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Abstract

We consider identi�cation of nonparametric random utility models of multinomial
choice using �micro data,�i.e., observation of the characteristics and choices of individ-
ual consumers. Our model of preferences nests random coe¢ cients discrete choice mod-
els widely used in practice with parametric functional form and distributional assump-
tions. However, the model is nonparametric and distribution free. It allows choice-
speci�c unobservables, endogenous choice characteristics, unknown heteroskedasticity,
and high-dimensional correlated taste shocks. Under standard �large support�and in-
strumental variables assumptions, we show identi�ability of the random utility model.
We demonstrate robustness of these results to relaxation of the large support condition
and show that when it is replaced with a weaker �common choice probability�condi-
tion, the demand structure is still identi�ed. We show that key maintained hypotheses
are testable.

�We have had helpful conversations on this topic with Hide Ichimura, Rosa Matzkin and Yuichi Kitamura.
We also received useful comments from Sunyoung Park and participants in several conferences and seminars.



1 Introduction

We consider identi�cation of nonparametric random utility models of multinomial choice

using �micro data,� i.e., observation of the characteristics and choices of individual con-

sumers.1 Our model of preferences nests random coe¢ cients discrete choice models widely

used in practice with parametric functional form and distributional assumptions. However,

the model is nonparametric and distribution free. It allows choice-speci�c unobservables,

endogenous choice characteristics, unknown heteroskedasticity, and high-dimensional corre-

lated taste shocks. Under standard �large support�and instrumental variables assumptions,

we show identi�ability of the random utility model, i.e., of (i) the choice-speci�c unobserv-

ables and (ii) the joint distribution of preferences conditional on any vector of observed and

unobserved characteristics. We demonstrate robustness of these results to relaxation of the

large support condition and show that when it is replaced with a weaker �common choice

probability�condition (de�ned below), the demand structure is still identi�ed. We also show

that key maintained hypotheses are testable.

Motivating our work is the extensive use of discrete choice models of demand for di¤er-

entiated products in a wide range of applied �elds of economics and related disciplines. Im-

portant examples include transportation economics (e.g., Domenich and McFadden (1975)),

industrial organization (e.g., Berry, Levinsohn, and Pakes (2004)), international trade (e.g.,

Goldberg (1995)), marketing (e.g., Guadagni and Little (1983), Chintagunta, Jain, and Vil-

cassim (1991)), urban economics (e.g., Bayer, Ferreira, and McMillan (2007)), education

(e.g., Hastings, Staiger, and Kane (2007)), migration (e.g., Kennan and Walker (2006)), vot-

ing (e.g., Rivers (1988)), and health economics (e.g., Ho (2007)). We focus in particular on

discrete choice random utility models allowing both unobserved choice characteristics and

heterogeneous tastes, in the spirit of Berry (1994), Berry, Levinsohn and Pakes (1995, 2004),

Nevo (2001), Petrin (2002), and a large related literature. Although this class of models

has been applied to research in many areas, the sources of identi�cation have not been fully

1In Berry and Haile (2008b) we consider identi�cation using market level data, where one observed only
conditional choice probabilities (market shares).
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understood. Without such an understanding it is di¢ cult to know what quali�cations are

necessary when interpreting estimates or policy conclusions.

Our analysis demonstrates that with su¢ ciently rich micro data, random utility multino-

mial choice models featuring unobserved choice characteristics are identi�ed without the

parametric or distributional assumptions used in practice� typically, linear utility with in-

dependent additive and/or multiplicative taste shocks drawn from parametrically speci�ed

distributions. Our results may therefore lead to greater con�dence in estimates and policy

conclusions obtained in empirical work based on discrete choice models. In particular, para-

metric speci�cations used in estimation can often be viewed as parsimonious approximations

in �nite samples rather than as essential maintained assumptions. We view this as our

primary message. However, our results also suggest that with large samples even richer

speci�cations (parametric or nonparametric) of preferences might be considered in empirical

work, and our identi�cation proofs may suggest estimation approaches.

An important strategy in our work is modeling utility as a fully general nonparametric

random function of observed and unobserved characteristics. This contrasts with the usual

approach of building up randomness from random coe¢ cients and/or other taste shocks. In

addition to enabling us to consider a very general random utility model, this formulation

leads us to focus directly on identi�cation of the conditional joint distribution of utilities

rather than the joint distribution of random coe¢ cients and/or other taste shocks. The

advantage of this might be unexpected: a natural intuition is that added structure on the

way randomness enters would aid identi�cation. However, whereas the conditional distrib-

ution of utilities has the same dimension as the observable conditional choice probabilities

(i.e., the dimension of the choice set), most random coe¢ cients models involve taste shocks

of dimension strictly larger than that of the choice set. Focusing directly on the joint distri-

bution of utilities naturally leads to primitives with the �correct�dimension without strong

distributional or functional form restrictions.

A second key aspect of our work is our explicit modeling of choice-speci�c unobservables.

Although this is standard in the applied literature, much of the prior work on identi�cation
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of discrete choice models has embedded the sources of randomness in preferences and the

sources of endogeneity in the same random variables. In applications to demand estimation,

an endogeneity problem typically arises because some observed choice characteristics (price

being a leading example) depend on unobserved choice characteristics. For such environ-

ments, explicitly modeling choice-speci�c unobservables enables one to de�ne counterfactuals

involving changes in endogenous characteristics within a model of heteroskedastic random

utilities. For example, our formulation allows us to characterize demand elasticities, which

require evaluating the e¤ects of a change in price (including resulting changes in the variance

or other moments of random utilities), holding unobserved product characteristics �xed.

A third novel component of our work is its exploration of both identi�cation of the full

model and identi�cation of �demand�� i.e., the mapping from observed and unobserved char-

acteristics to the vector of choice probabilities. For many questions motivating estimation

of discrete choice models, knowledge of this demand structure su¢ ces. Not surprisingly,

identi�cation of demand can be obtained under weaker conditions than those giving full

identi�cation of the random utility model.

Despite these di¤erences from the prior literature, we rely heavily on several well known

ideas. One is the use of variation in observables to �trace out� the distribution of un-

observables. Antecedents in the discrete choice literature include Manski (1985), Matzkin

(1992, 1993), Lewbel (2000), Honoré and Lewbel (2002), and Briesch, Chintagunta, and

Matzkin (2005), among others. A second idea is the use of exogenous variation in choice

sets to decompose variation in the distribution of utilities into the contributions of observed

and unobserved characteristics. This strategy has been exploited in parametric discrete

choice models by, e.g., Berry (1994) and Berry, Levinsohn and Pakes (1995, 2004). Here

we rely heavily on results from the recent literature on nonparametric identi�cation of re-

gression models using instrumental variables, particularly Newey and Powell (2003) and

Chernozhukov and Hansen (2005).

In the following section we provide some additional discussion of related literature. We

then set up the choice framework and de�ne the observables and structural features of
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interest in section 3. Section 4 provides an illustration of key lines of argument in a simple

case: binary choice with exogenous characteristics. Section 5 addresses full identi�cation

in the case of multinomial choice with endogeneity. There we consider two alternative

instrumental variables conditions that deliver full identi�cation of the model. In section 6

we show identi�ability of demand under weaker conditions and provide an observation about

robustness of the full identi�cation results to relaxation of support conditions. Section 7

discusses testable restrictions of key maintained hypotheses. In section 8 we show how our

results can be extended to one type of environment in which only market level data are

available. We conclude in section 9.

2 Literature

There is a large literature on identi�cation of discrete choice models and we cannot attempt

a complete review here. However, important early work on identi�cation of discrete choice

models includes Manski (1985, 1987, 1988) and Matzkin (1992, 1993). Manski considered a

semi-parametric linear random coe¢ cients model of binary response, focusing on identi�ca-

tion of the slope parameters determining mean utilities. Matzkin considered nonparametric

speci�cations of binomial and multinomial response models with an additively separable taste

shock for each choice. Extensions to nonadditive models can be found in Matzkin (2005,

2007a, 2007b, 2008).

Identi�cation of heterogeneous preferences has been explored using random coe¢ cients

models. Identi�cation of linear random coe¢ cients binary choice models has been considered

by Ichimura and Thompson (1998) and Gautier and Kitamura (2007). Briesch, Chintagunta,

and Matzkin (2005) consider multinomial choice, allowing generalizations of the linear ran-

dom coe¢ cients model. All of these consider models of utility that is linear in at least

one characteristic, which we will also require. We add to this literature by allowing a more

general representation of preferences and providing a more complete treatment of choice
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speci�c unobservables and endogeneity.2

Lewbel (2000) considers identi�cation in a semiparametric model with an additive spe-

cial regressor (which we also have in much of this paper), and allowing for endogeneity or

heteroskedasticity. In particular, he allows for an additive stochastic component whose

distribution can vary with observables. Our model of preferences di¤ers from his in two

main dimensions. First, we relax functional form restrictions; for example, we do not require

mean e¤ects of observables to enter separably from unobservables. Second, we make a dis-

tinction between choice-speci�c unobservables and individual heterogeneity in preferences.

