorem 5. In the multinomial choice model with preferences given by (19), suppose As-
sumptions 1, 7, 8, 10, and 11 hold. Then the structural choice probabilities p; (jt, {xjt, Ejts Zijt}jejt)

are identified at all (Jy,{xji, &1, Zijitjeq) in their support.

(2) _ 5@

Proof. Fixing the vector z; , suppressing it in the notation, and letting s; (Aije, 750, wit) =

5(2)
M (Aijﬁ Ijt, zijt , Wit , we have

_ _ (1) 1)
Dijt = Pr(yit =) |'r1t7 vy Tty £1t7 cee 7€Jtt7 Ziltr 7Z7jJtt>

= Pr(yit =] |$1t, <oy Tty Aitty oo s /\tht>

= Pr (,uj (Nijts Tje, wie) > max {07 max. iy, ()\iktaxktawit>}) .

Fix x; = (214, ...,2,) and let ¢ be the common choice probability vector. From Lemma 1

and Assumption 11, there is a unique vector A (x¢,q) = (A1 (X¢,4) -, - - -, Ay, (X4, q)) such that

p; (A (x¢,q) ,x¢) = q; V.

Further, by the definition of z{ and \; (x;,q), A; (x¢,q) = ;; + 2§, so that

Z?t =\ (x1,9) — fjt vy, t. (20)

The equations (20) identify the functions A; (-, ¢) and each £, for all j and ¢ under Assump-
tions 7 and 8, using the identification result in Newey and Powell (2003) for nonparametric

regression with instrumental variables. As demonstrated above, knowledge of all & ;; identi-

28



fies the structural choice probability functions (demand). O

7 Testable Restrictions

The models we have considered rely on two important assumptions: (i) existence of a vertical

. 1 .. . . .
consumer-choice observable zi(jt) ; (ii) a scalar vertical choice-specific unobservable, &;,. Here

we show that both assumptions imply testable restrictions.

The assumption of a vertical zfjlt) has immediate implications for the observed conditional

choice probabilities.

Remark 1. (i) Suppose preferences can be characterized by (5) with 2 independent o
Y 5t
;i Then under Assumption 1, Pr(yy = j|Ti, {2, Wi, Zike freg,) 8 increasing in zf;t). (i1)

Suppose preferences can be characterized by (5) or by (19) with p strictly increasing in its
1)

first argument. Then Pr (yir = j|t, {zirt fres) is increasing in 2.

The first restriction involves variation in choice probabilities across markets and depends

on exogeneity of {;;. The second addresses variation within a market, where {§ jt}j e

ar
€Tt
held fixed. Both implications are immediate from the requirement that the utility from good
1

ijt- Furthermore, it is clear that the restriction need not hold if

(1)

it

J be strictly increasing in z

utilities sometimes are decreasing in z

The assumption of a scalar vertical unobservable also leads to testable implications. We

show this here for the binary choice case for simplicity. To state the result it will be useful

to recall Theorem 4 and let &, (2];7,x;) denote the value of £, identified from the common
@)

choice probability 7 in market ¢{. As usual, we condition on z;’ and suppress it in the

notation.

Remark 2. In the binary choice model with preferences given by (5), suppose Assumptions

1, 5, 18, and 9 hold. Then &, (z];T,x;) must be strictly decreasing in z] across markets.
This is immediate from the fact that u; is strictly increasing in both zz(tl ) and &, under

the assumptions of the model. The following example shows one way that a model with a
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horizontal rather than a vertical unobservable characteristic can lead to a violation of this

restriction.

Example 5. Suppose p(xt,&,, ¢y) = —virk,, with vy ~N(0,1). Take 7 > 1/2 and consider
the set of markets in which &, (2];7,x:) > 0. Recall that each z] is observable and is defined

such that Pr (vy&, < 2]) = 7. Letting ® denote the standard normal CDF, this requires

o () =r w 1)

.
2t

&

also be positive when T > 1/2, this requires a strictly positive correspondence between z] and

Therefore, by construction, Z=will take the same value in every market. Since each z] must

&, across markets, violating the restriction from Theorem 2.

The restriction in Remark 2 follows from the requirement of a vertical {;;. ~An additional

restriction is implied by the restriction to a scalar choice/market-specific unobservable.

Remark 3. In the binary choice model with preferences given by (5), suppose Assumptions 1,
5, and 18 hold. In addition, suppose that for distinct T and 7' in the interval (0, 1), for every
market t there exists a unique z{ €supp zz(tl ) such that Pr (yit = 1|zi(t1 ) = 2 ) = 7 and a unique
27 Esupp zftl) such that Pr (yit = 1|ZZ-(t1) = zf) =7, Then & (f;7,2) = & (27 ;7' 24) for

all t.

