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Abstract

Regression discontinuity designs (RDDs) are a popular method to consistently esti-

mate linear econometric models when ordinary least squares would be biased. However,

researchers have observed that the continuity condition of RDDs may fail if the forcing

variable can be manipulated by the agent. In this paper, we propose suf�cient conditions

for consistent estimation of an RDD-style model with this feature. In our paper, we �rst

write down a canonical model from economic theory in which a maximizing agent faces a

non-linear constraint set. We show that if there is no �bunching� of types at the discontinu-

ity in the optimal solution to this problem, a modi�ed RDD estimation strategy is possible.

A novel aspect of our paper is that we ground our RDD-style estimator in economic the-

ory and clarify primitive economic assumptions that guarantee consistent estimation when

1



the forcing variable is endogenous. As an application of our method, we study contracts

between a large health maintenance organization and leading hospitals for the provision of

organ transplants. The contracts used to reimburse the hospitals have �donut holes� and

therefore there are sudden, discontinuous changes in hospitals' reimbursement rate. We use

these discontinuous changes to estimate how the total claims �led by the hospitals depend

(locally) on the generosity of the reimbursement structure. Our results clearly demonstrate

that hospitals will submit signi�cantly larger bills if they are not faced with incentives to

economize. Our results thus suggest that informational asymmetries in the relationship

between HMOs and hospitals are signi�cant in this market.
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1 Introduction

Regression discontinuity design (RDD) is a commonly used method to consistently estimate

linear econometric models. In empirical work, researchers often encounter econometric models

where ordinary least squares estimation will generate biased estimates. This happens when

the classic exogeneity condition fails because one or more of the regressors is correlated with

unobservables or determined simultaneously with the dependent variable.

In an RDD, the researcher searches for a forcing variable that exogenously shifts the regres-

sor of interest. If such a variable can be found, an RDD generates a consistent estimate so long

as the continuity condition holds (see Hahn, Todd, and Van der Klaauw, 2001). A number of

researchers have pointed out that this condition may fail if the forcing variable can be manip-

ulated by an agent (see McCrary, 2008; Lee and Lemieux, 2010; Imbens and Lemieux, 2008).

Lee and Lemieux (2010) argue that many published papers using RDDs may suffer from this

problem and that the standard arguments guaranteeing the consistency of the estimator may

fail as a result. Urquiola and Verhoogen (2009) demonstrate that economic theories of sorting

may predict failure of the continuity condition. They point out that previously proposed RDD

identi�cation strategies in hedonic regressions and public �nance may not be consistent as a

result.

In this paper, we propose an alternative strategy that can be applied when the forcing variable

is determined simultaneously with the dependent variable. We begin by examining a canonical

model from microeconomics of an agent's choice when she faces a non-linear constraint set. In

this framework, the agent can choose the dependent variable of interest as well as in�uence the

forcing variable of the RDD. The constraint set depends on this forcing variable in a non-linear

fashion.

As labor economists have known for decades, models with non-linear budget sets may gen-

erate �bunching.� That is, choice models may predict that a positive mass of agents will make
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precisely the same choice near a kink point in a budget set. Labor economists have also ob-

served that there may be a �gap� near a kink point. That is, models may predict that no choices

should be observed in some neighborhood of the kink point in the constraint set. When there is

either bunching or a gap, standard RDDs would not work. In case of bunching, the continuity

condition is likely to fail. The presence of a gap also violates the continuity condition of RDDs

since the dependent variable will not have full support in this region. In summary, it can be

problematic to apply standard RDDs to important choice models since the forcing variable can

be manipulated by the agent.

Some researchers have argued that it may be possible to resolve these issues if there is

�optimization error� or some other factor which limits the ability of agents to control the forcing

variable near the kink point (see Lee and Lemieux, 2010). We demonstrate that this solution to

the problem of an endogenous forcing variable relies on assumptions which may be inconsistent

with canonical choice models from microeconomic theory.

In our paper, we propose a modi�ed RDD estimator which can yield consistent estimates

when the forcing variable can be manipulated by the agent. For many choice models, the

optimal solution would imply a strictly monotonic relationship between the type of the agent

and the agent's choice, except at bunching. The key insight in our paper is that we can exploit

this monotonicity to recast the problem such that the type of the agent is seen as the forcing

variable. We then apply an RDD-style estimation to this reformulated problem. We provide

a set of conditions under which our estimator is consistent. Since our estimator relies on strict

monotonicity between the type and the dependent variable, the estimator can be used where

economic theory predicts the possibility of a gap, but not where there is bunching.

We apply our estimator to understand a fundamental question in health economics�provider

agency. Hospitals, physicians and other health care providers possess more information about

the appropriateness and necessity of care than the patient or, importantly, their insurer. This fact

combined with the likelihood that health care providers are concerned with their own �nancial
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well-being implies that �rst-best contracts may be dif�cult to write and implement. Under-

standing the magnitude of this agency problem is a requisite step to both assessing the welfare

consequences of provider agency and designing the optimal contracts in health care settings.

Physicians and hospitals control most of the �ow of resources in the health care system and

medical care expenditures are a large component of most industrialized countries' GDP�in

the U.S., health care expenditures are currently over 16% of GDP with a real growth rate of

approximately 4% (Congressional Budget Of�ce, 2008). Thus, the welfare gain from better

aligning incentives in these contracts with societal objectives is potentially very large. Despite

the importance of this issue and the existence of a large theoretical literature (McGuire, 2000),

little quality empirical work exists studying the role of �nancial incentives in affecting provider

behavior.1

We have collected a unique data set on contracts between hospitals and one of the largest

U.S. health insurers for organ transplants. Organ transplants are an extremely expensive but

rare procedure. In 2007, 27,578 organs were transplanted in the U.S. and the average total

billed charges for kidney transplantation in our data, the least expensive and most commonly

transplanted organ, exceed $140,000. Between 2005 and 2008, the cost of organ transplant

rose at an annual rate of 14%�a rate that is higher than general health care cost in�ation. Our

analysis will allow us to determine if generous reimbursement rates can partly explain this rate

of increase or whether it is attributable to some other sources such as underlying hospital costs.

To the best of our knowledge, no other study in the literature has gathered a panel data set of

reimbursement contracts between a major insurer and hospitals of this form and detail.

The form of the contracts in our data is fairly simple. As a hospital treats patients, it uses

its information system to keep track of all reimbursable expenses, which include, but are not

limited to, drugs, nights in the hospital and care from health providers. Our hospitals have
1The discussion in the Centers for Medicare and Medicaid Services report on implementing pay-for-

performance in Medicare well summarizes the state of knowledge. No de�nitive body of research exists and
indicates the optimal payment policy parameters for achieving the goals of the Value-Based Purchasing program
(Centers for Medicare and Medicaid Services, p. 8).
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standard �list prices� for each of these reimbursable expenses which are maintained in their

�chargemaster.� The sum of all of these list prices times the reimbursable items is referred to as

charges. The contract speci�es what fraction of the charges submitted by the hospital for each

patient will be reimbursed by the insurer.

A key feature of the reimbursement schedules is that the total reimbursement amount for

each patient follows a piecewise linear schedule: the marginal reimbursement rate changes dis-

continuously when certain levels of expenditure are reached. This generates discontinuities

in the marginal price received by the hospital for its provision of health care. Even a visual

inspection of the data suggests that these incentives are important since the frequency of expen-

ditures changes substantially from the left hand side to the right hand side of these discontinuity

points.