This enables us to identify important primitive features, including demand elasticities, but

also rules out the possibility that choice sets depend on unobserved consumer tastes. Our

model is appropriate for most applications to demand estimation, but inappropriate evaluat-

ing the treatment e¤ects on discrete outcomes in environments with selection on individual

unobservables.

Honoré and Lewbel (2002) consider a binary panel version of the model in Lewbel (2000),

relying on linearity of the composite error term and focusing on identi�cation of a slope

parameter. Altonji and Matzkin (2005) consider a similar but nonparametric model. For

discrete choice models, their results focus on identi�cation and estimation of local average

responses. Other work considering models similar to that Lewbel (2000) includes Hong and

Tamer (2004), Blundell and Powell (2004), Lewbel (2005), and Magnac and Maurin (2007).

All consider linear semiparametric models, most limiting attention to binary outcomes.

Matzkin (2004) (section 5.1) considers a model incorporating choice-speci�c unobserv-

ables and an additive preference shock, but in a model without random coe¢ cients or other

sources of heteroskedasticity.3 Hoderlein (2008) allows for both heteroskedasticity and en-

dogeneity in the case of binary choice, focusing on identi�cation of an average derivative.

Blundell and Powell (2004), Matzkin (2004), and Hoderlein (2008) limit attention binary

2Concurrent work by Fox and Gandhi (2008) explores identi�ability of several related models, including
a �exible model of multinomial choice in which consumer types are multinomial and utility functions are
determined by a �nite parameter vector. They suggest that our approach for incorporating choice-speci�c
unobservables and endogenous choice characteristics could be adapted to their framework.

3See also Matzkin (2007a, 2007b).
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choice in semiparametric triangular models, leading to the applicability of control function

methods or the related idea of �unobserved instruments.�4 For binary choice demand, trian-

gular models can be appropriate when price depends only on the unobserved demand shock,

but not on a cost shock as well. In the case of multinomial choice, standard supply models

for di¤erentiated products markets imply that each price depends on the entire vector of de-

mand shocks (and cost shocks, if any). This appears to preclude the use of control function

methods except in binary choice applications where there are no supply shocks.5

Finally, we must point out that an important distinction between our work and much

of the prior literature is our neglect of estimation. Although our identi�cation proofs may

suggest new nonparametric or semiparametric estimation approaches, signi�cant additional

work would be needed.

3 Model

3.1 Preferences and Choices

Consistent with the motivation from demand estimation, we describe the model as one in

which each consumer i in each market t chooses from a set Jt of available products. We

will use the terms �product,��good,�and �choice�interchangeably to refer to elements of

the choice set. The term �market�here is synonymous with the choice set. In particular,

consumers facing the same choice set are de�ned to be in the same market. In practice,

markets will typically be de�ned geographically and/or temporally. Variation in the choice

set will of course be essential to identi�cation, and our explicit reference to markets provides

a way to discuss this clearly.

In applications to demand it is important to model consumers as having the option

to purchase none of the products the researcher focuses on (see, e.g., Bresnahan (1981),

4See also Lewbel (2000), Honoré and Lewbel (2002), Altonji and Matzkin (2005), and Petrin and Train
(2009).

5However, for the case of market level data, Berry and Haile (2008b) uses a related approach of inverting
a multivariate supply and demand system to recover the entire vector of shocks to supply and demand.
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Anderson, DePalma, and Thisse (1992), Berry (1994) and Berry, Levinsohn, and Pakes

(1995)). We represent this by choice j = 0 and assume 0 2 Jt 8t. Choice 0 is often

referred to as the �outside good.�We denote the number of �inside goods�by Jt = jJtj�1.6

Each inside good j has observable (to us) characteristics xjt. Among other things, xjt can

include product dummies and price. Unobserved choice characteristics are characterized by

an index �jt, which may also vary across markets; indeed, �jt may also re�ect the unobserved

taste for choice j in market t. We will assume that �jt has an atomless marginal distribution

in the population.

Each consumer i in market t is associated with a vector of observables zijt. The j

subscript on zijt allows the possibility that some characteristics are both consumer- and

choice-speci�c. This arises, for example, when there are interactions between consumer

demographics and product characteristics (say, family size and automobile size), or from

consumer-speci�c choice characteristics (say, driving distance to retailer j from consumer

i�s home). We will require at least one such measure for each j � 1. This is standard in

applications that specify consumer preferences as determined in part by consumer charac-

teristics.7 Let xt = (x1t; : : : ; xJtt) and zit = (zi1t; : : : ; ziJtt). Let � denote the support of�
xjt; �jt; zijt

�
.

We consider preferences represented by a random utility model. Each consumer i in

market t has a conditional indirect utility function uit : � ! R. However, consumers have

heterogeneous tastes, even conditional on observables. Thus, from the perspective of the

researcher, each utility function uit can be viewed as a random draw from a set U of permis-

sible functions fu : �! Rg (we will discuss our assumptions on the set U below). Formally,

we de�ne the random function uit on � as follows. Let (
;F ;P) denote a probability space.

6In applications with no �outside choice�our approach can be adapted by normalizing preferences relative
to those for a given choice. The same adjustment applies when characteristics of the outside good vary
across markets in observable ways.

7Without this� for example if consumer characteristics a¤ect only tastes for the outside good� the identi-
�cation problem is identical to that in the case of market-levl data (see Berry and Haile (2008b)), conditional
any consumer characteristics.
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Given any
�
xjt; �jt; zijt

�
2 �,

uit
�
xjt; �jt; zijt

�
= u

�
xjt; �jt; zijt; !it

�
(1)

where !it 2 
, and u is measurable in !it.8 Without loss, the the draw from the sample

space 
 determining the realized function uit is speci�ed as independent of the arguments of

the function,
�
xjt; pjt; �jt

�
.9 We add to this an assumption of menu-independent preferences:

Assumption 1. The measure P on 
 does not vary with Jt or
��
xjt; �jt; zijt

�	
j2Jt

.

Relative to the standard formulation of a random function on �, this assumption merely

rules out the possibility that preferences over a given set of good depends on the other goods

available.10

Aside from this menu-independence and the restriction to scalar choice-speci�c unob-

servables, our representation of preferences is so far fully general. For example, it allows

arbitrary correlation of consumer-speci�c tastes for di¤erent goods or characteristics, as well

as arbitrary heteroskedasticity across products and/or across consumers with di¤erent zijt.

The following example illustrates how our model can be specialized to a more familiar semi-

parametric models.

Example 1. One special case of the class of preferences we allow is generated by the linear

random coe¢ cients random utility model

u
�
xjt; �jt; zijt; !it

�
= xjt�it + zijt
 + �jt + �ijt: (2)

8Despite the similarity of our notation to that in Matzkin (2007b) and Matzkin (2007a), in our formulation
!it is not a random variable (or random vector) but an elementary event in the sample space 
. Each !it
maps to a di¤erent utility function. As the examples below illustrate, in special cases of our model the
realization of !it could determine the realizations of a large number of random variables with arbitrary joint
distribution.

9Arbitrary dependence of the distribution of uijt on
�
zijt;xjt; �jt

�
is permitted through the function u.

10See Block and Marschak (1960), Falmagne (1978), and Barbera and Pattanaik (1986) for testable re-
strictions that follow from this assumption.
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Here the random variables
�
�
(1)
it ; : : : ; �

(K)
it ; �i1t; : : : ; �iJtt

�
can be de�ned on the probability

space (
;F ;P), for example as �(k)it = �
(k)
it (!it) and �ijt = �j (!it). With this speci�cation,

Assumption 1 allows an arbitrary joint distribution of
�
�
(1)
it ; : : : ; �

(K)
it ; �i1t; : : : ; �iJtt

�
but re-

quires that it be the same for all i, t, and
��
xjt; �jt; zijt

�	
j=1:::J

.11 This speci�cation of�
�it; f�ijtgj

�
is both more general than typically allowed in the literature and more restric-

tive than required by our framework, even within a linear random coe¢ cients model. Also

permitted would be �it = (�
(1)
it (zit; !it) ; : : : ; �

(K)
it (zit; !it)) and �ijt = �

�
xjt; �jt; !it

�
, where zit

is a vector of individual characteristics that do not vary across j. Indeed, we could generalize

further by specifying �ijt = �
�
xjt; �jt; zijt; !it

�
; however, then the sum xjt�it + zijt
 + �jt in

(2) would be redundant and the model would collapse to our completely general speci�cation

(1).