Proof. This is immediate from the fact that, under the assumptions of the model, &, (2]; 7, x;) =
& (=57 ) = &, O
The following example demonstrates that this restriction can fail if the restriction to a

scalar unobservable is violated.

Example 6. Consider a model with two vertical unobservables, & and &2. Let

Vit (ftl ‘1’5?) vig < 1/2

M(xtaftlafgawit) = 1 9
Vit (ft +2’£t) Vit 2 1/2
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with vy ~ul0,1]. Let & and & be independent, each uniform on (0,1). By definition, when
zgtl) = z] only consumers with vy > 1 — T choose the inside good. Thus, the value of 2] is
determined by the preferences of the consumer with vy = 1 — 7. Now consider the &, (T)
inferred under the incorrect assumption of a scalar unobservable. From the observations
above, when T > 1/2 we have &, (1) = Fa e (§ + &) where Fa e is the CDF of the sum
of two independent uniform random variables. Thus, if for market t, (é}l + 5? ) falls at the
o quantile in the cross-section of markets, &, (1) will equal o.  Similarly, for 7" < 1/2,
& () = ng%g (€t1 + 26?); i.e, if & + 267 fall at the o' quantile of this sum in the cross

section of markets, &, (') will be o’. In general, o # o’.

8 Extension: Aggregate Data with Market Groups

In many applications one is forced to work without micro data linking choices to individual
characteristics, relying instead on market level choice probabilities (i.e., market shares). In
Berry and Haile (2008b) we explore identification in such settings. However, there is at least
one case in which the ideas in the present paper can be directly applied to the case of market
level data.

Eliminating the micro data z;;; from the model, the observables are now (y;, z;;). Note
that each xj; could contain attributes of products j or attributes of markets ¢. Partition z
into <x§? , x%”) and suppose preferences can be represented by conditional indirect utilities
of the form

Uit = 335? + u(xﬁ?), €t Wit) - (22)

Assume that the set of markets can be partitioned into market groups I' such that for
allt € T, (.1’5-?),5 jt> = (xgllf), £ jp>. One natural example of such an environment is that
of a national industry (e.g., the U.S. automobile industry) in which the physical products
themselves are identical across regions of the nation, but regions may differ in average income,

product prices (e.g., due to f.o.b. pricing), prices of complementary goods (e.g., gasoline),

availability of substitute goods (e.g., public transportation), etc.
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For simplicity, we illustrate the argument formally only for the case of full identification
with exogenous product characteristics. However, it will be clear that all the identification

results obtained above have analogs in this setting.

Assumption 12. supp (z\”, ... ,mf]i) (@4 ,mf}t?) =R’ Vt.

tt

Assumption 12 is different from the parallel large support Assumption 4. Here we re-
quire sufficient variation in a special product characteristic rather than an special consumer-
product characteristic. The role of this assumption is the same, however: to trace out the

distribution of the random component of (22) within each market group.

Now the setup is isomorphic to that in section 5. Variation in xé?

()
J't

across market groups
at the limit x>, — —oo Vj’' # j identifies the distribution of <a:§-i1f),£ jF) exactly as in
section 5. Letting o (x%),ﬁjr) =F [,uz- (x%),ﬁjr) ]x%),gjr], identification of the function
o (w%),f jp> (and therefore each &) follows exactly as in the previous sections. ~With
each {;r and the distribution of y, <a:§-?),£ jr> known, the joint distribution of {w;;;}jecz is

uniquely determined at any (jt, {(xjt, £ jt)} > in their support.

JET
Because the setup here is isomorphic to that for the case of micro data, the extensions
to the case of endogenous characteristics (elements of 3:5?)), a separable error structure, and

identification of demand with limited support follow directly as well.?

29 An interesting question is what can be learned in a single market with a large choice set, i.e., with
J — oo (see Berry, Linton, and Pakes (2004)). Suppose that z;; does not include product dummies but
preferences can still be represented by 5, imposing a symmetry condition that the same function g apply to
all products. Fixing a market with a finite choice set, the market share of the outside good is

Po = Pr (21(11) +/L(l’1,£1,wit) < 0)521(}) +M($J35Jawit) < O) .

A large support condition would give identification of the joint distribution  of
(1 (1,61, wit) 5o (g, €5, wit)), so that each 0; = med ,u(xj,fj,wit) |zj,&; could be considered
known. Since we can write 6; = D (xj,fj), letting J — oo , it may be possible to extend the identifi-
cation result of Chernozhukov and Hansen (2005) to obtain identification of D, which would then imply
identification of each ¢, with full identification then following as above.
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9 Conclusion

We have studied nonparametric identification of models of multinomial choice demand, al-
lowing for choice-specific unobservables, endogenous choice characteristics, and arbitrary
random heterogeneity across consumers in tastes for products and/or characteristics. We
obtained full identification using the same kind of large support assumption used to show
identification in semiparametric models, and the same instrumental variables conditions re-
quired for identification of nonparametric regression models. Further, the results rely on the
large support only for identification of tail probabilities, and identification of demand holds
under a significantly weaker support condition.