In this problem, health care expenses would be the forcing variable (as well as the outcome

variable) and different reimbursement rates would be treatments in the terminology of standard

RDDs. Clearly, the forcing variable is a choice variable of the hospitals. Using a model of hos-

pitals' optimal health care provision, we verify that in the model the key conditions required for

our estimator are satis�ed at one of the discontinuity points in the reimbursement schedule. We

then apply our estimator to that discontinuity point to estimate how the total claims �led by the

hospital depend on the reimbursement structure. Our results clearly demonstrate that hospitals

will submit signi�cantly larger bills if they are not faced with incentives to economize. When

the marginal reimbursement rate changes from 0% to 50%, a magnitude of change typically

found in our contracts, the marginal increase in hospitals' expenditures for a given increase in

patients' illness severity becomes 2 to 14 times larger. These results suggest that there are

signi�cant informational asymmetries in the relationship between HMOs and hospitals in this

market.

Our paper makes the following contribution to the literature. Researchers have argued that

RDDs may not work if the forcing variable is a choice variable of the agent. This makes a
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straightforward application of standard RDDs to estimating demand, supply or other behavioral

responses dif�cult. We show that the problems, under certain conditions, can be recast so

that the agent's type is viewed as the forcing variable. Our proposed estimator thus allows

researchers to study a wider set of problems within an RDD-style framework.

The rest of this paper proceeds as follows. In Section 2, we present a model of hospitals'

health care choice. In Section 3, we propose our estimator and discuss its asymptotic properties.

Section 4 provides literature review on agency problems in health care markets. Section 5

describes our data and Section 6 presents model estimates. Section 7 concludes the paper.

2 Model

2.1 The Agency Problem

Consider a �rm that designs compensation contracts (the principal) for the provider of a medical

service (the agent). A patient is identi�ed who has a health condition with severity � � 0, and

� is a random variable with a pdf f (�) and cdf F (�). The health shock captures heterogeneity

in the demand for health care. We assume that patients' heterogeneity is one-dimensional, fully

captured by �. The provider then chooses a level of treatment q � 0. The value of the health

outcome to the patient is given by v(q; �); which is twice continuously differentiable. The cost

of providing treatment at level q is given by c(q). Given these, the socially optimal level of

treatment solves

max
q�0

v(q; �)� c(q):

The optimal level of health care treatment considers both the bene�ts to the patient and the costs

of treatment.

The patient, who is a passive player in this framework, arrives at the agent's facilities with
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her realization of severity �. The agent observes � and chooses the level of health care q. The

principal, however, cannot observe � but can observe the choice q. Hence, the principal cannot

directly contract on the optimal level of q, and instead must rely on a compensation scheme to

the agent of the general form r(q) in order to implement the desired q.

To continue, one needs to specify the payoff functions of the principal and the agent. Nat-

urally, the cost of treatment is born by the agent, and r(q) is paid to the agent by the principal.

We assume that the net monetary bene�ts of the principal are k � r(q); where k is some �xed

payment that he receives from the patient (insurance premium). We assume that the agent's

net monetary bene�ts are just r(q) � c(q). Furthermore, we assume that each party receives

a non-pecuniary bene�t that is proportional to the patient's payoff. This captures the idea that

both the principal and the agent bene�t from successful health outcomes.2 We also assume

quasi-linear utility functions so that there are no income effects. We can write the payoffs of

the principal and the agent as

up = 
pv(q; �) + k � r(q);

ua = 
av(q; �)� c(q) + r(q):

In this paper, our main interest lies in understanding hospitals' behavioral responses to the

reimbursement structure, not in understanding what the optimal reimbursement scheme should

look like. Therefore, we abstract away from the optimal contract design problem faced by the

principal, and just focus on the agent's optimal choice of health care spending given a reim-

bursement scheme. We note that in reality we might observe an incentive scheme that departs

from the optimal one for various reasons, such as institutional constraints, lack of information

or complexity in implementing the optimal contract.

The agent maximizes 
av(q; �) � c(q) + r(q) and the FOC is (for now, ignoring potential
2For example, reputational concerns for attracting future patients or for de�ecting scrutiny by regulators.
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discontinuities in r(q)),


a
@v(q; �)

@q
= c0(q)� r0(q): (1)

The equality in (1) has a simple economic interpretation: the left hand side is the agent's mar-

ginal bene�t from treatment while the right hand side is her net marginal cost (total marginal

costs less marginal reimbursement).

2.2 Assumptions

We shall assume that the payoffs obey the following conditions:

@v(q; �)

@q
> 0 (2)

@2v(q; �)

@2q
< 0 (3)

@v(q; �)

@�
< 0 (4)

@2v(q; �)

@�@q
> 0 (5)

@c(q)

@q
> 0 (6)

@2c(q)

@2q
� 0 (7)

Assumptions (2) and (3) state that the value of the health outcome to the patient is increasing and

strictly concave in q. Assumption (4) implies that health shocks adversely affect utility. As-

sumption (5) implies that the value of the health outcome to the patient exhibits strict increasing

differences in (q; �): the marginal utility of health care increases as agents receive more adverse

health shocks. According to assumptions (6) and (7), the cost of providing treatment is an

increasing and (weakly) convex function in q.
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This structure captures the intuitive idea that (i) health expenditures have an interior optimal

level after which more health care decreases social welfare; (ii) a more severe condition has

a higher marginal bene�t of extra treatments; and (iii) providing more treatment costs more

money, and marginal treatments are (weakly) more expensive. As a result, when a patient's

condition is more severe she should be offered more treatment.

When the agent consumes q dollars of health care to treat a patient, the agent is reimbursed

r(q) by the principal. As we discussed in the introduction, we are interested in situations where

the constraint set faced by the agent displays kinks or jumps. Re�ecting the reimbursement

schedules used by the health insurer in our data, we shall assume that r(h) satis�es:

r(0) = 0 (8)

r0(q) = �1 for 0 < q < q1 (9)

r0(q) = 0 for q1 � q � q2 (10)

r0(q) = �2 for q > q2: (11)

This assumption implies that the amount of reimbursement for each patient is piecewise

linear. For expenditures between 0 and q1, the hospital is reimbursed �1 for every dollar spent

to treat the patient. Once expenditures exceed q1, the hospital hits what is called the donut hole

and is forced to bear all of its health care expenses at the margin. Finally, for expenditures above

q2, the hospital is reimbursed �2 for every dollar spent. Figure 1 illustrates a reimbursement

scheme implied by assumptions (8)�(11).

10



r(q)

qq2q1

Figure 1: A Typical Reimbursement Scheme

2.3 Optimal Decision Rule

Under the assumptions written above, the optimal decision rule of an agent who treats a pool of

patients exhibits the following features:

1. There will be bunching at q1.

2. There may be a gap near q2 and the size of the gap depends on the shape of ua(q; �).

3. The optimal choice of q is monotonically increasing in �. In fact, the optimal choice q is

strictly increasing in � except for bunching at q1.