Each consumer i maximizes her utility by choosing good j whenever

u
�
xjt; �jt; zijt; !it

�
> u (xkt; �kt; zikt; !it) 8k 2 Jt � fjg: (3)

Denote consumer i�s choice by

yit = argmax
j2Jt

u
�
xjt; �jt; zijt; !it

�
:

For much of the paper we will rely on a separability restriction on preferences. Let

zijt =
�
z
(1)
ijt ; z

(2)
ijt

�
, with z(1)ijt 2 R. Let z(1)it denote the vector

�
z
(1)
i1t ; : : : ; z

(1)
iJtt

�0
and z(2)it the

matrix
�
z
(2)
i1t ; : : : ; z

(2)
iJtt

�0
: We will require that for every z(2)it there exist a representation of

11This structure permits variation in Jt across markets. In our formulation, the realization of
!it determines a consumer�s utility function. Thus the realization of !it should be thought of as gener-
ating values of the random variables �ijt = �j (!it) for all possible choices j, not just those in the current
choice set. Note that under Assumption 1 the joint distribution of f�ijtgj2K will be the same regardless of
whether K = Jt or K � Jt. Thus, a consumer�s preference between two products j and k does not depend
on the other products in the the choice set.
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preferences with the form

~uijt = �itz
(1)
ijt + ~�

�
xjt; �jt; z

(2)
ijt ; !it

�
8i; j = 1; : : : ;Jt (4)

for some function ~� that is strictly increasing and continuous in �jt, and with the random

coe¢ cient �it = � (!it) strictly positive with with probability one.12

Here we have imposed two restrictions:

(i) additive separability in a �vertical�attribute z(1)ijt

(ii) monotonicity in �jt.

An important implication of separability is that z(1)ijt is independent of the stochastic com-

ponent of uit
�
xjt; �jt; zijt

�
, conditional on xjt; �jt; z

(2)
ijt . This gives z

(1)
ijt the form of a �special

regressor� as in Lewbel (2000). In particular, we rely on the separability restriction to

provide a mapping between units of (latent) utility and units of (observable) choice proba-

bilities.13 Below we will consider cases with and without a large support assumption on

z
(1)
ijt . Because unobservables have no natural order, monotonicity in �jt would be without

loss of generality if consumers had homogeneous tastes for characteristics, as in standard

multinomial logit, nested logit, and multinomial probit models. With heterogeneous tastes

for choice characteristics, monotonicity imposes a restriction that �jt be a �vertical�rather

than �horizontal�choice characteristic. Thus, all consumers agree that (all else equal) larger

values of �jt are preferred. Of course, our speci�cation allow heterogeneity in tastes for �jt

and for the vertical observable z(1)ijt . Furthermore, we allow a di¤erent representation (4) for

each value of z(2)it .
14 We show in section 7 that both (i) and (ii) have testable implications.

12If �it < 0 w.p. 1, we replace z
(1)
ijt with �z

(1)
ijt . As long as j�itj > 0 w.p. 1, identi�cation of the sign of �it

is straightforward under the assumptions below.
13We can allow z(1)ijt to be an index g (cijt) where cijt is a vector, as long as �jt j= cijt. Within a market

(so that all xjt and �jt are �xed) utilities have the form ~uijt = g (cijt)+�ijt with �jt j= �ijt. If g (�) is linear,
identi�cation of g (�) follows by standard results (e.g., Manski (1985)). Identi�cation of nonlinear g (�) can
be obtained under restrictions considered in Matzkin (1993).
14Athey and Imbens (2007) point out that the assumption of a scalar vertical unobservable �jt can lead

to testable restrictions in some models. In our model, if there were no variation across j in z(1)ijt holding

consumer characteristics �xed, consumers with the same z(2)it but di¤erent z(1)it must rank (probabalistically)
any products with identical observable characteristics the same way, as Athey and Imbens (2007) point out.

10



3.2 Normalizations

Before discussing identi�cation, we must have a unique representation of preferences for

which the identi�cation question can be posed. This requires several normalizations.

First, because unobservables enter non-separably and have no natural units, we must

normalize the location and scale of �jt. For most of the paper we will assume without loss

that �jt has a uniform marginal distribution on (0; 1): We must also normalize the location

and scale of utilities. Without loss, we normalize the scale of consumer i�s utility using his

marginal utility from z
(1)
ijt , yielding the representation

uijt = z
(1)
ijt +

~�
�
xjt; �jt; z

(2)
ijt ; !it

�
�it

8i; j = 1; : : : ; J t:

Letting

�
�
xjt; �jt; z

(2)
ijt ; !it

�
=
~�
�
xjt; �jt; z

(2)
ijt ; !it

�
�it

this gives the representation of preferences we will work with below:

uijt = z
(1)
ijt + �

�
xjt; �jt; z

(2)
ijt ; !it

�
8i; j = 1; : : : ; J t: (5)

To normalize the location we set ui0t = 0 8i; t. Treating the utility from the outside good

as non-stochastic is without loss of generality here, since choices in (3) are determined by

di¤erences in utilities and we have not restricted correlation in the random components of

utility across choices.

Their observation does not apply to our model in general. For example, conditional indirect utilities of
the form vijt = �jt + z

(1)
ijt�it are permitted by our model but do not lead to their their testable restriction.

Nonetheless, we show below that there is a related testable restriction for our more general model.

11



3.3 Observables and Structural Features of Interest

For most results we will require excluded instruments, which we denote by �wjt.15 The

observables then consist of

(yit; t; fxjt; �wjt; zijtgj2Jt) :

To discuss identi�cation, we treat their joint distribution as known. In particular, we take

the conditional probabilities

pijt = PrP (yit = jjt; fxkt; �wkt; ziktgk2Jt) (6)

as known. Loosely speaking, we consider the case of observations from a large number of

markets, each with a large number of consumers. Thus, interpreting this as a panel setting,

we consider observations for �large T and large N .�

We write PrP in (6) to make clear that we do not permit selection on consumer-speci�c

unobservables. Thus, the choice probabilities we observe are those of the full population of

consumers� i.e., for the population of utility functions de�ned by draws from 
 governed by

P. This rules out applications where some components of (Jt; fxkt; ziktgk2Jt) are chosen in

response to consumer unobservables.16 Our assumption, which treats �jt as the unobservable

responsible for the endogeneity problem, is appropriate for most applications to multinomial

choice, where the same choices are o¤ered to all consumers in a market.

Our �rst objective is to derive su¢ cient conditions for identi�cation of the choice-speci�c

unobservables and the distribution of preferences over choices in sets Jt, conditional on

the characteristics
�
xjt; zijt; �jt

	
j2Jt

. In particular, we will show identi�cation of
�
�jt
	
j2Jt

and of the joint distribution of fuijtgj2Jt conditional on any
�
Jt;
�
xjt; zijt; �jt

	
j2Jt

�
in their

15Depending on the environment, instruments might include cost shifters excludable from the utility
function, prices in other markets (e.g., Hausman (1996), Nevo (2001)), and/or characteristics of competing
products (e.g., Berry, Levinsohn, and Pakes (1995)). Because the arguments are standard, we will not
discuss assumptions necessary to justify the exlusion restrictions, which we will assume directly.
16As an illustration, in the linear random coe¢ cients model of Example 1, we permit arbitrary correlation

between (�i; �ijt) and (zijt; xjt) but view this as a structural feature in the population, not the result of
selection of (zijt; xjt) on the prefeence shocks (�i; �ijt).
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support. These conditional distributions fully characterize the primitives of this model.

We therefore refer to identi�cation of these probability distributions as full identi�cation of

the random utility model.

We will also consider a type of partial identi�cation: identi�cation of demand. For many

economic questions motivating estimation of discrete choice demand models, the joint distri-

bution of utilities is not needed. For example, to discuss cross-price elasticities, equilibrium

markups, or pricing/market shares under counterfactual ownership or cost structures, one

requires identi�cation of demand, not the full random utility structure. Identi�cation of

demand naturally requires less from the model and/or data than identi�cation of the distri-

bution of preferences. In the multinomial choice setting, demand is fully characterized by

the structural choice probabilities

�j
�
Jt; fxjt; �jt; zijtgj2Jt

�
= Pr

�
yit = jjJt; fxjt; �jt; zijtgj2Jt

�
: (7)

These conditional probabilities are not directly observable from (6) because of the unobserv-

ables �jt; which are typically correlated with at least some elements of xjt (e.g., price).

3.4 Examples from the Literature

Our model nests random utility models considered in applied work across a wide range of

�elds, including the following examples.

