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Abstract

This paper characterizes the testable implications of stability for aggregate

matchings. We consider data on matchings where individuals are aggregated,

based on their observable characteristics, into types, and we know how many

agents of each type match. We derive stability conditions for an aggregate match-

ing, and, based on these, provide a simple necessary and sufficient condition for an

observed aggregate matching to be rationalizable (i.e. such that preferences can

be found so that the observed aggregate matching is stable). Subsequently, we

use moment inequalities derived from the stability conditions to estimate bounds

on agents’ preferences using the cross-sectional marriage distributions across the

US states. We find that the rationalizing preferences of men and women are “an-

tipodal”, in that when men prefer younger women, then women prefer younger

men, and vice versa. This is consistent with the requirements of stability in

non-transferable utility matching markets.
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1 Introduction

The literature on stable matching has grown rapidly, but as a positive empirical theory,

stable matchings are still not well understood. There are many advancements and

refinements in the theoretical literature, and many normative applications of the theory

to actual matching markets. Positive empirical studies of matching, however, have

lagged behind. This is due to three difficulties in deriving observable implications of the

theory. The first is a pure dimensionality constraint; many real-world matching markets

(such as marriage or housing markets) are huge, featuring hundreds of thousands or

millions of individuals on each side of the markets. Most of the theoretical matching

models, which are formulated at the individual-level, quickly become intractable at

these large dimensions. The second is an indeterminacy in the direction of revealed

preference: if Alice matches with Bob and not with Bruce, we cannot know if Alice

prefers Bob over Bruce, or if Bruce is unavailable to Alice because he prefers his partner

to matching with Alice. The third difficulty is that the theory imposes no restriction on

a single matching: one would need to observe different matchings involving the same

agents. Multiple observations of different matchings among the same agents are not

realistic.

Moreover, often data on matching markets are only available at the aggregate level,

so that individuals on each side of the market are summed up into cells on the basis

of their observed characteristics, such as age, education attainment, or employment

sector. What restrictions on these aggregate matchings are implied by the individual-

level matching models? This is the motivating question of our paper.

We find that the theory has very strong implications for aggregate matchings. The

empirical literature also often assumes that agents can make monetary transfers (trans-

ferable utility; hereafter TU). Our results are the first deriving the complete observ-

able implications of stability for aggregate matchings in non-transferable utility (NTU)

matching markets. For comparison, we also characterize the observable implications of

aggregate matchings under the TU assumption and, while both models imply strong

empirical restrictions, the theory is strictly more restrictive when transfers are possible

(i.e. . the TU model is nested in the NTU model).

Given the potential restrictiveness of the TU model, then, we develop an econometric

approach for estimating preferences from observed aggregate matchings, in the NTU

setting. We believe this may be a more realistic assumption for some matching markets,

such as the marriage market. Once transfers between individuals are ruled out, however,
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multiple stable matchings become a generic feature, which raises important difficulties

for the econometric estimation of preferences from observed matching data. Following

the recent literature on econometric estimation of models with multiple equilibria, we

use moment inequalities derived from the stability conditions to estimate bounds on

agents’ preferences, and apply our estimation approach to the cross-sectional marriage

distributions across the US states. To our knowledge, this is the first paper to consider

partial identification and moment inequality-based estimation of preferences in NTU

matching models. We find that the rationalizing preferences of men and women are

“antipodal”, in that when men prefer younger women, then women prefer younger men,

and vice versa. This is consistent with the requirements of stability in NTU matching

markets.

1.1 General motivation. Discrete choice theory is based on the idea that revealed

preferences are unambiguous: if an agent chooses A when B is available then the utility

of A is higher than the utility of B. In contrast, in two-sided choice problems, revealed

preferences are ambiguous. An agent may choose A over B even when she regards B as

the better choice; the reason is that B has a say in the matter, and B may prefer some

other choice over matching with the agent. Thus, in a two-sided model, preferences

and allocations determine “budgets” endogenously: an agent can only choose among

options that are willing to match with the agent, given who their partners are.

For empirical work, the two-sided nature of choices presents a unique challenge. One

cannot take choices as given and infer preferences. There is a fundamental simultaneity

that must be dealt with, where preferences determine the sets of willing partners (“bud-

gets”), and these sets in turn determine the direction of revealed preferences. Most of

the literature deals with the problem by assuming transferable utility, so that match-

ings maximize total surplus. We tackle the problem directly, in an non-transferable

utility model. Our econometric technique is based on deriving a moment inequality

from the stability constraints, this technique is quite different from the methods based

on discrete choice.