Figure 2 illustrates these observations. In drawing the �gure, we assume that 0 < �2 <

�1 < 1, which is what we typically observe in the data. The marginal bene�t curve for a given

level of � is decreasing in q, and is given by 
a @v(q;�)
@q

. The lower is 
a, the �atter are the

marginal bene�t curves. A higher � is associated with a marginal bene�t curve that is more to
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the right (crosses 0 at a higher q). The net marginal cost curve is just c0(q) � r0(q). For this

�gure, we assume that c0(q) is constant, which is not crucial for any of our results but simpli�es

the graphical analysis.

q1 q2

q

Net  marginal
cost

Marginal
Benefit (θ)

Bunching

Marginal
Benefit (θ*> θ)

Gap

qL qH

Figure 2: Optimal Decision Rule

Imagine a level of � that corresponds to an optimal choice below q1. As � increases, the

optimal choice will also increase until some level �1 at which it will be exactly q1. Given the

kink in the incentive scheme, there is an upward jump in the net marginal cost curve, causing

bunching at q1 for levels higher than �1. At some point, however, high enough levels of � above

�1 will cause the marginal bene�t curve to shift enough so that optimal choices will exceed q1

and be on the part of the net marginal cost curve that is c0(q) (i.e., r0(q) = 0). The choice of q

then continues to rise monotonically with � until we hit a gap in choices just around q2, where

the net marginal cost drops. To see why we have a gap, consider the level �� that is depicted in
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Figure 2. For this level of severity the agent is indifferent between choosing two levels of health

care, one strictly below q2 (say qL) and another strictly above (say qH). By the monotonicity

of q(�) which follows from the assumption of increasing differences in (q; �), there will not be

any choices of treatment that correspond to expenditures within the interval (qL; qH). We see

that the �atter the marginal bene�t curves are (smaller 
a), the larger the gap (qL; qH) will be.

Finally, for all � > ��, q(�) is strictly increasing. The graphical analysis of Figure 2 offers a

complete treatment of what the agent's behavior would be in face of a kinked incentive scheme

as described in Figure 1.

Throughout our discussion, we have assumed that the agent cannot �cheat� and fraudulently

announce costs that were not incurred. If this can happen, then we might observe patterns

that are not implied by the optimal decision rule. Although such a fraudulent reporting is not

impossible, we think it is uncommon among the hospitals in our data because they are large,

established hospitals that are subject to regular audits.

3 Estimation

In this section we propose our estimator that will yield consistent estimates of the agent's be-

havioral responses when the forcing variable is endogenously chosen by the agent. We �rst

discuss the key intuition behind our approach and then outline our estimation procedures.

3.1 Using Discontinuous Changes for Identi�cation

At the two discontinuity points q1 and q2, the marginal reimbursement rate faced by the hospital

changes discontinuously. These discontinuities seem to present a natural setting for an RDD.

Our problem, however, differs from typical RDD settings because q is both the forcing variable

(the level of q determines the marginal reimbursement rate) and the dependent variable (our
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goal is to estimate how the level of q responds to the marginal reimbursement rate). In this

canonical choice model, the forcing variable is clearly endogenous.

One might think that an RDD estimator might be still consistent if there is �optimization

error� or some other factor that prevents agents from precisely controlling the forcing variable

(see Lee and Lemieux, 2010). This solution to the problem of an endogenous forcing variable

does not work for our problem due to the fact that the forcing variable is the same as the depen-

dent variable. When we add optimization error to the forcing variable, we are adding the same

optimization error to the dependent variable. Thus, patients who are on the left hand side of a

discontinuity and patients who are on the right hand side of the discontinuity will have system-

atically different optimization errors added to their outcomes, which will lead to inconsistent

estimates under standard RDD estimation.

In our paper, we propose an alternative solution to the problem. A key step in our approach

is to transform the problem so that we make the type of the patient � a forcing variable. From

the earlier discussion, and more generally the monotone comparative statics literature of Topkis

(1978) and Milgrom and Shannon (1994), we know that the assumption of strict increasing

differences in (�; q) implies that the optimal health care provision q is a strictly increasing

function of patient type �, with the exception of where there is bunching at q1. As a result, the

percentiles of q will identify �. That is, if we see a patient with the 5th percentile of health

expenditure within a hospital, that patient will have the 5th percentile of health shock within

that hospital. This means that for all practical purposes, the health shocks are observable to the

econometrician. Since q is only weakly increasing in � around the �rst discontinuity point due

to the presence of bunching, the econometrician cannot infer � from the cdf of q in the region.

Hence, our estimation procedure can be applied to the second kink, but not the �rst one.

Once we reformulate the problem so that the patient type � is a forcing variable (which is ex-

ogenously endowed and cannot be manipulated), a shift in the patient type � determines whether

the hospital's choice of q for that patient will be on the left hand side or right hand side of the
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second discontinuity point. This then generates an exogenous change in the marginal price

faced by the hospital, allowing for identi�cation of the hospital's response to incentives. Our

approach boils down to estimating a variant of regression discontinuity models in the empirical

quantile function of the hospital's choice q.

Figure 3 helps illustrate the idea behind our approach. Among patients who come to the

hospital with a realization of health shock �, there will be a value of � at which the hospital

is indifferent between choosing qL (< q2) and qH (> q2). Let �� denote the level of severity

which leads to such an indifference. Then for all patients whose � is greater than ��, the

hospital will choose q larger than qH and will face a marginal reimbursement rate of �2. For

patients whose � is smaller than ��, the hospital will choose q smaller than qL and will face

a marginal reimbursement rate of 0. Thus, the hospital's supply of health care services will

be more responsive to an increase in � on the right hand side of �� than on the left hand side

of ��. Therefore, by comparing how quickly q rises with an increase in � for values of � just

below and just above ��, we can infer how the total claims �led by the hospital depend on the

reimbursement structure. We let �4 denote change in the slope of the quantile function at �
�.

θ
θ*

qL

qH

q2

Figure 3: The slope of quantile function q(�) changes at ��
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The �gure also shows a possibility of gap �2 = qH � qL at ��. As discussed earlier, for a

high value of 
a the gap could be very small, while for a low value of 
a the gap might be large.

Hence, it is an empirical question whether only the slope of q(�) changes (i.e., �4 6= 0), or both

the slope and intercept of q(�) change at the discontinuity point �� (i.e., �4 6= 0 and �2 6= 0).

3.2 Estimation

We consider several different estimation approaches that deal with different levels of hospital

heterogeneities. The �rst method applies to individual hospital data. The second method

makes use of a global parametric assumption to pool information from data across all hospitals.

3.2.1 Individual Hospital Estimates

Suppose that there are i = 1; :::; n individuals treated in the hospital under consideration. Let

qi denote the health expenditure of individual i. Let F̂ (�) denote the empirical distribution of

the observed q's for the hospital. We propose estimators for �2 and �4 at the upper regression

discontinuity point of q2 and derive the asymptotic distribution of the estimators.

The incentive scheme is such that for � approaching a cutoff value ��, q(�) approaches a

limit value qL. As soon as � moves to the right of ��, q(�) takes a discrete jump at the point of

�� by an amount �2 > 0 to qH .