Example 2. Consider the model of preferences for automobiles in Berry, Levinsohn, and

Pakes (2004):

uijt = xjt�it + �jt + �ijt

�kit = �k1 + �k02 �
k
it +

X
r

zrit�
kr
3 k = 1; : : : ; K

where xjt 2 Rk are auto characteristics, zrit are consumer characteristics. Here �k1; �k02 ; and

�kr3 are all parameters of our function � in (5).
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Example 3. Consider the model of hospital demand in Capps, Dranove, and Satterthwaite

(2003), where consumer i�s utility from using hospital j depends on hospital characteristics

xjt, patient characteristics zit, interactions between these, and patient i�s distance to hospital

j; denoted zijt. In particular,

uijt = �xjt + �zit + xjt�zit + 
zijt + �ijt:

Example 4. Rivers (1988) considered the following model of voter preferences

uijt = �1i

�
z
(1)
it � x

(1)
jt

�2
+ �2i

�
z
(2)
it � x

(2)
jt

�2
+ �ijt

where z(1)it and x(1)jt are, respectively, measures of voter i�s and candidate j�s political posi-

tions, z(2)it and x(2)jt are measures of party a¢ liation. Here the terms
�
z
(1)
it � x

(1)
jt

�2
and�

z
(2)
it � x

(2)
jt

�
form the consumer-choice speci�c observables we call zijt.

4 Illustration: Binary Choice with Exogenous Charac-

teristics

Typically one will want to allow for endogeneity of at least one component of xjt.However,

to illustrate key elements of our approach, we begin with the simple case of binary choice

with exogenous xjt. Here we can drop the subscript j, with consumer i selecting the inside

good whenever

z
(1)
it + �

�
xt; �t; z

(2)
it ; !it

�
> 0:

We consider identi�cation under the following assumptions.

Assumption 2. �t j= (xt; zit) :

Assumption 3. supp z(1)it jxt; z
(2)
it = R 8xt; z

(2)
it :

Assumption 2 merely states that we consider here the special case of exogenous observ-
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ables. This assumption is dropped in the following section. A �large support�condition

like Assumption 3 is common in the econometrics literature on nonparametric and semipara-

metric identi�cation of discrete choice models (e.g., Manski (1985), Matzkin (1992), Matzkin

(1993), Lewbel (2000)).17 We relax this assumption in section 6, where the analysis will also

clarify the role that the large support assumption plays in the results that do use it.

Here we show that Assumptions 1-3 are su¢ cient for full identi�cation of the random

utility model. Begin by conditioning on a value of z(2)it , which can then be suppressed. We

then rewrite (5) as

uit = z
(1)
it + �it (8)

where we have let �it = � (xt; �t; !it) as shorthand. Holding the market t �xed, all variation

in �it is due to !it. Thus, conditional t, �it is independent of z
(1)
it by Assumption 1. Since

the observed conditional probability that a consumer chooses the outside good is

p0 (xt; zit) = Pr
�
�it � �z

(1)
it jxt; zit

�
Assumption 3 guarantees that the distribution of �itjt is identi�ed from variation in z(1)it

within market t. Denote this cumulative distribution by F�itjt (�). This argument can be

repeated for all markets t.

In writing �itjt, we condition on the values of xt and �t, although only the former is

actually observed. However, once we know the distribution of �itjt for all t, we can recover

the value of each �t as well. To see this, let

�t = med [�itjt] = med [� (xt; �t; !it) jxt; �t] :

With F�itjt (�) now known, each �t is known. Further, under Assumption 1,

�t = D (xt; �t) (9)

17As usual, the support of z(1)it need not equal the entire real line but need only cover the support of

�
�
xt; �t; z

(2)
ijt ; !it

�
. We will nonetheless use the real line (real hyperplane below) for simplicity of exposition.
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for some function D that is strictly increasing in its second argument. Identi�cation of each

�j then follows standard arguments. In particular, for � 2 (0; 1) let �� (xt) denote the �th

quantile of �tjxt across markets. By (9), strict monotonicity of D in �t, and the normalization

of �t,

�� (xt) = D (xt; �) :

Since �� (xt) is known for all xt and � , D is identi�ed on supp xt � (0; 1). With D known,

each �t is known as well.

Thus far we have shown identi�cation of F�itjt and of each latent �t. So for any (xt; �t)

in their support, the value of

F� (rjxt; �t) � Pr (� (xt; �t; !it) � rjxt; �t)

= F�itjt (r)

is known for all r 2 R. With (8) this proves the following result.

Theorem 1. Consider the binary choice setting with preferences given by (5). Under As-

sumptions 1�3, the distribution of uit conditional on any (xt; �t; zit) 2 �.

Our argument involved two simple steps, each standard on its own. First, we showed that

variation in z(1)it within each market can be used to trace out the distribution of preferences

across consumers holding choice characteristics �xed. It is in this step that the role of idio-

syncratic variation in tastes is identi�ed. Antecedents for this step include Matzkin (1992),

Matzkin (1993), Lewbel (2000), and indeed this idea is used in analyzing identi�cation of a

wide range of qualitative response and selection models (e.g., Heckman and Honoré (1990),

Athey and Haile (2002)).18 Second, we use variation in choice characteristics across markets

to decompose the nonstochastic variation in utilities across products into the variation due to

observables and that due to the choice-speci�c unobservables �jt. This idea has been used

extensively in estimation of parametric multinomial choice demand models following Berry

18See also Matzkin (2007a, 2007b).
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(1994), Berry, Levinsohn, and Pakes (1995), and Berry, Levinsohn, and Pakes (2004). This

second step is essential once we allow the possibility of endogenous choice characteristics

(e.g., correlation between price and �jt), as will typically be necessary in demand estimation.

Our approach for the more general cases follows the same broad outline.

5 Multinomial Choice: Full Identi�cation

Here we consider the general case of multinomial choice with endogenous characteristics using

the speci�cation of preferences in (5). Let xt = (x1t; : : : ; xJtt). We consider the following

generalization of the large support assumption:

Assumption 4. For all Jt, supp
n
z
(1)
ijt

o
j=1;:::;Jt

j
n
xjt; z

(2)
ijt

o
j=1;:::;Jt

= RJt :

This is a strong assumption, essentially requiring su¢ cient variation in
�
z
(1)
i1t ; : : : ; z

(1)
iJtt

�
to move choice probabilities through the entire unit simplex.19 Equivalent conditions are

assumed in prior work on multinomial choice by, e.g., Matzkin (1993), Lewbel (2000), and

Briesch, Chintagunta, and Matzkin (2005). Such an assumption provides a natural bench-

mark for exploring identi�ability under ideal conditions. However, we will also explore

results that do not require this assumption in section 6.

Without Assumption 2, we will require instruments. Let xjt =
�
x
(1)
jt ; x

(2)
jt

�
, where x(1)jt

denotes the endogenous characteristics. We then let wjt �
�
x
(2)
jt ; �wjt

�
denote the vector

of exogenous conditioning variables. We will consider two alternative sets of instrumental

variables conditions below.

5.1 Identi�cation with Fully Independent Instruments

We �rst explore identi�cation using instrumental variables conditions from Chernozhukov

and Hansen (2005). Here we assume x(1)jt is continuously distributed across j and t, with

19This is only �essentially�required by the large support condition because it does not require continuity
of choice probabilities in z(1)it .

17



conditional density function fxj
�
x
(1)
jt jwjt

�
.20 For the remainder of this section we will con-

dition on a value of
�
x
(2)
1t ; : : : ; x

(2)
Jt

�
, suppress these arguments in the notation, and let xjt

now denote x(1)jt . This requires that we rewrite (5)

uijt = z
(1)
ijt + �j

�
xjt; �jt; z

(2)
ijt ; !it

�
8i; j = 1; : : : ; J t:

i.e., with a j subscript on the functions �j, which are di¤erent unless x
(2)
jt is the same for all

j.21 Let

�jt = Dj

�
xjt; �jt

�
� med

h
�j

�
xjt; �jt; z

(2)
ijt ; !it

���� xjt; �jti (10)

and let f�j (�jxjt;wjt) denote its density conditional on wjt.22 Fix some small positive con-

stants �q; �f > 0. For each j, for � 2 (0; 1) de�ne Lj (�) to be the convex hull of functions

mj (�; �) that satisfy

(a) for all wjt, Pr (�jt � mj (xjt; �) j� ;wjt) 2 [� � �q; � + �q]; and

(b) for all x in the support of xjt,mj (x; �) 2 sj(x) �
�
� : f�j (�jx;w) � �f 8w with fxj (xjw) > 0

	
.