1.2 Related literature. There is an important applied literature on matching (Roth,

1984; Abdulkadiroglu, Pathak, Roth, and Sönmez, 2005; Roth, Sönmez, and Ünver,

2004, are important examples) that focuses on the normative design of economic insti-

tutions. Our paper deals with the positive content of matching theory. Our paper is

close in focus to several other recent papers exploring the empirics of matching markets.

These papers can roughly be divided into those in which NTU is assumed, and those
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in which TU is assumed.

A matching model under TU is equivalent to the Shapley and Shubik (1971) assign-

ment game. A stable matching is one which maximizes the sum of the joint surplus

of all matched couples. This is the setup considered in Choo and Siow (2006) and

Galichon and Salanie (2009), who consider identification and estimation of TU match-

ing models. Specifically, Choo and Siow derive and estimate an aggregate matching

model using marriage cross-sections from the US Census. Assuming independent logit

preferences shocks at the individual level, and a continuum of men and women, they

derive a “marriage matching function”. Subsequently, they fit matching function to two

aggregate (national-level) matchings for the US: one for 1970, and another for 1980.1

Fox (2007) considers individual-level TU matching models, and develops a maximum-

score estimator for these models based on a “pairwise stability” requirement, which

implies that, if an observed matching is stable, then no two pairs of agents should prof-

itably be able to swap their partners. (This condition may not hold for stable matchings

in NTU settings.) When the matching markets are big, such a comparison of all the

pairwise stability conditions becomes infeasible. Fox shows that only a subset of the

inequalities need to be used in the estimation, so long as a “rank-order” property holds.

Subsequently, Bajari and Fox (2008) apply this estimator to analyze the efficiency of

allocations in wireless spectrum auctions run by the US Federal Communications Com-

mission during the 1990’s.

In the NTU setting, Dagsvik (2000) and Dagsvik and Johansen (1999) consider the

question of inferring preferences from aggregate matching data. Like Choo and Siow,

they assume independent logit-distributed preference shocks at the individual level.

Assuming large number of agents (their results are asymptotic in the number of men

and women of each type), Dagsvik and Johansen derives expressions for the number of

matchings among agents of each type, based on equilibrium supply-demand conditions

implied by the Gale-Shapley algorithm.

There are also papers studying the empirical implications of the NTU model on

individual-level matchings. Echenique (2008) studies the sets of matchings that can be

rationalized as being stable, focusing is on repeated observations of stable individual

matchings. Hitsch, Hortaçsu, and Ariely (2006) also work in the NTU model, but

they employ a dataset from an online dating service to estimate preferences separately

from the process of matching. Then they use the estimated preferences to simulate

1This literature is also related to a long-standing literature on hedonic markets; see Chiappori,
McCann, and Nesheim (2009) and Heckman, Matzkin, and Nesheim (2003) for recent contributions.
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the men- and women-optimal matchings, and compare these optimal matchings to the

actual matches observed from the dataset. In a similar vein, Del Boca and Flinn (2006)

estimate men and women’s preferences from competing intrahousehold decision-making

models, and then test between these models on the basis of the discrepancy between

the observed matchings, and simulated matchings using the estimated preferences and

the Gale-Shapley algorithm.

In this paper, we focus on stable aggregate matchings, in the NTU framework. In

deriving empirical implications, we assume only that the observed matchings are in

the set of stable matchings, given the estimated preferences, without imposing any

other equilibrium conditions. This echoes the “incomplete model” analyses of Haile

and Tamer (2003) and Ciliberto and Tamer (2009) for, respectively, timber auctions

and airline markets.

2 The Model

2.1 Preliminary definitions. An (undirected) graph is a pair G = (V,E), where

V is a set and E is a subset of V × V . A path in G is a sequence p = 〈x0, . . . xN〉

such that for n ∈ {0, . . . N − 1}, (xn, xn+1) ∈ E. We write x ∈ p to denote that x is a

vertex in p. A path 〈x0, . . . xN〉 connects the vertices x0 and xN . A path 〈x0, . . . xN〉 is

minimal if there is no proper subsequence of 〈x0, . . . xN〉 that is also a path connecting

the vertices x0 and xN .