By normalization, � is estimated as the empirical CDF of the observed q. Hence �� is

estimated by

�̂
�
= F̂ (q2) =

1

n

nX
i=1

1(qi � q2);

where F̂ (�) is the empirical distribution of the observed q's. Given that we de�ne �� = F (q2)
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where F (�) is the true distribution function of q, the asymptotic distribution of �̂� is immediate:

p
n(�̂

� � ��) d�! N (0; F (q2)(1� F (q2))) :

We are interested in estimating the magnitude of the discontinuity �2. This is estimated by

�̂2 = q̂H � q̂L = minfqi : qi > q2g �maxfqi : qi � q2g:

The goal is to derive the asymptotic distribution of �̂2��2. It suf�ces to show that the joint

distribution of n(q̂L � qL) and n(q̂H � qH) are independent exponential distributions. To see

this, note that

P (n(q̂L � qL) � �x; n(q̂H � qH) � y)

= P (qi � qL � x=n; qi � qH + y=n; 8i)

= (1� P (qL � x=n � qi � qH + y=n))n

=
�
1� f�x=n� f+y=n+ o(1)

�n n!1�! ef
�x+f+y:

In other words, n(q̂L � qL) and n(q̂H � qH) converge to two independent (negative and

positive) exponential random variables with hazard rates f� = f(qL) and f+ = f(qH), where

we have used f� and f+ to denote the (left and right) densities at qL and qH . The limiting

distribution of n(�̂2 � �2) is therefore the sum of these two independent exponential random

variables. When f� = f+;the limit distribution is a standard Gamma random variable with

two degrees of freedom.

Next we turn to the estimation of difference between the slopes of q(�) at qH and qL, de�ned

as �4 = lim�!��+ q
0(�) � lim�!��� q

0(�). Note that �4 = 1
f+
� 1

f� : Hence it suf�ces to obtain
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consistent nonparametric estimators for f+ and f�. This can be done using standard one sided

kernel smoothing methods.

De�ne

f̂� =
1

n

nX
i=1

1

h
k(
q̂L � qi
h

)1(qi � q̂L);

and

f̂+ =
1

n

nX
i=1

1

h
k(
qi � q̂H
h

)1(qi � q̂H):

In the above, k(�) is a one-sided density function supported on (0;1), and h is a sequence of

bandwidth parameters used in typical kernel smoothing. It is straightforward to show that as

long as nh �!1 and nh3 �! 0,

p
nh
�
f̂� � f�

�
d�! N

�
0; f�

Z
K(u)2du

�
;

and
p
nh
�
f̂+ � f+

�
d�! N

�
0; f+

Z
K(u)2du

�
and that they are asymptotically independent. Therefore

p
nh
�
�̂4 � �4

�
d�! N

�
0;

1

f�3

Z
K(u)2du+

1

f+3

Z
K(u)2du

�
:

3.2.2 A Parametric Model Using Multiple Hospital Data

Now we consider how to extend the previous method to allow for pooling information from

data across multiple hospitals. Consider �rst �2 = qH � qL. We de�ne yi = qi1(qi � q2) and

zi = qi1(qi > q2) +M1(qi � q2). In the homogeneous case, we have de�ned q̂L = maxfyig

and q̂H = minfzig, whereM is number that is larger than any of the data points. This de�nition

of the estimators can be extended to incorporate heterogeneous data from all hospitals.
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With cross-hospital data, the observed threshold value q2 can be hospital dependent, which

we will denote as q2(t), where we have used t to index hospitals. Suppose hospital heterogene-

ity is captured by covariates xt, where xt can be q2(t) itself. Let It be the number of patient

observations for each hospital. We specify the following parametric assumption that

qL(t) � qL(xt) = gL(xt; �L) and qH(t) � qH(xt) = gH(xt; �H).

In the above, we can use a �exible series expansion functional form of gL(xt; �L) and gH(xt; �H)

so that they are linear in the parameters �L and �H . The structure of this problem �ts into the

boundary parameter estimation method studied in the literature. Possible estimators include the

linear programming approach and nonstandard likelihood estimator (c.f. Donald and Paarsch,

1996; Chernozhukov and Hong, 2004) and the extreme quantile regression approach of Cher-

nozhukov (2005). We describe these alternatives in the following.

The linear (or quadratic, etc.) programming approach estimates the parameters by

�̂L = argmin
�L

TX
t=1

ILt gL(xt; �L); where ILt =
ItX
i=1

1(yi > 0);

such that yi � gL(xt; �L);8i = 1; :::; ILt ; t = 1; :::; T;

and

�̂H = argmax
�H

TX
t=1

IHt gH(xt; �H); where IHt =

ItX
i=1

1(zi < M);

such that zi � gH(xt; �H);8i = 1; :::; IHt ; t = 1; :::; T:

The objective functions
PT

t=1 I
L
t gL(xt; �L) and

PT
t=1 I

H
t gH(xt; �H) can be replaced by

TX
t=1

ItX
i=1

1(yi > 0)(yi � gL(xt; �L))2 and
TX
t=1

ItX
i=1

1(zi < M)(zi � gH(xt; �H))2
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or other types of penalization functions. The linear programming approach however seems to

be the easiest to implement.

Alternatively, �L and �H can be estimated by the extreme quantile regression method of

Chernozhukov (2005):

�̂L = argmin
�L

TX
t=1

ItX
i=1

1(yi > 0)��L(yi � gL(xt; �L));

where �� (u) = (� � 1(u � 0))u is the check function of Koenker and Bassett (1978), such that

�L ! 1 as nL =
X
t

ILt !1:

Similarly, �̂H = argmin�H
PT

t=1

PIt
i=1 1(zi < M)��H (zi � gH(xt; �H)), where

�H ! 0 as nH =
X
t

IHt !1:

The quantile regression approach has the advantage of being robust against a certain fraction

of outliers in the data. On the other hand, the programming estimators always satisfy the

constraints of the relation between yi; zi and gL(xt; �L) and gH(xt; �H):

By adopting a parametric functional form on qL(xt) and qH(xt) we are maintaining a strong

speci�cation assumption which can potentially be tested by the data. An implicit assumption

of the parametric functional form is that gL(xt; �0L) � q2(t) � gH(xt; �
0
H) for all t at the true

parameters �0L and �
0
H . Of course their estimates introduce sampling noise, but we still expect

that it should be largely true for most t:

gL(xt; �̂L) � q2(t) � gH(xt; �̂H):
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The approximate validity of this condition can be used as the basis of a model speci�cation

test.

Then �2(xt) will be estimated consistently by

�̂2(xt) = gH(xt; �̂H)� gL(xt; �̂L):

Conducting statistical inference on �̂2(xt) requires the limiting joint distribution of �̂L and

�̂H . They converge to a nonstandard distribution at a fast 1=n rate for n =
P

t It. The limiting

distribution can be obtained by simulation which we will describe below in the context of the

parametric likelihood approach.

In fact we can also adopt a maximum likelihood approach. This will be useful in case we

are interested in the shape of the distribution of qit in order to conduct counter-factual welfare

calculations. To this end, assume that

�Lit = gL(xt; �L)� yit � fL(�Lit; xt; �L) for yit � gL(xt; �L);

and

�Hit = zit � gH(xt; �H) � fH(�Hit ; xt; �H) for zit � gH(xt; �H):

The maximum likelihood estimator for �L; �H and �L; �H can then be written as

(�̂L; �̂L) = arg max
�L;�L

TX
t=1

ItX
i=1

1(yit > 0) log fL(gL(xt; �L)� yit; xt; �L)

such that yit � gL(xt; �L);8i = 1; :::; It; t = 1; :::; T;
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and

(�̂H ; �̂H) = arg max
�H ;�H

TX
t=1

ItX
i=1

1(zit < M) log fH(zit � gH(xt; �H); xt; �H)

such that zit � gH(xt; �H);8i = 1; :::; It; t = 1; :::; T:

In fact the linear programming estimator is a special case of the above maximum likelihood

estimator when the densities fL(�Lit; xt; �L) and fH(�Hit ; xt; �H) are exponential distribution with

a homogeneous hazard rate parameter: f(�) = �e���. In this case, in addition to obtaining �̂L

and �̂H from the linear programming estimators, we also estimate the hazard parameters by

1=�̂L =

PT
t=1

PIt
i=1 1(yit > 0)

�
gL(xt; �̂L)� yit

�
PT

t=1

PIt
i=1 1(yit > 0)

and

1=�̂H =

PT
t=1

PIt
i=1 1(zit < M)

�
zit � gH(xt; �̂H)

�
PT

t=1

PIt
i=1 1(zit < M)

Even though �̂L and �̂H converge at 1=n rate to a nonstandard limit distribution, �̂L and �̂H

are still root n consistent and asymptotically normal, as long as there is no functional relations

between � and �.