We assume the following

Assumption 5. �jt j= (wjt; zijt)8j; t:

Assumption 6. For all j, (i) the random variables xjt and �jt have bounded support;

(ii) for any � 2 (0; 1), for any bounded function Bj (x; �) = mj (x; �) � Dj (x; �) with

mj (�; �) 2 Lj (�) and "jt � �jt �Dj (xjt; �), E
�
Bj (xjt; �) j (xjt;wjt; �) jwjt

�
= 0 a.s. only

if Bj (xjt; �) = 0 a.s., where  j (x;w,�) =
R 1
0
f"j (�Bj (x; �) jx;w) d�.

(iii) the density
R 1
0
f"j (ejx;w) of �jt is bounded and continuous in e on R;

(iv) Dj (x; �) 2 sj(x) for all (x; �) in their support.

20This could be dropped by appealing below to Theorems 2 and 3 (and the associated rank conditions)
in Chernozhukov and Hansen (2005) instead of their Theorem 4. We consider the case of a continous
endogenous characteristic here because price is our leading example.
21Recall that x(2)jt may include product dummies, so in general the functions �j and �j0 need not have any

particular relation.
22Chernozhukov and Hansen�s �rank invariance�property holds here because the same unobservable �jt

determines potential values of �jt for all possible values of the endogenous characteristics.
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Assumption 5 is a strong exclusion restriction. Assumption 6 is a particular type of

�bounded completeness�condition (Chernozhukov and Hansen, 2005, Appendix C), ensuring

that the instruments induce su¢ cient variation in the endogenous variables. This condition

plays the role of the standard rank condition for linear models, but for the nonparametric

nonseparable model �j = Dj(x; �).23 With these assumptions, we obtain the following result.

Theorem 2. Under the representation of preferences in (5), suppose Assumptions 1, 4, 5,

and 6 hold. Then the joint distribution of fuijtgj2Jt conditional on any
�
Jt;
�
(xjt; zijt; �jt)

	
j2Jt

�
in their support is identi�ed.

Proof. Fix Jt, with Jt = J . Fix a value of the vector
�
z
(2)
i1t ; : : : ; z

(2)
iJt

�
. Let �ijt =

�j

�
xjt; �jt; z

(2)
ijt ; !it

�
and observe that

lim
z
(1)
ikt!�1
8k 6=j

pijt = Pr
�
z
(1)
ijt + �ijt � 0jz

(1)
ijt

�
:

Holding t �xed, �ijt j= z(1)ijt by Assumption 1 and our conditioning on z
(2)
it . Assumption 4

then guarantees identi�cation of the marginal distribution of each �ijtjt for each j. This

implies, for each j, identi�cation of the conditional median

�jt = med
�
�
�
xjt; �jt; !it

�
jxjt; �jt

�
= med

�
�
�
xjt; �jt; !it

�
jt
�

(11)

Thus, the left side of (10) can be treated as observed. Further, the function Dj in (10)

must be strictly increasing in �jt. Under Assumptions 5 and 6, Theorem 4 of Chernozhukov

and Hansen (2005) then implies that each function Dj (and therefore each realization �jt) is

identi�ed. Finally, observe that for any market t

pi0t = Pr
�
z
(1)
i1t + �i1t < 0; : : : ; z

(1)
iJt + �iJt < 0

��� t; z(1)i1t ; : : : ; z(1)iJt� (12)

= Pr
�
�i1t < �z

(1)
i1t ; : : : ; �iJt < �z

(1)
iJt

��� t; z(1)i1t ; : : : ; z(1)iJt�
23Chernozhukov and Hansen (2005) discuss su¢ cient conditions. We also consider an alternative to As-

sumption 6 below.
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so that Assumption 4 implies identi�cation of the joint distribution of (�i1t; : : : ; �iJt) jt. Since

each xjt is observed and �jt is identi�ed, this implies identi�cation of the joint distribution

of (�i1t; : : : ; �iJt) conditional on any
�
(xjt; zijt; �jt)

	
j2Jt

in their support given Jt. Since

uijt = z
(1)
ijt + �ijt, the result follows. �

5.2 Identi�cation with Mean-Independent Instruments

A possible limitation of Theorem 2 is that Assumption 6 may be di¢ cult to check and/or

interpret. Whether there are useful su¢ cient conditions on economic primitives delivering

this property is an open question of broad interest in the literature on nonparametric instru-

mental variables regression, but beyond the scope of this paper. However, if we are willing

to impose somewhat more structure on the utility function, we can obtain a more intuitive

su¢ cient condition. Doing so also enables us to relax the excludability restriction to require

only mean independence.

Conditioning on x(2)t as in the prior section, suppose (for this subsection only) that each

consumer i�s conditional indirect utilities can be represented by

~uijt = �itz
(1)
ijt + ~�j

�
xjt; z

(2)
ijt ; !it

�
+ 
it�jt j = 1; : : : ;Jt (13)

where �it is strictly positive with probability one and the expectations E [�it], E [
it], and

E
h
~�j

�
xjt; z

(2)
ijt ; !it

�
jxjt; z(2)ijt

i
are �nite. This imposes a restriction relative to (4) but is still

quite general relative to the prior literature. A representation of preferences equivalent to

(13) is

uijt = z
(1)
ijt + �j

�
xjt; �jt; z

(2)
ijt ; !it

�
8i; j = 1; : : : ;Jt (14)

where now

�j

�
xjt; �jt; z

(2)
ijt ; !it

�
=
~�j

�
xjt; z

(2)
ijt ; !it

�
�it

+

it
�it
�jt: (15)

Here we will use a di¤erent normalization of �jt. Instead of letting �jt have a standard
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uniform distribution, we make the location normalization

E
�
�jt
�
= 0 8j

and scale normalization

E

�

it
�it

�
= 1: (16)

Both are without further loss of generality. The latter, for example, de�nes units of the

unobservables �jt.

With this structure we can replace the full independence assumption with mean inde-

pendence.

Assumption 7. E
�
�jtjwjt; zijt

�
= 0 8j; t;wjt; zijt.

To show identi�cation of the joint distribution of fuijtgj conditional on
�
xjt; zijt; �jt

	
j
,

�rst note that the argument in the proof of Theorem 2 remains valid here through equation

(11). Recall that in that proof we �xed the value of
�
z
(2)
i1t ; : : : ; z

(2)
iJt

�
. With the separable

structure (15) and the normalization (16), for each j we now we let

�jt = E
h
�j

�
xjt; �jtz

(2)
ijt ; !it

���� ti = Dj (xjt) + �jt

for an unknown function Dj As in the proof of Theorem 2, each �jt is identi�ed from

variation within each market. It is then straightforward to con�rm that, under Assumption

7, the following �completeness�condition is equivalent to identi�cation of each function Dj

from observation of (�jt; xjt; �wjt) (Newey and Powell (2003)).

Assumption 8. For all j and all functions Bj (xjt) with �nite expectation, E [Bj (xjt) jwjt] =

0 a.s. implies Bj (xjt) = 0 a.s.

We can now state a second result for the multinomial choice model.

Theorem 3. Under the representation of preferences (14), suppose Assumptions 1, 4, and 7

hold. Then the joint distribution of fuijtgj2Jt conditional on any
�
Jt;
�
(xjt; zijt; �jt)

	
j2Jt

�
21



in their support is identi�ed if and only if Assumption 8 holds.

Proof. From the preceding argument, under the completeness Assumption 8, we have iden-

ti�cation of each Dj and therefore of each �jt. The remainder of the proof then follows that

of Theorem 2 exactly, beginning with (12). �

The completeness condition here (Assumption 8) is the analog of the rank condition in

linear models. It requires that variation in wijt induce su¢ cient variation in x
(1)
jt to reveal

Dj (xjt) at all points xjt.24

6 Identi�cation of Demand Using Limited Support

The large support assumption (Assumption 4) in the preceding section is both common in

the literature and controversial. Our results using this condition demonstrate that su¢ cient

variation in the vector
�
z
(1)
i1 ; : : : ; z

(1)
iJt

�
can identify the joint distribution of utilities on their

full support. Although our results describe only su¢ cient conditions for identi�ability, it

should not be surprising that a large support assumption may be needed: if the exogenous

observables can move choice probabilities only through a subset of the unit simplex, we

should only hope to identify the joint distribution of utilities on a subset of their support.

Of course, one would like to understand how heavily the results rely on the tails of the large

support and what can be learned from more limited variation. We explore these questions

here.