A cycle in G is a path c = 〈x0, . . . xN〉 with x0 = xN . A cycle is minimal if for

any two vertices xn and xn′ in c, the paths in c from xn to xn′ , and from xn′ to xn,

are minimal. Say that x and y are adjacent in c if there is n such that xn = x and

xn+1 = y or xn = y and xn+1 = x.

If c and c′ are two cycles, and there is a path from a vertex of c to a vertex of c′,

then we say that c and c′ are connected .

An aggregate matching market is described by a triple 〈M,W,>〉, where:

1. M and W are disjoint, finite sets. We call the elements of M types of men and

the elements of W types of women .

2. >= ((>m)m∈M , (>w)w∈W ) is a profile of strict preferences: for each m and w, >m

is a linear order over W ∪ {m} and >w is a linear order over M ∪ {w}.

We call agents on one side men, and on the other side women, as is traditional in

the matching literature. Many applications are, of course, to environments different
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from the marriage matching market.

Note that assumption 2 above effectively rules out preference heterogeneity among

agents of the same type. While this is restrictive relative to other aggregate matching

models in the literature, such as Choo and Siow (2006), Galichon and Salanie (2009),

both of these papers consider the TU model. We show below that, in the NTU model

(which is the focus of this paper), stability conditions for a model with agent-specific

preference heterogeneity has no empirical implications at the aggregate level. For this

reason, we assume that all agents of the same type have identical preferences.

We proceed by deriving the implications of stability when preferences are only driven

by observables. We derive rather stark restrictions on the data. Unobserved heterogene-

ity would soften the conclusions of applying our test, but the essence of our restrictions

would still be present. In our empirical application we do allow individual-level het-

erogeneity via the propensity of agents to meet partners with whom they can form

“blocking pairs” (as defined below).2 See Section 4.3 for a complete discussion.

Consider an aggregate matching market 〈M,W,>〉, with M = {m1, . . . ,mK} and

W = {w1, . . . , wL}. An aggregate matching is a K ×L matrix X = (Xij) with non-

negative integer entries. The interpretation of X is that Xij is the number of type-i

men and type-j women matched to each other. An aggregate matching X is canonical

if Xij ∈ {0, 1}. A canonical matching X is a simple matching if for each i there is

at most one j with Xij = 1, and for each j there is at most one i with Xij = 1. The

standard theory of stable matchings studies simple matchings (Roth and Sotomayor,

1990).

An aggregate matching X is individually rational if Xij > 0 implies that wj >mi

mi and mi>wj
wj. A pair of types (mi, wj) is a blocking pair for X if there are wl ∈ W

with Xil > 0, and mk ∈ M with Xkj > 0, such that wj >mi
wl and mi >wj

mk. An

aggregate matching X is stable if it is individually rational and there are no blocking

pairs for X.

For any aggregate matching X, we can construct a canonical aggregate matching

Xc by setting Xc
ij = 0 when Xij = 0 and Xc

ij = 1 when Xij > 0. The following is

obvious:

Proposition 1. An aggregate matching X is stable if and only if Xc is stable.

Based on this observation, our theoretical results focus on canonical aggregate stable

matching.

2This may be interpreted as heterogeneity arising from individual-level search frictions. We thank
Bernard Salanie for this interpretation.
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2.2 Stability conditions. Given a matching market 〈M,W,>〉, we can construct a

graph (V,E) by letting V be the set of pairs (i, j), i = 1, . . . , N and j = 1, . . . , K.

Define E by ((i, j), (k, l)) ∈ E if either wl >mi
wj and mi >wl

mk or wj >mk
wl and

mk >wj
mi. Then X is stable if and only if

((i, j), (k, l)) ∈ E ⇒ XijXkl = 0. (1)

In what follows, we will also make use of the contrapositive to the above statement.

Given a canonical matching X, we define an antiedge as a pair of couples (i, j), (k, l)

with i 6= k ∈ M ; j 6= l ∈ W such that Xij = Xkl = 1. Then, (1) is equivalent to:

(ij), (kl) is anti-edge ⇒

{

1(wl >mi
wj) · 1(mi >wl

mk) = 0

1(wj >mk
wl) · 1(mk >wj

mi) = 0
(2)

In our econometric approach below (Section 4), the contrapositive statement (2) of the

stability conditions forms the basis for the moment inequalities.

In this section, we use the graph (V,E) to understand stable matchings for given

preferences. In the proof of Theorem 7 of Section 3, we use it to infer preferences such

that a given matching is stable. For an example, consider the matching market with

three types of men and women, and preferences described as follows.