To estimate �4(xt), we can use

�̂4(xt) =
1

fH(0; xt; �̂H)
� 1

fL(0; xt; �̂L)
:

Since �̂4(xt) is root n consistent and asymptotically normal, its limiting distribution can be

obtained by the standard sandwich formula, or by simulation or bootstrap, in which �̂L and �̂H

can be held �xed because they do not affect the asymptotic distribution.

The joint asymptotic distribution for �̂L and �̂H can be obtained by parametric simulations.

Given the assumption that the parametric model is correctly speci�ed, it is possible to simu-
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late from the model using the estimated parameters �̂L, �̂H , �̂L and �̂H . The approximate

distribution can be obtained from repeated simulations. Instead of recomputing the maximum

likelihood estimator at each simulation, it suf�ces to recompute weighted programming estima-

tors of �L and �H at each simulation:

~�L = argmin
�L

TX
t=1

ItX
i=1

fL(0; xt; �̂L)
@gL(xt; �̂L)

0

@�L
�L

such that yi � gL(xt; �L) 8i; t;

and

~�H = argmax
�H

TX
t=1

ItX
i=1

fH(0; xt; �̂H)
@gH(xt; �̂H)

0

@�H
�H

such that zi � gH(xt; �H) 8i; t:

We can also consider the possibility that gL(xt; �L) and gH(xt; �H) are correctly speci�ed

but fL(�Lit; xt; �L) and fH(�Hit ; xt; �H) are misspeci�ed. In this case, each of the above methods

(linear and quadratic programmings, extreme quantile regression, (pseudo) maximum likeli-

hood estimation) will still deliver consistent estimates of �L and �H and hence �2. But the

estimates for �L, �H and hence �4 are clearly inconsistent.

In this case, if we are willing to impose parametric assumptions on �2 through gL(xt; �L)

and gH(xt; �H), but are not willing to make parametric assumption on �4, we can still estimate

�4 using nonparametric density estimators. We can also use nonparametric density estima-

tors to perform semiparametric simulations for consistent inference about �̂2. Suppose xt is

continuously distributed with dimension d. Let

f̂�(x) =
1

n

TX
t=1

ItX
i=1

1

h
w(xt; x)k(

gL(xt; �̂L)� qit
h

)1(qit � gL(xt; �̂L));
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and

f̂+(x) =
1

n

TX
t=1

ItX
i=1

1

h
w(xt; x)k(

qit � gH(xt; �̂H)
h

)1(qit � gH(xt; �̂H));

where

w(xt; x) = k
d(
xt � x
h

)=

TX
t=1

kd(
xt � x
h

):

Then we can form the estimate �̂4(xt) = 1=f+(xt)� 1=f�(xt).

The limiting distribution of �̂L and �̂H can be obtained by recomputing the following

weighted programmming estimators:

~�L = argmin
�L

TX
t=1

ItX
i=1

f�(xt)
@gL(xt; �̂L)

0

@�L
�L

such that yi � gL(xt; �L) 8i; t;

and

~�H = argmax
�H

TX
t=1

ItX
i=1

f+(xt)
@gH(xt; �̂H)

0

@�H
�H

such that zi � gH(xt; �H) 8i; t:

As before, the simulated distributions of n(~�L � �̂L) and n(~�H � �̂H) should approximate

the unknown limit distributions of n(�̂L � �0L) and n(�̂H � �0H).

4 Literature on Provider Agency in Health Care Markets

Health care markets are rife with informational asymmetries which can be leveraged by health

care providers to increase incomes relative to full information, �rst-best equilibrium. Ar-

row (1963) noted that a �rst-best insurance contract would specify a state-dependent payment.

However, these contracts are not generally negotiated because health states are not readily ob-
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served. Since the work of Arrow (1963), a large theoretical literature has arisen characterizing

the optimal payment contract under different informational, preference and market structure

scenarios.3 However, most current provider-insurer contracts do not correspond to the struc-

tures generally prescribed by theory.4 The failure of insurers to negotiate �rst-best contracts

suggests that there is meaningful scope for provider agency. Given the size of the health care

sector (approximately 16% of GDP), the potential welfare consequences of provider agency are

extremely large.

Empirical analyses of the magnitude of the agency problem date to the work on physician

induced demand of Fuchs (1978). The most important evidence on the presence of provider

agency is provided by the Dartmouth Atlas Project. They �nd that there are large geographic

variations in utilization by Medicare enrollees that are unrelated to health status. The Dart-

mouth Atlas Project suggests (but only provides limited econometric evidence) that the geo-

graphic differences are driven by geographic variation across providers in demand inducement.

Many papers have attempted to estimate physician agency, but the identi�cation strategies em-

ployed in these papers are generally suspect.5 There are important exceptions, however. Gruber

and Owings (1996) �nd that within state declines in fertility are associated with increases in ce-

sarean sections. Yip (1997) shows that cardiac surgeons responded to payment reductions by

increasing the number of procedures they performed. During the 1980s, Medicare changed

its hospital reimbursement system from retrospective to prospective using Diagnostic Related

Groups (DRG) as the basis of the payment. The incentive under prospective payment is to

reduce the length of stay of Medicare bene�ciaries and the policy appeared to have had the

expected impact (Hodgkin and McGuire, 1994) without dramatically impacting the quality of

care (Cutler, 1995). Even within the DRG system, hospitals appear to leverage their superior

information into more generous payments. Dafny (2005) �nds that when Medicare changed the
3McGuire (2000) provides an excellent review of this literature.
4For example, private insurers generally pay physicians on a fee-for-service or percentages of billed charges ba-

sis, while Medicare pays physicians on a fee-for-service basis and hospitals by groupings of diagnoses (Diagnosis
Related Groups).

5See Dranove andWehner (1994) for a discussion of the limitation of the attempts to estimate physician agency.
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structure of the DRG payment generosity, hospitals responded by upcoding patients into more

generous payment groups.

There has been very little detailed analysis of the response of providers to the speci�c in-

centives embedded in reimbursement and remuneration contracts. Gaynor and Gertler (1995)

�nd that physicians reduce their effort when faced with lower powered incentives. Gaynor,

Rebitzer and Taylor (2004) analyze a model of physician behavior under group incentives and

test the predictions using detailed contract and �nancial data from a network HMO. They rely

on variation in the size of the panel over which the group incentive is implemented to identify

the parameters. They �nd that the HMO's incentive contract provides a typical physician with

an increase, at the margin, of $0.10 in income for each $1.00 reduction in medical utilization

expenditures. The presence of these high powered incentives reduced medical expenditures by

5%.