We show that more limited variation is su¢ cient to identify demand, i.e., to identify

the structural choice probabilities �j
�
Jt; fxjt; �jt; zijtgj2Jt

�
at all points of support. We also

show continuity of the identi�ed features with respect to the support of the micro data. In

particular, moving from our limited support condition to the full support condition moves

24 Lehman and Romano (2005) give standard su¢ cient conditions. Severini and Tripathi (2006) point out
that this condition is equivalent to the following: for any bounded function fj (xjt) such that E[ fj (xjt)] = 0
and var (fj (xjt)) > 0, there exists a function hj (�) such that fj (xjt) and hj (wjt) are correlated. Additional
intuition can be gained from the discrete case: as shown by Newey and Powell (2003), when xjt and wjt
have discrete support

�
x̂1; : : : ; x̂K

�
�
�
�w1; : : : ; �wL

�
, completeness corresponds to a full rank condition on the

matrix f�klg where �kl = Pr(xjt = x̂kjwjt =�wl).
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the identi�ed features of the model smoothly toward the full identi�cation results of the

preceding section.

For multinomial choice we obtain these results under a somewhat more restrictive spec-

i�cation of preferences than that in (5). Up to this quali�cation, however, these results

should be a comforting. Demand is identi�ed without the large support condition. And

although we require the large support for full identi�ability of the random utility model in

the previous section, the identi�cation is not knife-edge: the tails of the large support are

needed only to determine the tails of the joint distributions of utilities.

6.1 Binary Choice

6.1.1 Identi�cation of Demand

As before, we begin with binary choice to illustrate our main insights. We begin with the

relaxed support condition on z(1)it , requiring a single �common choice probability� that is

attainable in all markets by the appropriate choice of z(1)it in its support.

Assumption 9. For some � 2 (0; 1), for every market t there exists a unique z�t 2supp z
(1)
it

such that Pr
�
yit = 1jz(1)it = z�t

�
= � .

Here we require su¢ cient variation in z(1)it to push the choice probability to � in each

market, not over the whole interval (0; 1) in each market.25 This is not innocuous but is

much less demanding than the full support condition.

In the case of binary choice we obtain results using the general speci�cation of preferences

in (5).26 Here, the consumer chooses the inside good whenever (�xing z(2)it and suppressing

it)

z
(1)
it + � (xt; �t; !it) > 0:

25Implicitly we also require a continuous (region of) support for �j
�
xt; �t; z

(2)
it ; !it

�
jxt; �t; z

(2)
it to gaurantee

uniqueness.
26In the case of binary choice, the additive separability in z(1)it is without loss if the utility for the inside

good is strictly increasing in z(1)it . See Berry and Haile (2008a) for additional results for the special case of
binary choice and threshold crossing models.
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With Assumption 9, for each market t we can identify the value z�it such that

Pr
�
�� (xt; �t; !it) < z

(1)
it jxt; �t; z

(1)
it

����
z
(1)
it =z

�
t

= � :

Observe that each z�t is the �th quantile of the random variable ��it � �� (xt; �t; !it)

conditional on t, i.e., on (xt; �t). Thus, we can write

z�t = � (xt; �t; �) (17)

for some function � (�; �) that is strictly decreasing in �t. This strict monotonicity is the key

idea here: holding xt �xed, markets with high values of z�t are those with low values of the

unobservable �t.

Identi�cation of the function � (�; �) ; and therefore of each �t; follows from (17) as in the

preceding sections, using the nonparametric instrumental variables result of Chernozhukov

and Hansen (2005). This requires the same type of bounded completeness assumption

made in section 5.1. We state this formally as Assumption 13 in the Appendix. With each

�t known, the observable choice probabilities reveal the structural choice probabilities

� (xt; �t; zit) = Pr (yit = 1jxt; �t; zit) (18)

at all points (xt; �t; zit) of support. Thus, we have shown the following result.

Theorem 4. In the binary choice model with preferences given by (5), suppose Assumptions

1, 5, 9, and 13 hold. Then the structural choice probabilities � (xt; �t; zit) are identi�ed at

all points (xt; �t; zit) in their support.

6.1.2 Continuity of the Identi�ed Features

Theorem 4 required only one common choice probability. If there is more than one, each

provides additional information about the distribution of ui1tjxt; zit; �t. In particular, we

can identify a function � (�; �) for each common choice probability � , each then determining
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the �th quantile of �� (xt; �t; !it) jxt; �t. Since

uit = z
(1)
it + � (xt; �t; !it)

this determines the corresponding quantiles of the distribution of uit conditional on (xt; �t; zit).

In the limit� i.e., with su¢ cient variation in z(1)it to make every � 2 (0; 1) a common choice

probability� all quantiles of the distribution of uit conditional on (xt; �t; zit) are identi�ed,

and we are back to full identi�cation as in Theorem 2. This illustrates the notion of �con-

tinuity�described above and shows the tails of z(1)ijt under the large support assumption are

used only to identify the tails of the conditional distributions of utilities.

6.2 Multinomial Choice

For multinomial choice we will require a di¤erent representation of preferences:

uijt = �
�
z
(1)
ijt + �jt; xjt; z

(2)
ijt ; !it

�
8i; j = 1; : : : ;Jt (19)

where � is assumed strictly increasing in its �rst argument. This is similar to (13) in

requiring that z(1)ijt and �jt be perfectly substitutable. Here we require all consumers to have

the same marginal rate of substitution between z(1)ijt and �jt, but we allow the index z
(1)
ijt + �jt

to enter the utility function in a fully nonparametric way.

A key implication of (19) is that choice probabilities depend on the sums

�ijt � z
(1)
ijt + �jt

rather than on each z(1)ijt and �jt separately. Letting �t = (�i1t; : : : ; �iJt), xt = (x1t; : : : ; xJt),

and z(2)it =
�
z
(2)
i1t ; : : : ; z

(2)
iJt

�
, we can then write the structural choice probabilities as

�j

�
�t;xt; z

(2)
it

�
:
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Following Gandhi (2008), we make the following �strong substitutes�assumption.

Assumption 10. Consider any
�
xt; z

(2)
it

�
and any �t such that �j

�
�t;xt; z

(2)
it

�
> 0 for all

j 2 J . For any strict subset K � J , there exists k 2 K and j =2 K such that �j
�
�t;xt; z

(2)
it

�
is strictly decreasing in �kt.

Given the monotonicity of uijt in �jt, this is a natural regularity condition requiring that

in every binary partition of J , there is some substitution between cells of the partition. This

is guaranteed if there are always consumers on the margin of indi¤erence between every pair

of choices. This holds in standard models like the random coe¢ cients multinomial logit but

is stronger than necessary. For example, in a pure vertical model a given product substitutes

with at most two others, yet the condition holds.27

Let 4J denote the J � 1 dimensional unit simplex. With Assumption 10 we can follow

the argument used to prove Theorem 2 of Gandhi (2008) to show the following lemma, which

generalizes the well-known invertibility results for linear discrete choice models from Berry

(1994).28

Lemma 1. Consider any choice probability vector p = (p1; : : : ; pJ)
0 on the interior of 4J .

Under Assumptions 1 and 10, for any
�
xt; z

(2)
it

�
there is at most one vector � 2 RJ such

that �j
�
�;xt; z

(2)
it

�
= pj for all j .

Proof. Fix
�
xt; z

(2)
it

�
and suppress them in the notation. Now suppose, contrary to the claim,

that for some � 6= �0, �j (�) = �j (�
0) = pj for all j. Note that since we have normalized

the utility of the outside good to zero for all choice sets, we can de�ne �0= �
0

0 = 0 as a

27For example, consider a 5 good vertical model and K = f2; 3; 4g. Good 3 does not substitute with
goods outside of K, but goods 2 and 4 do. Thus the condition holds. It requires only that there be some
element of K that substitutes with some good outside K. This will be true here for any proper subset
K � J = f0; 1; : : : ; 5g :
28See Berry and Pakes (2007) for an alternative set of su¢ cient conditions. Berry (1994) and Berry and

Pakes (2007) show existence and uniqueness of an inverse choice probability in models with an additively
separable �jt. Gandhi (2008) relaxes the separability requirement. Our lemma addresses only uniqueness
conditional on existence. Under our maintained assumption that the model is correctly speci�ed, given any
observed choice probability vector, there must exist a vector (�1; : : : ; �J) that rationalizes it. Gandhi (2008)
provides conditions gauranteeing that an inverse exists for every choice probability vector in 4J . Our
uniqueness result di¤ers from his only slightly, mainly in recognizing that the argument applies to a more
general model of preferences.
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notational convention without loss. Without loss, let �0j > �j for some j 2 J . Because

0 2 J , there must then exist a strict subset of choices K � J such that �0j > �j8j 2 K and

�0j � �j8j 2 J � K. For this subset K let k 2 K be the index of a product referred to (as

�k�) in Assumption 10. Now de�ne a new vector �� by

��k = �0k

��j = �j8j 6= k:

Monotonicity of uijt in �jt implies that �j (�
�) � �j (�) for all j 2 J � K. Furthermore,

Assumption 10 implies X
j2J�K

�j (�
�) <

X
j2J�K

�j (�)

so that (since probabilities must sum to one)

X
j2K

�j (�
�) >

X
j2K

�j (�) :

But then by monotonicity of uijt in �jt, we have

X
j2K

�j (�
0) �

X
j2K

�j (�
�) >

X
j2K

�j (�)

which contradicts the hypothesis �j (�) = �j (�
0) = pj for all j. �

Finally, we generalize the previous common choice probability assumption in the natural

way.