>m1
>m2

>m3
>w1

>w2
>w3

w1 w2 w3 m2 m3 m1

w2 w3 w1 m3 m1 m2

w3 w1 w2 m1 m2 m3

The resulting graph can be represented as follows.

1

..
..

..
..

..
..

..
1 1

1

NNNNNNNNNNNNNN 1

��������
1

1 1 1,

where each vertex is indicated with a number 1. The requirement of stability translates

into sets of vertexes that must be 0. For example, applying (1) we find that the following

two matrices are stable matchings:
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0

..
..

..
..

..
..

..
1 0

1

NNNNNNNNNNNNNN 1

�������
1

0 1 0







1

..
..

..
..

..
..

..
1 1

1

NNNNNNNNNNNNNN 0

�������
1

1 0 0







2.3 The structure of aggregate stable matchings. Let X and X ′ be aggregate

matchings. Say that X dominates X ′ if, for any i and j, Xij = 0 implies that X ′
ij = 0.

The following result is immediate from the definition of a stable aggregate matching.

Proposition 2. Let X be a stable aggregate matching. If X ′ is an aggregate matching,

and X dominates X ′, then X ′ is stable.

Thus, given an aggregate matching market 〈M,W,>〉, there is a family of maximal

stable matchings X : this family describes all the stable matchings, as a matching is

stable if and only if it is dominated by a member of X .

We describe an algorithm that, given a matching market 〈M,W,>〉, outputs the

set X , and thus finds all the aggregate stable matchings. Consider the graph (V,E)

associated to 〈M,W,>〉. Enumerate the vertices, V = {1, 2, . . . N}. Start with the

matching X0 that is identically zero. For v ∈ V , given the matching Xv−1, define Xv

to be identical to Xv−1 except possibly at entry v. Let entry v be 1 if that does not

violate condition (1); let entry v be 0 otherwise. Let X = XN .

The algorithm constructs an aggregate stable matching, as each Xv is an aggregate

stable matching. To see that it is maximal, let X̂ 6= X be an aggregate matching that

dominates X. Let v be a vertex in V such that the entry corresponding to v in X is

0 and the entry in X̂ is 1. By definition of Xv, there must be some entry v′ such that

(v, v′) ∈ E and entry v′ in Xv is 1. The entry v′ must be 1 in X̂, as X̂ dominates X and

X dominates Xv. Then X̂ is not stable because it violates condition (1). By considering

all possible orderings of the vertices V , we obtain the set of maximal matchings X .

We end this section with a partial result on the structure of X . One may wonder

when X coincides with the simple stable matching for market 〈M,W,>〉. We show

that, typically, X contains non-simple matchings.

Proposition 3. Let X be an individual stable matching. K = |M | (L = |W |) is the

number of types of men (women).

1. If K = L = 3 then X is not a maximal stable matching.
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2. If K > 3, L > 3 and X is a maximal stable matching, then one of the following

two possibilities must hold:

(a) For all (i, j), the submatching X−(i,j) is a maximal stable matching in the

−(i, j) submarket.

(b) There is (h, l) with Xhl = 1, and a maximal stable matching x̃, for which

x̃h,j = x̃i,l = 0 for all i and j.

Note that (2) together with (1) is meant to suggest a recursive idea. When K =

L = 4, (2a) cannot be true so we must have a matched pair in X that is nevertheless

“totally single” in another maximal stable matching.

2.4 Remarks.

2.4.1 Aggregate matchings are not simple. We show that the testable implications of

aggregate stable matchings differs from those of simple stable matchings. In particular,

it is tempting to view an aggregate matching as a combination, or the coexistence, of a

collection of underlying stable single matchings. This view would be incorrect, as there

are additional restrictions imposed when one aggregates.

Consider the following example.

Example 4. Let 〈M,W,>〉 be an aggregate matching market with M = {m1,m2,m3},

W = {w1, w2, w3}, and where preferences are defined as follows:

m1 m2 m3

w1 w2 w3

w2 w3 w1

w3 w1 w2

w1 w2 w3

m2 m3 m1

m3 m1 m2

m1 m2 m3

Meaning that m2 ranks w2 first, followed by w3, and so on.

The following simple matchings are stable:

X1 =






1 0 0

0 1 0

0 0 1




 X2 =






0 0 1

1 0 0

0 1 0





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Consider the sum of X1 and X2:

X̂ = X1 + X2 =






1 0 1

1 1 0

0 1 1




 .