5 Data

Our estimation uses two data sets. The �rst data set comes from one of the largest private

health insurers in the U.S. and has information on its contracts with 127 hospitals which specify

reimbursement schedules for organ transplant surgeries. The other data set, also from the same

insurer, has information on the set of patients who received organ transplants in each of the 127

hospitals. We merge the two, and the resulting data set has (i) claim-level information, such

as the admission and discharge dates of the patient, the type of organ transplant received by

the patient, the size of the bill submitted by the hospital to the insurer and the reimbursement

amount paid by the insurer, as well as (ii) hospital-level information, such as the name and

location of the hospital and the reimbursement schedule the hospital faces for each type of

organ transplant surgery it performs. The data run from 2004 through 2006.

The insurer, a fortune 50 company, uses this network of hospitals for its own enrollees and
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also sells access to this network to other health insurers and self-insured employers. This

insurer is a major player in the organ transplant market, with its 80% market share among

private vendors.

There are various types of organ and tissue transplants covered by the contracts, major ones

being bone marrow transplant (BMT), kidney transplant, liver transplant, heart transplant and

lung transplant. Organ transplants are a rare but exceedingly expensive procedure. In 2007,

27,578 organs were transplanted in the U.S. and the average total billed charges for kidney

transplantation in our data, the least expensive and most commonly transplanted organ, exceed

$140,000. Between 2005 and 2008, the cost of organ transplant rose at an annual rate of

14%�a rate that is larger than general health care cost in�ation. An organ transplant is an

extremely challenging and complex procedure taking anywhere from 3 (kidney) to 14 hours

(liver). Organ transplants usually require signi�cant post-operative care (up to 3 weeks of

inpatient care) and careful medical management to prevent rejection. The infrequency of the

procedures, the complexity of the treatments and the large variation across patients in their

response to transplantation make it dif�cult for insurers to determine the appropriateness of the

care for a given episode. That, in turn, implies that hospitals are in a position to engage in

agency in response to the incentives embodied in their contracts.

The insurer negotiates a separate contract with each individual hospital, instead of having

one common contract applied to all participating hospitals. As a result, the reimbursement

schedule differs across hospitals. Typically, the reimbursement schedule takes a form as shown

in Figure 1, but the exact locations of the �rst kink (q1, also called inlier threshold) and the

second kink (q2, also called outlier threshold), the marginal reimbursement rate for each of the

segments (�1 and �2) and the height of the donut hole (�1q1) all vary across hospitals.6 These

differences likely re�ect variation in bargaining power as well as heterogeneity in the patient

pool across hospitals.
6There are some hospitals whose contracts do not have non-linearities and rather specify reimbursements as a

�xed proportion of the bills. We exclude these hospitals from the estimation sample.
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One practical issue we encounter is that the number of patients who receive a certain type of

organ transplant within a hospital is typically very small. The average number of patients per

hospital for a given type of organ transplant is 9.08 in year 2004, 8.74 in year 2005 and 8.05 in

year 2006. The small number of patients could pose a serious problem for the performance of

our estimator, particularly when estimation is done separately for each hospital (Section 3.2.1),

since it leads to an imprecise estimation of the true quantile function of q. Since a hospital is

likely to differ in its price sensitivity across different types of organ transplants, we cannot pool

observations across organ types. However, we can pool observations across years for a given

hospital and organ type since it seems plausible to expect that a given hospital's price sensitivity

does not change during the sample period. To further reduce the potential bias arising from the

small number of patients, we restrict our attention to (hospital, organ) pairs that have more than

30 patients over the years.7 Table 1 presents summary statistics for the �nal sample.

7For individual hospital estimation, we use cutoff of 50.
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Table 1: Summary Statistics

BMT Kidney Liver

Total # Patients 791 388 396

Total # Hospitals 10 5 8

Avg. Reimbursement per Patient (in $1000) 96.65 (51.04) 72.15 (38.39) 187.7 (114.88)

Avg. # Patients per Hospital 79.1 (35.23) 77.6 (44.07) 49.5 (18.91)

Avg. q1 across Hospitals (in $1000) 117.59 (18.75) 80.84 (22.89) 188.97 (16.22)

Avg. q2 across Hospitals (in $1000) 167.86 (31.63) 136.05 (41.17) 265.69 (24.79)

Avg. �1 across Hospitals 0.75 (0.07) 0.79 (0.09) 0.79 (0.07)

Avg. �2 across Hospitals 0.53 (0.06) 0.48 (0.08) 0.56 (0.06)

Avg. % Patients with q < q1 39.17 (20.2) 10.17 (5.26) 18.68 (13.39)

Avg. % Patients with q1 � q � q2 28.95 (11.64) 45.72 (11.49) 37.16 (9.01)

Avg. % Patients with q > q2 31.88 (19.51) 44.11 (10.51) 44.16 (14.07)

Inside the parentheses are standard deviations.

In Figure 4 we show the distribution of q's of our sample, pooled across hospitals, organs and

years. In order for us to be able to pool observations in the presence of different reimbursement

schemes, we need to normalize q's. We show the distribution of q's that are normalized against

the outlier threshold, qOUT = q� q2
�1q1

.
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Figure 4: Distribution of qOUT

The �gure shows that the frequency of expenditures changes substantially from the left hand

side to the right hand side of the discontinuity point q2 (where qOUT = 0), suggesting that the

changes in the marginal price received by the hospitals are important for their choice of health

care provision.

6 Results

We apply our proposed estimators to the second discontinuity point q2 in order to estimate how

the amount of health care provision depends on the reimbursement structure. In the �rst set of

results, we apply maximum likelihood estimation to data pooled across multiple hospitals. The

maximum likelihood estimation will yield �̂L; �̂H ; �̂L and �̂H , and these allow us to obtain the

size of gap at the discontinuity point, �̂2(xt) = gH(xt; �̂H)� gL(xt; �̂L), and the change in the

slope of the quantile function, �̂4(xt) = 1
fH(0;xt;�̂H)

� 1
fL(0;xt;�̂L)

, for each hospital characterized

by xt. We use exponential distribution for densities fL and fH , with hazard rate parameter

�L(xt; �L) and �H(xt; �H), respectively. All contract variables that potentially differ across
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hospitals, such as the locations of the �rst and second kinks (q1 and q2) and the marginal reim-

bursement rates (�1 and �2), are included in xt. We also include higher-order polynomials of

these variables in xt to �exibly capture the distribution of q for multiple hospitals. To compute

standard errors, we use parametric bootstrap using 500 simulations. We apply MLE to each

organ type separately.

In Tables 2-4, we report maximum likelihood estimates of �2 and �4 for each hospital in

the data, along with hospital characteristics. Table 2 reports estimates for BMT, Table 3 for

kidney transplants, and Table 4 for liver transplants.