Assumption 11. For all Jt, there exists q = (q0; q1; : : : ; qJ) 2 4Jt such that for every

market t there is a unique vector zqt = (zq1t; : : : ; z
q
1t) 2supp

�
z
(1)
i1t ; : : : ; z

(1)
iJtt

�
such that qj =

Pr(yit = j jx1t; : : : ; xJtt; zi1t; : : : ; ziJtt)z(1)it =zqt for all j = 1; : : : ; Jt:

If �
�
z
(1)
ijt + �jt; xjt; z

(2)
ijt ; !it

�
is continuously distributed conditional on

�
z
(1)
ijt + �jt; xjt; z

(2)
ijt

�
,

uniqueness of zqt is guaranteed by Lemma 1. Beyond this, the requirement of Assumption 11
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is that the vector
�
z
(1)
i1t ; : : : ; z

(1)
iJt

�
have su¢ cient support to drive the choice probability vector

to q in each market. Note that the value of q satisfying this condition need not be known

a priori, since this is observable. Indeed, the existence of the common choice probability is

directly testable. This condition, while still demanding su¢ cient J-dimensional micro data,

is clearly weaker than the full support condition, which essentially requires all elements of

4Jt to be common choice probabilities.

Theorem 5. In the multinomial choice model with preferences given by (19), suppose As-

sumptions 1, 7 , 8, 10, and 11 hold. Then the structural choice probabilities �j
�
Jt; fxjt; �jt; zijtgj2Jt

�
are identi�ed at all

�
Jt; fxjt; �jt; zijtgj2Jt

�
in their support.

Proof. Fixing the vector z(2)t = ẑ
(2)
t , suppressing it in the notation, and letting �j (�ijt; xjt; !it) =

�
�
�ijt; xjt; ẑ

(2)
ijt ; !it

�
, we have

pijt = Pr(yit = j jx1t; : : : ; xJtt; �1t; : : : ; �Jtt; z
(1)
i1t ; : : : ; z

(1)
iJtt
)

= Pr(yit = j jx1t; : : : ; xJtt; �i1t; : : : ; �iJtt)

= Pr
�
�j (�ijt; xjt; !it) � max

n
0;max

k
�k (�ikt; xkt; !it)

o�
:

Fix xt = (x1t; : : : ; xJtt) and let q be the common choice probability vector. From Lemma 1

and Assumption 11, there is a unique vector � (xt; q) = (�1 (xt; q) :; : : : ; �Jt (xt; q)) such that

�j (� (xt; q) ;xt) = qj 8j:

Further, by the de�nition of zqt and �j (xt;q), �j (xt;q) = �jt + zqjt, so that

zqjt = �j (xt; q)� �jt 8j; t: (20)

The equations (20) identify the functions �j (�; q) and each �jt for all j and t under Assump-

tions 7 and 8, using the identi�cation result in Newey and Powell (2003) for nonparametric

regression with instrumental variables. As demonstrated above, knowledge of all �jt identi-
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�es the structural choice probability functions (demand). �

7 Testable Restrictions

The models we have considered rely on two important assumptions: (i) existence of a vertical

consumer-choice observable z(1)ijt ; (ii) a scalar vertical choice-speci�c unobservable, �jt. Here

we show that both assumptions imply testable restrictions.

The assumption of a vertical z(1)ijt has immediate implications for the observed conditional

choice probabilities.

Remark 1. (i) Suppose preferences can be characterized by (5) with z(1)ijt independent of

�jt. Then under Assumption 1, Pr (yit = jjJt; fxjt;wjt; ziktgk2Jt) is increasing in z
(1)
ijt . (ii)

Suppose preferences can be characterized by (5) or by (19) with � strictly increasing in its

�rst argument. Then Pr (yit = jjt; fziktgk2Jt) is increasing in z
(1)
ijt :

The �rst restriction involves variation in choice probabilities across markets and depends

on exogeneity of �jt. The second addresses variation within a market, where
�
�jt
	
j2Jt

are

held �xed. Both implications are immediate from the requirement that the utility from good

j be strictly increasing in z(1)ijt . Furthermore, it is clear that the restriction need not hold if

utilities sometimes are decreasing in z(1)ijt .

The assumption of a scalar vertical unobservable also leads to testable implications. We

show this here for the binary choice case for simplicity. To state the result it will be useful

to recall Theorem 4 and let �t (z
�
t ; � ; xt) denote the value of �t identi�ed from the common

choice probability � in market t. As usual, we condition on z(2)it and suppress it in the

notation.

Remark 2. In the binary choice model with preferences given by (5), suppose Assumptions

1, 5, 13, and 9 hold. Then �t (z
�
t ; � ; xt) must be strictly decreasing in z

�
t across markets.

This is immediate from the fact that uit is strictly increasing in both z
(1)
it and �t under

the assumptions of the model. The following example shows one way that a model with a
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horizontal rather than a vertical unobservable characteristic can lead to a violation of this

restriction.

Example 5. Suppose � (xt; �t; �it) = ��it�t, with �it �N(0; 1). Take � > 1=2 and consider

the set of markets in which �t (z
�
t ; � ; xt) > 0. Recall that each z

�
t is observable and is de�ned

such that Pr (�it�t < z�t ) = � . Letting � denote the standard normal CDF, this requires

�

�
z�t
�t

�
= � 8t: (21)

Therefore, by construction, z
�
t

�t
will take the same value in every market. Since each z�t must

also be positive when � > 1=2, this requires a strictly positive correspondence between z�t and

�t across markets, violating the restriction from Theorem 2.

The restriction in Remark 2 follows from the requirement of a vertical �jt. An additional

restriction is implied by the restriction to a scalar choice/market-speci�c unobservable.

Remark 3. In the binary choice model with preferences given by (5), suppose Assumptions 1,

5, and 13 hold. In addition, suppose that for distinct � and � 0 in the interval (0; 1), for every

market t there exists a unique z�t 2supp z
(1)
it such that Pr

�
yit = 1jz(1)it = z�t

�
= � and a unique

z�
0
t 2supp z

(1)
it such that Pr

�
yit = 1jz(1)it = z�

0
t

�
= � 0. Then �t (z

�
t ; � ; xt) = �t

�
z�

0
t ; �

0; xt
�
for

all t.

Proof. This is immediate from the fact that, under the assumptions of the model, �t (z
�
t ; � ; xt) =

�t
�
z�

0
t ; �

0; xt
�
= �t. �

The following example demonstrates that this restriction can fail if the restriction to a

scalar unobservable is violated.

Example 6. Consider a model with two vertical unobservables, �1t and �
2
t . Let

�
�
xt; �

1
t ; �

2
t ; !it

�
=

8<: �it
�
�1t + �2t

�
�it < 1=2

�it
�
�1t + 2�

2
t

�
�it � 1=2
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with �it �u[0; 1]. Let �1t and �2t be independent, each uniform on (0; 1). By de�nition, when

z
(1)
it = z�t only consumers with �it > 1 � � choose the inside good. Thus, the value of z�t is

determined by the preferences of the consumer with �it = 1 � � . Now consider the �t (�)

inferred under the incorrect assumption of a scalar unobservable. From the observations

above, when � > 1=2 we have �t (�) = F�1+�2
�
�1t + �2t

�
where F�1+�2 is the CDF of the sum

of two independent uniform random variables. Thus, if for market t,
�
�1t + �2t

�
falls at the

� quantile in the cross-section of markets, �t (�) will equal �. Similarly, for � 0 < 1=2,

�t (�
0) = F�1

�1+2�2

�
�1t + 2�

2
t

�
; i.e, if �1t + 2�

2
t fall at the �

0 quantile of this sum in the cross

section of markets, �t (�
0) will be �0. In general, � 6= �0:

8 Extension: Aggregate Data with Market Groups

In many applications one is forced to work without micro data linking choices to individual

characteristics, relying instead on market level choice probabilities (i.e., market shares). In

Berry and Haile (2008b) we explore identi�cation in such settings. However, there is at least

one case in which the ideas in the present paper can be directly applied to the case of market

level data.