One might want to conclude that X̂ is stable because it corresponds to the simultaneous

matching of agents through X1 and X2. Note, however, that X̂ is not a stable aggregate

matching. The pair (m1, w2) is a blocking pair: we have that w2 >m1
w3 and m1 >w2

m2

while X̂13 > 0 and X̂22 > 0. One cannot view aggregate stable matchings by their

decomposition into simple stable matchings.3

This example also shows that an aggregate matching cannot be interpreted as a

“fractional” solution to the stability constraints in the linear programming formulation

of stable matchings (Vande Vate, 1989; Teo and Sethuraman, 1998). Here 1
2
X̂ is a

fractional stable matching; but does not correspond to an aggregate stable matching.

A similar phenomenon arises with lotteries over matchings and ex-ante stability, see

Kesten and Ünver (2009).

Put differently, the testable implications of stability for aggregate matchings cannot

be reduced to stability for a collection of simple matchings. There are “cross restric-

tions” that need to be dealt with; in the example these take the form of instances of m1

and w2 who block in a way that is not present in any of the stable simple matchings.

In Section 4.3 we show further how simple disaggregate matchings do not generate

empirical implications with traction at the aggregate level.

2.4.2 Single Agents. We have assumed that there are no single agents; we only make

this assumption to simplify our notation. We can imagine that, for example, there is

ni >
∑

j Xi,j men of type i, and that ni −
∑

j Xi,j of them are single. Our model and

results are easily adaptable to this case. We would then work with a matrix that has

an additional row and column, say i∗ and j∗. Then Xi,j∗ would represent the men of

type i who are single; simple adaptations of the results in Section 3 go through.

3The conclusion is reinforced by the results of Section 2.3, where we show that the structure of
aggregate stable matchings differs from the lattice structure of simple stable matchings.
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3 Rationalizing Aggregate Matchings.

We suppose that we observe an aggregate matching, and ask when there are preferences

that can rationalize it as a stable matching. The property is related to how many

entries in the matching matrix are non-zero. Specifically, we consider the graph formed

by connecting any two non-zero elements of the matrix, as long as they lie on the same

row or column. It turns out that rationalizable of an aggregate matching depends on

the number and connectedness of minimal cycles on this graph. We consider the NTU

and TU cases in turn.

3.1 Without transfers. Let M = {m1, . . . ,mK} and W = {w1, . . . , wL} be sets of

types of men and women. We write i and j for typical types of men and women, and

il and jk for specific types of men and women.

We suppose that we are given an aggregate matching X, and we want to understand

when there are preferences for the different types of men and women, such that X is a

stable aggregate matching. Say that a canonical matching X is rationalizable if there

exists a preference profile >= ((>m)m∈M , (>w)w∈W ) such that X is a stable aggregate

matching in 〈M,W,>〉.

We present first a simple result, showing that a rationalizable matrix must be rela-

tively sparse: it cannot have too many non-zero elements. Proposition 5 is subsumed

in Theorem 7, but it has a simple and intuitive proof so we choose to present it here.

Proposition 5. If X has a 3 × 2 or a 2 × 3 submatrix that is identically 1, then X is

not a stable aggregate matching for any preference profile.

Proof. We may assume that X is the submatrix in question. Suppose X is stable. By

individual rationality, for all men any woman is preferable to being single. Similarly

for the women. We must find a pair (i, j) such that wj is not last in mi’s preference,

and mi is not last in wj’s preferences. Finding this pair suffices because then there is k

and l with Xik = 1 and Xlj = 1 and wj >mi
wk, mi >wj

ml. Say that m1 ranks w1 last.

If either w2 or w3 rank m1 as not-last, then we are done. If both w2 and w3 rank m1

last then consider m2: m2 must rank one of w2 and w3 as not-last. Since they rank m1

last then we are done.

Remark 6. If K = L = 2 then the matching X that is identically 1 is stable for the

13



preferences

>m1
>m2

>w1
>w2

w1 w2 m2 m1

w2 w1 m1 m2

Fix a matching X. We use the graph defined by the 1-entries in X, where there

is an edge between two entries in the same row, and an edge between two entries in

the same column. Formally, consider the graph (V, L) for which the set of vertices is

V := {(i, j)|i ∈ M, j ∈ W such that Xij = 1}, and there is an edge ((i, j), (k, l)) ∈ L if

i = k or j = l.