Table 2: Maximum Likelihood Estimates, Bone Marrow Transplant (q measured in $1,000)

q1 q2 �1 �2 �̂2 Slope L Slope R �̂4

H1 135.7 158.3 0.7 0.6 15.75 (8.9) 16.67 (2.0) 107.9 (8.8) 91.18 (9.5)

H2 135.7 190.0 0.7 0.5 8.61 (18.4) 24.99 (3.6) 63.59 (7.7) 38.59 (8.7)

H3 135.7 172.7 0.7 0.55 9.93 (19.3) 19.78 (1.8) 82.15 (6.7) 62.37 (7.5)

H4 94.8 146.0 0.77 0.5 2.62 (3.7) 9.52 (2.6) 49.69 (7.0) 40.17 (7.4)

H5 133.3 181.8 0.75 0.55 5.13 (5.7) 24.15 (3.4) 86.44 (9.8) 62.29 (10.9)

H6 107.3 123.9 0.75 0.65 4.70 (6.8) 9.04 (2.0) 126.5 (15.8) 117.5 (15.9)

H7 120.0 150.0 0.75 0.6 7.10 (2.6) 13.89 (1.6) 102.9 (7.1) 89.04 (7.6)

H8 117.3 195.6 0.75 0.45 3.05 (14.3) 24.42 (4.9) 46.09 (6.7) 21.67 (8.1)

H9 130.8 170.0 0.65 0.5 3.44 (3.3) 16.12 (2.3) 56.85 (5.1) 40.73 (5.6)

H10 100.0 153.3 0.92 0.6 10.27 (22.1) 14.94 (1.7) 104.9 (7.6) 89.93 (8.2)

Inside the parentheses are bootstrapped standard errors.
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Table 3: Maximum Likelihood Estimates, Kidney Transplant (q measured in $1,000)

q1 q2 �1 �2 �̂2 Slope L Slope R �̂4

H1 97.1 123.6 0.7 0.55 0.78 (8.34) 11.30 (1.30) 51.54 (5.16) 40.23 (5.50)

H2 74.7 124.4 0.75 0.45 6.69 (9.81) 14.25 (2.72) 74.07 (18.66) 59.82 (18.97)

H3 75.3 130.6 0.85 0.49 4.67 (3.98) 14.66 (1.48) 57.15 (6.04) 42.49 (6.60)

H4 79.4 137.8 0.85 0.49 3.80 (4.25) 16.75 (2.03) 50.41 (5.98) 33.65 (6.53)

H5 83.4 144.6 0.85 0.49 1.95 (4.51) 19.05 (3.26) 44.66 (8.04) 25.60 (8.76)

H6 70.7 108.3 0.92 0.6 1.44 (2.50) 7.62 (1.53) 55.86 (8.65) 48.24 (8.83)

Inside the parentheses are bootstrapped standard errors.

Table 4: Maximum Likelihood Estimates, Liver Transplant (q measured in $1,000)

q1 q2 �1 �2 �̂2 Slope L Slope R �̂4

H1 202.9 258.2 0.7 0.55 51.76 (31.42) 28.47 (2.92) 149.6 (12.02) 121.1 (13.52)

H2 120.0 163.6 0.75 0.55 9.94 (9.24) 13.04 (3.94) 149.6 (12.02) 136.5 (13.81)

H3 178.5 206.0 0.75 0.65 2.39 (91.49) 16.00 (2.93) 182.0 (17.12) 166.0 (17.34)

H4 166.5 288.8 0.85 0.49 13.99 (16.09) 39.99 (7.82) 132.9 (18.06) 92.9 (20.50)

H5 160.0 218.2 0.75 0.55 10.01 (22.74) 20.46 (3.31) 149.6 (12.02) 129.1 (13.43)

H6 200.0 254.6 0.7 0.55 7.77 (12.99) 27.63 (2.84) 149.6 (12.02) 121.9 (13.46)

H7 198.8 271.1 0.75 0.55 26.02 (14.20) 31.67 (3.61) 149.6 (12.02) 117.9 (13.88)

H8 198.7 250.0 0.78 0.62 6.54 (5.42) 24.04 (2.96) 171.6 (11.95) 147.5 (12.87)

Inside the parentheses are bootstrapped standard errors.

From the results in Tables 2-4, we see that �̂4 is positive and statistically signi�cant for all

hospitals across all organ types. This suggests that for a given increase in the severity of patient
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health shock, hospitals tend to increase their health care spending by a larger amount when they

face a positive marginal reimbursement rate than when the marginal reimbursement rate is zero.

To interpret the magnitude of the coef�cients, take the results for hospital 1 in Table 2. The

hospital increases its bone marrow transplant spending by $166.7 for one percentile increase in

patient illness severity when it is on the LHS of the kink (marginal reimbursement rate = 0%),

while it increase its spending by $1079 for one percentile increase in illness severity when it is

on the RHS of the kink (marginal reimbursement rate = 60%). This amounts to approximately

six and a half times larger sensitivity of hospitals' health care spending to BMT patients' health

condition due to the hike in the reimbursement rate. Similarly, take the results for hospital 1 in

Table 3. The hospital increases its kidney transplant spending by $113 for one percentile in-

crease in illness severity when it is on the LHS of the kink (marginal reimbursement rate = 0%),

while it increase its spending by $515.4 for one percentile increase in illness severity when it is

on the RHS of the kink (marginal reimbursement rate = 55%). This amounts to approximately

four and a half times larger sensitivity of hospitals' health care spending to kidney transplant

patients' health condition due to the increase in the reimbursement rate. Similar results hold

for liver transplants as well.

Overall, the sensitivity of health care spending to patient illness is 2 to 14 times larger on

the RHS than on the LHS for bone marrow transplants, 2 to 7 times larger on the RHS than

on the LHS for kidney transplants, and 3 to 11 times larger on the RHS than on the LHS for

liver transplants. What is also interesting is that �̂4 tends to be larger when �2 is larger, which

again suggests that hospitals are sensitive to reimbursement rates in their health care provision

decision. For instance, In Table 2, �̂4 is largest for Hospital 6, which has largest �2, and �̂4

is smallest for Hospital 8, which has smallest �2. Similar patterns hold for kidney transplants

(Table 3) and liver transplants (Table 4).

Another pattern we observe in Tables 2-4 is that �̂2 is always positive, although almost al-

ways insigni�cant. The fact that �̂2 is always positive alleviates concerns about possible model
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misspeci�cation. As we discussed in Section 3.2.2, an implicit assumption of the parametric

functional form is that gL(xt; �0L) � q2(t) � gH(xt; �0H) for all t at the true parameters �0L and

�0H . Since we �nd that gL(xt; �̂L) < gH(xt; �̂H) holds for all hospitals in the data, there is

no evidence of model misspeci�cation. The fact that �̂2 is statistically insigni�cantly different

from zero suggests no clear gap at q2. This is consistent with a visual inspection of the data,

where there isn't any clear evidence of gap around the second discontinuity point.

Since the results suggest no evidence of gap, we re-estimate the model, this time not allow-

ing the possibility of gap. This is equivalent to assuming gL(xt; �L) = gH(xt; �H) = q2: In

this model, we only need to estimate �L and �H . The results are reported in Tables 5-7.

Table 5: Maximum Likelihood Estimates, Bone Marrow Transplant (q measured in $1,000)

q1 q2 �1 �2 Slope L Slope R �̂4

Hospital 1 135.71 158.33 0.7 0.6 21.02 (2.68) 114.89 (9.63) 93.87 (10.14)

Hospital 2 135.71 190.00 0.7 0.5 27.29 (3.86) 68.20 (8.41) 40.91 (9.24)

Hospital 3 135.71 172.73 0.7 0.55 23.23 (2.22) 87.66 (7.34) 64.43 (7.81)

Hospital 4 94.81 146.00 0.77 0.5 10.72 (3.06) 50.55 (7.02) 39.82 (7.83)

Hospital 5 133.33 181.82 0.75 0.55 28.17 (3.98) 93.26 (10.94) 65.08 (11.92)

Hospital 6 107.33 123.85 0.75 0.65 12.41 (2.84) 131.32 (16.63) 118.91 (16.96)

Hospital 7 120.00 150.00 0.75 0.6 17.61 (2.15) 108.55 (7.78) 90.94 (8.20)

Hospital 8 117.33 195.56 0.75 0.45 25.00 (4.96) 49.00 (7.10) 24.00 (8.32)