While one goal of our work has been to obtain results with few restrictions on prefer-
ences, there are some costs to a choice not to place more structure on the form of utility
functions. One is that some types of counterfactuals will not be identifiable.?* An example
is demand for a hypothetical product with characteristics outside their support in the data
generating process. This kind of limitation is not special to our setting, but is inherent to
a nonparametric analysis: extrapolation and interpolation typically require some parametric
structure. Of course, one may have more confidence in extrapolations when identification
holds nonparametrically within the support of the data generating process.

A second limitation concerns welfare. Our model (5) incorporates quasilinear preferences
and can therefore be used to characterize changes in utilitarian social welfare (in aggregate,
or across subpopulations defined by observables).?! However, it lacks the structure required
for welfare analysis that depends on the distribution of welfare changes. Characterization of
Pareto improvements, for example, would require additional restrictions enabling one to link

an individual consumer’s position in the distribution of utilities before a policy change to that

30The model enables identification of some counterfactuals outside the support of the data generating
process—for example, removal of a product from the choice set.

31The quasilinearity generally will not be in income, but one can describe changes in aggregate compen-
sating/equivalent variation in units of the normalized marginal utility for zl(jlt) . Income (and/or price) will
typically enter preferences through the function 4 in (5). The potential nonlinearity of i, combined with our
inability to track indivuals’ positions in the distributions of normalized utilities as the choice environment

varies, prevents characterization of aggregate compensating variation or equivalent variation in income units.
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after. This is because our model specifies a distribution of conditional indirect utilities, not
a distribution of parameters whose realizations can be associated with an individual. This
points out a limitation of nonparametric random utility models as a theoretical foundation for
some kinds of welfare analysis: such welfare calculations require additional a priori structure.

An example of a model with sufficient structure to address these welfare questions (and
to extrapolate/interpolate) is the linear random coefficients random utility model (Example
1)

Uije = TjtBy + zijy + §j1 + €ije- (23)

This generates a special case of our model, so we have provided conditions for identification
of the joint distribution of ({uijt}j | {mjt, its zijt}j) for all {J)jt,fjt, zijt}j in their support.

je j> that imply the same conditional

However, different joint distributions of (@t,{szt}
joint distributions of utilities need not have the same implications for welfare or extrapola-
tion/interpolation. Going from our results to identification of the distribution of parameters
in (23) is equivalent to identification of a linear random coefficients regression model. Beran
and Hall (1992) and Beran, Feuerverger, and Hall (1996) have discussed sufficient conditions,
which involve regularity and support requirements beyond those required for our results.
Whether this enables any relaxation of existing identification results for linear random co-
efficients models (e.g., Ichimura and Thompson (1998), Briesch, Chintagunta, and Matzkin
(2005), Gautier and Kitamura (2007), Fox and Gandhi (2008)) is an open question.
Finally, while a novel aspect of our work is it examination of identification without
large support conditions, even our weaker “common choice probability” condition requires
J-dimensional micro data. One can easily imagine applications where this will not be
available. 'When no micro data are available, one is in the case of market-level data. We
explore that case in Berry and Haile (2008b). Whether the conditions for identification we

identify there could be relaxed in intermediate cases—where there is some micro data, but

of a lower dimension than that of the choice set—is an interesting question for future work.
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Appendix

Here we state Assumption 13, used in Theorem 4. From equation (17) we have

7 = (2, 6457)

where x; denotes the endogenous characteristic of choice 1. For given 7, let f.- (-|x;, wy)
denote the density of conditional 2] on x; and the instruments w;. Fix some small positive
constants €;, e > 0. For each 7 € (0,1), define £(7) to be the convex hull of functions
m (-, 7) that satisfy

(a) for all wy, Pr (2] < m (x4, 7) |7, W) € [T — €4, T+ €¢,]; and

(b) for all = in the support of x, m (z,7) € s(x) = {d : fs5 (§|]z, w) > € Yw with f, (z|w) > 0}.

Assumption 13. (i) The random variables z; and 2] have bounded support.

(i) For any 7 € (0, 1), for any bounded function B (z,7) = m (z,7) — ( (x,7) with m (-, 7) €
L(7) and e; = 2] — ( (x4, 7), E[B (24, 7) ¢ (24, Wi, 7) |W¢] = 0 a.s. only if B (z4,7) = 0 a.s.,
where ¢ (z, w,7) = fol f- (B (z,7)|z,w) do.

(iii) the density fol fe (e|z, w) of ¢ is bounded and continuous in e on R;

(iv) ¢ (z,€) € s(x) for all (x,&) in their support.
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