The main result of the paper is Theorem 7, a characterization of the rationalizable

aggregate matchings. The proof of the sufficiency direction is constructive; it works

by using an algorithm to construct a rationalizing preference profile. The construc-

tion is not universal, in the sense that some rationalizing preference profiles cannot be

constructed using the algorithm (see Example 13).

To simplify the statement and proof of the theorem, we assume that there are no

single men or women. Similar arguments apply to the case when some agents may be

single.4

Theorem 7. An aggregate matching X is rationalizable if and only if the associated

graph (V, L) does not contain two connected distinct minimal cycles.

The following example illustrates the condition in the theorem.

Example 8 (minimal cycle). Let X be






1 1 1

0 1 1

1 1 0




 .

The graph (V, L) can be represented as

1 1 1

0 1 1

1 1 0

4Add a column js and a row is to X. Let Xi,js
be the number of type i men who are single and Xis,j

the number of type j women who are single. A result similar to Theorem 7 holds for this augmented
matrix.
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The following is an example of two minimal cycles that are connected.

1 1 1

0 1 1

1 1 0

1 1 1

0 1 1

1 1 0

3.2 With transfers. While the focus of this paper is primarily on the NTU model,

for completeness we also consider the empirical implications of stability in the TU

version of our aggregate matching model. We show that, vis-a-vis Theorem 7, if agents

can make transfers, then stability has strictly more empirical bite than when transfers

are not present: any aggregate matching that is rationalizable with transfers is also

rationalizable without transfers.5

The model of matching with transfers was first introduced by Shapley and Shubik

(1971), and applied to the problem of marriage by Becker (1973). A pair of men and

women (m,w) generate a surplus αm,w ∈ R if they match. The stable matchings are

the ones that maximize the total sum of match surplus.

For an aggregate matching X, we suppose that a type i man who matches with

a type j woman can generate a surplus αi,j ∈ R. So the surplus generated by the

matchings of types i and j in X is Xi,jαi,j. The information on surpluses is given by a

matrix

α = (αi,j)|M |×|W |.

Now, in familiar “revealed preference” fashion we ask when, given X, there is a matrix

α such that X is stable for the surpluses in α.

Formally, let X be an aggregate matching. Say that X is TU-rationalizable by

a matrix of surplus α if X is the unique solution to the following problem.

maxX̃

∑

i,j αi,jX̃i,j

s.t.







∀j
∑

i X̃i,j =
∑

i Xi,j

∀i
∑

j X̃i,j =
∑

j Xi,j

(3)

Remark 9. We restrict X̃ in (3) to have the same number of agents of each type as X.

5This contrasts sharply with the results on rationalizing a collection of simple matchings. Chambers
and Echenique (2009) show that there are sets of matchings that are rationalizable with transfers but
not without transfers, and vice versa.
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The restriction is obviously needed, as one could otherwise generate high surplus by

re-classifying agents into high-surplus types. Essentially, we consider situations where

the number of agents of each type is given, and we focus on how they match.

Note also that we require X to be the unique maximizer in (3). There is a clear con-

trast with Section 3, where we did not require that X was the unique stable matching.

This difference is inevitable, though. If we instead would require X to be only one of

the maximizers of (3), then any matching can be rationalized with a constant surplus.

(αi,j = c for all i, j) In a sense, without transfers multiplicity is unavoidable (only very

strong conditions ensure a unique stable matching), while uniqueness in the TU model

holds for almost all real matrices α.

Theorem 10. An aggregate matching X is TU-rationalizable if and only if the associ-

ated graph (V, L) contains no minimal cycles.6

Corollary 11. If an aggregate matching X is TU-rationalizable, then it is rationaliz-

able.

4 Empirical implementation

Starting in this section, we consider how to estimate agents’ preferences from observed

aggregate matchings. Throughout, we assume the following parameterized preferences:

uij = Zijβ + εij, (4)

where uij denotes the utility received by a type i individual if he/she matches with a

type j individual. Zij is a vector of observed covariates; β is the vector of parameters

we want to estimate; and εij denotes unobserved components of utility. In the empirical

work, we assume that εi,j is ii.d. distributed according to a N(0, 1) distribution, across

all pairs of types (i, j), and also independent of the observables Zi,j. Given the utility

specification, then, we define

dijk ≡ 1(uij ≥ uik).