Hospital 9 130.77 170.00 0.65 0.5 17.85 (2.57) 59.52 (5.13) 41.67 (5.69)

Hospital 10 100.00 153.33 0.92 0.6 18.90 (2.28) 111.04 (8.27) 92.14 (8.70)

Inside the parentheses are bootstrapped standard errors.
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Table 6: Maximum Likelihood Estimates, Kidney Transplant (q measured in $1,000)

q1 q2 �1 �2 Slope L Slope R �̂4

Hospital 1 97.14 123.64 0.7 0.55 11.94 (1.42) 52.41 (5.31) 40.47 (5.55)

Hospital 2 74.67 124.44 0.75 0.45 17.43 (3.35) 78.05 (20.70) 60.62 (21.07)

Hospital 3 75.29 130.61 0.85 0.49 16.62 (1.68) 58.82 (6.39) 42.20 (6.74)

Hospital 4 79.41 137.76 0.85 0.49 18.63 (2.28) 51.35 (6.29) 32.72 (6.81)

Hospital 5 83.38 144.64 0.85 0.49 20.80 (3.58) 45.04 (8.29) 24.24 (9.10)

Hospital 6 70.65 108.33 0.92 0.6 7.79 (1.63) 57.03 (8.91) 49.24 (9.08)

Inside the parentheses are bootstrapped standard errors.

Table 7: Maximum Likelihood Estimates, Liver Transplant (q measured in $1,000)

q1 q2 �1 �2 Slope L Slope R �̂4

Hospital 1 202.86 258.18 0.7 0.55 38.61 (4.02) 159.80 (14.85) 121.18 (15.49)

Hospital 2 120.00 163.64 0.75 0.55 17.81 (5.97) 142.31 (22.91) 124.50 (23.67)

Hospital 3 178.53 206.00 0.75 0.65 20.06 (3.76) 181.56 (17.29) 161.50 (17.84)

Hospital 4 166.47 288.78 0.85 0.49 56.86 (11.28) 147.88 (24.11) 91.02 (26.76)

Hospital 5 160.00 218.18 0.75 0.55 27.83 (4.62) 152.15 (13.28) 124.32 (14.08)

Hospital 6 200.00 254.55 0.7 0.55 37.48 (3.90) 159.09 (14.26) 121.60 (14.88)

Hospital 7 198.80 271.09 0.75 0.55 42.92 (4.98) 162.35 (17.48) 119.43 (18.33)

Hospital 8 198.72 250.00 0.78 0.62 30.79 (3.83) 180.92 (16.70) 150.12 (17.34)

Inside the parentheses are bootstrapped standard errors.

The results in Tables 5-7 are very similar to those in Tables 2-4, which is not surprising

given that gap around q2 did not seem important in earlier results.
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In the second set of results, we perform estimation for each hospital separately. We apply

kernel estimator as discussed in Section 3.2.1 to estimate �4. We do not estimate �2, taking

our earlier results into account. For individual hospital estimation, we use hospitals that have

more than 50 patients in order to ensure that we have enough observations for each estimation.

In our estimates, half-normal kernels with various choices of bandwidth were used to construct

the weights. The bandwidths listed in Table 8 correspond to 0.6 to 1.7 times the sample stan-

dard deviation for LHS estimation, and 0.05 to 0.26 times the sample standard deviation for

RHS estimation (sample standard deviation is larger for RHS data points since they are more

dispersed). Table 8 reports kernel estimates of �4 for each hospital and each organ type.
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Table 8: Kernel Estimates (q measured in $1,000)

Bandwidth Slope L Slope R �̂4

H5 (BMT) 15 38.04 (0.69) 48.40 (1.71) 10.36 (2.4)

H7 (BMT) 15 27.67 (0.50) 236.27 (51.1) 208.60 (51.64)

H3 (Kidney) 15 43.03 (1.87) 44.21 (1.20) 1.18 (3.08)

H5 (Kidney) 15 35.73 (0.78) 75.45 (9.50) 39.73 (10.28)

H6 (Kidney) 15 22.31 (0.21) 63.53 (2.61) 41.23 (2.82)

H4 (Liver) 15 133.45 (55.87) 70.57 (8.81) -62.88 (64.69)

H8 (Liver) 15 54.78 (1.99) 108.71 (9.48) 53.93 (11.47)

H5 (BMT) 18 40.02 (0.67) 51.23 (1.6) 11.21 (2.36)

H7 (BMT) 18 30.27 (0.54) 221.10 (34.9) 190.83 (35.47)

H3 (Kidney) 18 42.68 (1.52) 48.11 (1.29) 5.42 (2.82)

H5 (Kidney) 18 38.06 (0.79) 73.34 (7.27) 35.29 (8.06)

H6 (Kidney) 18 25.48 (0.26) 67.30 (2.58) 41.81 (2.84)

H4 (Liver) 18 121.77 (35.38) 74.41 (8.61) -47.37 (43.98)

H8 (Liver) 18 54.75 (1.66) 106.62 (7.45) 51.87 (9.11)

H5 (BMT) 21 42.14 (0.67) 54.13 (1.70) 11.99 (2.37)

H7 (BMT) 21 33.08 (0.61) 211.20 (26.0) 178.12 (26.70)

H3 (Kidney) 21 43.50 (1.38) 51.96 (1.4) 8.46 (2.78)

H5 (Kidney) 21 40.43 (0.81) 72.53 (6.03) 32.10 (6.84)

H6 (Kidney) 21 28.83 (0.32) 71.01 (2.6) 42.18 (2.92)

H4 (Liver) 21 116.48 (26.53) 78.30 (8.6) -38.18 (35.13)

H8 (Liver) 21 54.92 (1.44) 106.71 (6.40) 51.78 (7.84)

Inside the parentheses are standard errors.
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The results in Table 8 are similar to our earlier results, although the magnitudes differ. For

one of the hospitals, �4 is estimated to be negative but is not signi�cant. The fact that our global

estimator (MLE) and local estimator (kernel) lead to similar conclusions is reassuring.

To sum up, an overall picture that consistently appears in all results is that hospitals tend to

submit much larger bills when marginal reimbursement rates are higher. The exact magnitude

differs across organ types, hospitals, and speci�cations, but when the marginal reimbursement

rate jumps from 0% to approximately 50%, the marginal increase in hospitals' expenditures for

a given increase in patients' illness severity becomes 2 to 14 times larger.

7 Conclusion

In this paper, we propose a modi�ed RDD estimator that will be consistent when the forcing

variable can be manipulated by agents. We ground our RDD-style estimator in economic the-

ory and provide primitive economic assumptions that guarantee the consistency of our estimator.

Our proposed estimator can be applied to many interesting settings that have been considered to

be outside of the RDD framework. For instance, it is not possible to use standard RDDs to re-

cover consumers' price sensitivity in the presence of non-linear budget constraints or workers'

labor supply elasticity in the presence of higher marginal tax rates for higher tax brackets, be-

cause agents optimally choose their forcing variable. Our paper shows that a modi�cation to the

standard RDDs allows us to consider these types of problems within an RDD-style framework.

The assumptions required for our estimator are unlikely to hold for all settings, and thus

it is important for researchers to examine whether the assumptions hold for their problems of

interest. A key assumption is the strict monotonicity between the type and the dependent

variable. This is likely to be violated if the type is multi-dimensional or if there is optimization

error. In future work, we plan to investigate the performance of our estimator under these more

general conditions and improve our estimator to make it robust against these complications.
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