Eliminating the micro data zijt from the model, the observables are now (yit; xjt). Note

that each xjt could contain attributes of products j or attributes of markets t. Partition xjt

into
�
x
(i)
jt ; x

(ii)
jt

�
and suppose preferences can be represented by conditional indirect utilities

of the form

uijt = x
(i)
jt + �(x

(ii)
jt ; �jt; !it): (22)

Assume that the set of markets can be partitioned into market groups � such that for

all t 2 �,
�
x
(ii)
jt ; �jt

�
=
�
x
(ii)
j� ; �j�

�
. One natural example of such an environment is that

of a national industry (e.g., the U.S. automobile industry) in which the physical products

themselves are identical across regions of the nation, but regions may di¤er in average income,

product prices (e.g., due to f.o.b. pricing), prices of complementary goods (e.g., gasoline),

availability of substitute goods (e.g., public transportation), etc.

31



For simplicity, we illustrate the argument formally only for the case of full identi�cation

with exogenous product characteristics. However, it will be clear that all the identi�cation

results obtained above have analogs in this setting.

Assumption 12. supp (x(i)1t ; : : : ; x
(i)
Jtt
)j(x(ii)1t ; : : : ; x

(ii)
Jtt
) = RJt 8t:

Assumption 12 is di¤erent from the parallel large support Assumption 4. Here we re-

quire su¢ cient variation in a special product characteristic rather than an special consumer-

product characteristic. The role of this assumption is the same, however: to trace out the

distribution of the random component of (22) within each market group.

Now the setup is isomorphic to that in section 5. Variation in x(i)jt across market groups

at the limit x(i)j0t ! �1 8j0 6= j identi�es the distribution of �i
�
x
(ii)
j� ; �j�

�
exactly as in

section 5. Letting �
�
x
(ii)
j� ; �j�

�
= E

h
�i

�
x
(ii)
j� ; �j�

�
jx(ii)j� ; �j�

i
, identi�cation of the function

�
�
x
(ii)
j� ; �j�

�
(and therefore each �j�) follows exactly as in the previous sections. With

each �j� and the distribution of �i
�
x
(ii)
j� ; �j�

�
known, the joint distribution of fuijtgj2Jt is

uniquely determined at any
�
Jt;
�
(xjt; �jt)

	
j2Jt

�
in their support.

Because the setup here is isomorphic to that for the case of micro data, the extensions

to the case of endogenous characteristics (elements of x(ii)jt ), a separable error structure, and

identi�cation of demand with limited support follow directly as well.29

29An interesting question is what can be learned in a single market with a large choice set, i.e., with
J ! 1 (see Berry, Linton, and Pakes (2004)). Suppose that xjt does not include product dummies but
preferences can still be represented by 5, imposing a symmetry condition that the same function � apply to
all products. Fixing a market with a �nite choice set, the market share of the outside good is

p0 = Pr
�
z
(1)
i1 + � (x1; �1; !it) < 0; : : : ; z

(1)
iJ + � (xJ ; �J ; !it) < 0

�
:

A large support condition would give identi�cation of the joint distribution of
(� (x1; �1; !it) ; : : : ; � (xJ ; �J ; !it)), so that each �j � med �

�
xj ; �j ; !it

�
jxj ; �j could be considered

known. Since we can write �j = D
�
xj ; �j

�
, letting J ! 1 , it may be possible to extend the identi�-

cation result of Chernozhukov and Hansen (2005) to obtain identi�cation of D, which would then imply
identi�cation of each �j , with full identi�cation then following as above.
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9 Conclusion

We have studied nonparametric identi�cation of models of multinomial choice demand, al-

lowing for choice-speci�c unobservables, endogenous choice characteristics, and arbitrary

random heterogeneity across consumers in tastes for products and/or characteristics. We

obtained full identi�cation using the same kind of large support assumption used to show

identi�cation in semiparametric models, and the same instrumental variables conditions re-

quired for identi�cation of nonparametric regression models. Further, the results rely on the

large support only for identi�cation of tail probabilities, and identi�cation of demand holds

under a signi�cantly weaker support condition.

While one goal of our work has been to obtain results with few restrictions on prefer-

ences, there are some costs to a choice not to place more structure on the form of utility

functions. One is that some types of counterfactuals will not be identi�able.30 An example

is demand for a hypothetical product with characteristics outside their support in the data

generating process. This kind of limitation is not special to our setting, but is inherent to

a nonparametric analysis: extrapolation and interpolation typically require some parametric

structure. Of course, one may have more con�dence in extrapolations when identi�cation

holds nonparametrically within the support of the data generating process.

A second limitation concerns welfare. Our model (5) incorporates quasilinear preferences

and can therefore be used to characterize changes in utilitarian social welfare (in aggregate,

or across subpopulations de�ned by observables).31 However, it lacks the structure required

for welfare analysis that depends on the distribution of welfare changes. Characterization of

Pareto improvements, for example, would require additional restrictions enabling one to link

an individual consumer�s position in the distribution of utilities before a policy change to that

30The model enables identi�cation of some counterfactuals outside the support of the data generating
process� for example, removal of a product from the choice set.
31The quasilinearity generally will not be in income, but one can describe changes in aggregate compen-

sating/equivalent variation in units of the normalized marginal utility for z(1)ijt . Income (and/or price) will
typically enter preferences through the function � in (5). The potential nonlinearity of �, combined with our
inability to track indivuals�positions in the distributions of normalized utilities as the choice environment
varies, prevents characterization of aggregate compensating variation or equivalent variation in income units.
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after. This is because our model speci�es a distribution of conditional indirect utilities, not

a distribution of parameters whose realizations can be associated with an individual. This

points out a limitation of nonparametric random utility models as a theoretical foundation for

some kinds of welfare analysis: such welfare calculations require additional a priori structure.

An example of a model with su¢ cient structure to address these welfare questions (and

to extrapolate/interpolate) is the linear random coe¢ cients random utility model (Example

1)

uijt = xjt�it + zijt
 + �jt + �ijt: (23)

This generates a special case of our model, so we have provided conditions for identi�cation

of the joint distribution of
�
fuijtgj j

�
xjt; �jt; zijt

	
j

�
for all

�
xjt; �jt; zijt

	
j
in their support.

However, di¤erent joint distributions of
�
�it; f�ijtgj2J

�
that imply the same conditional

joint distributions of utilities need not have the same implications for welfare or extrapola-

tion/interpolation. Going from our results to identi�cation of the distribution of parameters

in (23) is equivalent to identi�cation of a linear random coe¢ cients regression model. Beran

and Hall (1992) and Beran, Feuerverger, and Hall (1996) have discussed su¢ cient conditions,

which involve regularity and support requirements beyond those required for our results.

Whether this enables any relaxation of existing identi�cation results for linear random co-

e¢ cients models (e.g., Ichimura and Thompson (1998), Briesch, Chintagunta, and Matzkin

(2005), Gautier and Kitamura (2007), Fox and Gandhi (2008)) is an open question.

Finally, while a novel aspect of our work is it examination of identi�cation without

large support conditions, even our weaker �common choice probability�condition requires

J-dimensional micro data. One can easily imagine applications where this will not be

available. When no micro data are available, one is in the case of market-level data. We

explore that case in Berry and Haile (2008b). Whether the conditions for identi�cation we

identify there could be relaxed in intermediate cases� where there is some micro data, but

of a lower dimension than that of the choice set� is an interesting question for future work.
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Appendix
Here we state Assumption 13, used in Theorem 4. From equation (17) we have

z�t = � (xt; �t; �)

where xt denotes the endogenous characteristic of choice 1. For given � , let fz� (�jxt;wt)

denote the density of conditional z�t on xt and the instruments wt. Fix some small positive

constants �q; �f > 0. For each � 2 (0; 1), de�ne L (�) to be the convex hull of functions

m (�; �) that satisfy

(a) for all wt, Pr (z�t � m (xt; �) j� ;wt) 2 [� � �q; � + �q]; and

(b) for all x in the support of xt,m (x; �) 2 s(x) � f� : f� (�jx;w) � �f 8w with fx (xjw) > 0g.

Assumption 13. (i) The random variables xt and z�t have bounded support.

(ii) For any � 2 (0; 1), for any bounded function B (x; �) = m (x; �)� � (x; �) with m (�; �) 2

L (�) and "t � z�t � � (xt; �), E [B (xt; �) (xt;wt; �) jwt] = 0 a.s. only if B (xt; �) = 0 a.s.,

where  (x;w,�) =
R 1
0
f" (�B (x; �) jx;w) d�.

(iii) the density
R 1
0
f" (ejx;w) of �t is bounded and continuous in e on R;

(iv) � (x; �) 2 s (x) for all (x; �) in their support.
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