4.1 Estimating equations. The antiedge condition (2) implies that

Pr((ij), (kl) antiedge) ≤ (1 − Pr(dilj = dlik = 1))(1 − Pr(djki = dkjl = 1))

= Pr(diljdlik = 0, djkidkjl = 0).
(5)

6A graph contains a cycle if and only if it contains a minimal cycle. We stress minimality in the
results because they play a crucial role in our proofs.
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For given parameter values β, and given our assumptions regarding the distribution of

the ε’s, these probabilities can be calculated. Hence, we obtain the moment inequality

corresponding to Eq. (5):

E [1((ij), (kl) antiedge) − Pr(diljdlik = 0, djkidkjl = 0; β))]
︸ ︷︷ ︸

gijkl(Xt;β)

≤ 0. (6)

The identified set is defined as

B0 = {β : Egijkl(Xt; β) ≤ 0, ∀i, j, k, l} .

These moment inequalities are quite distinct from other types of inequalities consid-

ered in the existing empirical matching literature. A number of papers in this literature

(including Choo and Siow (2006), Dagsvik (2000), Fox (2007)) use inequalities similar

to those in the multinomial choice literature, that each observed pair (i, j) represents,

for both i and j, an “optimal choice” from some “choice set”. The restrictions in (2)

cannot be expressed in such a way.

Assume that we observe multiple aggregate matchings. Let T be the number of

such observations, and Xt denote the t-th aggregate matching that we observe. Then

the sample analog of the expectation in (6) is

1

T

∑

t

1((ij), (kl) is antiedge in Xt) − Pr(diljdlik = 0, djkidkjl = 0; β)

=
1

T

∑

t

gijkl(Xt; β).
(7)

If the number of types of men and woman were equal (M = W ), then there would

be W 2∗(W−1)2

2
such inequalities, corresponding to each couple of pairs. Note that the

expectation E above is over both the utility shocks ε’s, as well as over the “equilibrium

selection” process (which we are agnostic about).

There is by now a large methodological literature on estimating confidence sets for

parameters in partially identified moment inequality models that cover the identified

set B0 with some prescribed probability. (An incomplete list includes Chernozhukov,

Hong, and Tamer (2007), Andrews, Berry, and Jia (2004), Romano and Shaikh (2010),

Pakes, Porter, Ho, and Ishii (2007), Beresteanu and Molinari (2008).) While there are

a variety of objective functions one could use, we use here the simple sum of squares
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objective:

Bn = argminβQn(β) =
∑

i,j,k,l

[

1

T

T∑

t=1

gijkl(Xt; β)

]2

+

where [x]+ denotes x ∗ 1(x > 0).

4.2 Relaxing the stability constraints. Stability (rationalizability) places very

strong demands on the data that can be observed. The condition in Theorem 7 will very

often be violated by aggregate matchings with many non-zero elements. We propose

a relaxation of the stability constraint that is particularly useful in applied empirical

work.

Namely, we assume that potential blocking pairs may not necessarily form. So if

preferences are such that the pair (m,w) would block X, the block only actually occurs

with probability less than 1. The reason for not blocking could be simply the failure of

m and w to meet or communicate (as in the literature on search and matching).

Specifically, we allow for the possibility that an observed edge between pairs (i, j)

and (k, l) may imply nothing about the preferences of the affected types i, j, k, l, simply

because the couples (i, j) and (k, l) fail to meet. In particular, define

δijkl = P (types (i, j), (k, l) communicate).

We then modify the stability inequalities (2) as:

(

(ij), (kl) is anti-edge

(ij), (kl) meet

)

⇒

{

diljdlik = 0

djkidkjl = 0
(8)

This leads to the modified moment inequality:

Pr((ij), (kl) antiedge) ≤
Pr(diljdlik = 0, djkidkjl = 0; β)

δijkl

(9)

Note that as δijkl → 1, we expect that the identified set B0 shrinks to the empty

set. The reason is that most aggregate matchings violate the condition in Theorem 7;

thus they cannot be rationalized without a positive probability that potential blocking

pairs do not form. On the other hand, as δijkl → 0, the identified set converges to the

whole parameter space: the right-hand side of the moment inequality becomes larger

than 1.

Here, we are assuming that the events ((ij), (kl) is an edge) and ((ij), (kl) meet) are
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independent events. The first event depends on preferences and process that produces a

stable matching in the first place. So we are making the assumption that the probability

of communication is independent of preferences and the matching.7 On the other hand,

in our empirical work, we allow δijkl to depend on the relative number of matched (i, j)

and (k, l) couples in each observation. Specifically, letting γ denote a scaling parameter,

we set

δt
ijkl = min{ 2 · γ ·

|XT M
i ,T W

j
|

|Xt|
·
|XT M

k
,T W

l
|

|Xt|
, 1 }

where |XT M
i ,T W

j
| denotes the number of type i men (type j women) married to a type

j woman (type i man) in observation t, and |Xt| denote the number of observed men

(women) in observation t.

To interpret this, consider a given pair of couples (i, j), (k, l). If this couple consti-

tutes an antiedge, and the stability conditions fails, then two potential blocking pairs

can be formed: (i, l) and (k, j). The specification for δt
ijkl represents one story for

when a blocking pair which is present in the agents’ preferences, actually blocks. With

|XT M
i ,T W

j
| (resp. |XT M

k
,T W

l
|) being the number of (i, j) (resp. (k, j)) couples, and |Xt|

2

being the total number of potential couples in the entire market, then δt
ijkl is set pro-

portional to the frequency of potential blocking pairs (j, l), (k, j) in the market; it is

scaled by γ (and capped from above by 1). We scale by γ to allow the probability

that a blocking pair forms to be smaller or larger than this frequency, with a larger γ

implying that blocking pairs form more frequently, so that there is less slackness in the

stability restrictions.

More broadly, the δ’s weight the anti-edges in the sample moment inequalities.

Intuitively, an antiedge ((i, j), (l, k)) should receive a higher weight when it involves

many potential blocking pairs than when it only involves a few. Our specification

achieves this idea, as it makes the probability of forming a blocking pair dependent on

the number of agents involved.

4.3 Individual-level heterogeneity: remarks. In our theoretical results, we have

assumed that agents’ preferences depend only on observables. This allowed us to obtain

rather stark implications of stability for aggregate matchings. The implications are too

stark, in the sense that most of the observed matchings in the data would not be ratio-

nalizable. If we add unobserved heterogeneity, then the theoretical implications become

7We could relax this assumption by making δ dependent on the same covariates that enter into the
agents preferences.
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weaker and “probabilistic;” but the main thrust of these implications are preserved.

So, in a matching model that captures how preferences depend on observables,

but has additional noise, our conditions for rationalizability hold in a probabilistic

sense. The econometric approach proposed in Section 4 involves just such a probabilistic

version of the model. We proceed to discuss the way in which we have added noise,

and how it compares with the literature.

One possible starting point is to assume that individuals of the same type have

the same preferences up to individual-specific i.i.d. shocks, which is the assumption in

most of the empirical literature; see, for instance, Choo and Siow (2006) and Galichon

and Salanie (2009) for the TU model. The i.i.d. shocks are a very limited form of

unobserved heterogeneity: it allows two (say) type i men to differ in the utility they

would obtain from a matching with a (say) type j woman. However, each of these men

still remains indifferent between all type j women.8 Thus two agents of the same type

are still perceived as identical by the opposite side of the market.

The shocks ensure that each agent-type has a non-zero probability of being matched

with any agent-type on the opposite side of the market; this reconciles the theory with

the observed data. In this respect, the role of the preference shocks in these papers plays

the same role as the “communication probability” δijkl in our empirical analysis. The

“communication probability” captures unobserved heterogeneity in the ability of agents

to match, perhaps as a result of noisy search frictions. It serves the same purpose as

i.i.d. preference shocks. The shocks, on the other hand, are vacuous in the NTU model,

at least if we proceed by using stability to produce moment inequalities as we have done

here.

To show that the model with i.i.d. shocks is vacuous, we consider a market where

every woman (man) is acceptable to all men (women). The individual-level stability

inequalities, for all pairs (i, j), are:

∑

k:k>ij

xi,k +
∑

k:k>ji

xk,j + xi,j ≥ 1.

Here, k >i j means that i prefers k over j, and k >j i means that j prefers k over i.9

8Galichon and Salanie (2009) also discuss this point (cf. pg. 10).
9These individual-level inequalities express the same notion of stability as the aggregate stability

conditions (1), but can be written in this more succinct way here due to the summing-up requirements
at the individual-level (i.e., that

∑

j xi,j = 1 for all i). These summing-up conditions do not hold for
canonical aggregate matchings.
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Letting dikj = 1k>ij, this can be written as:

∑

k

xi,kdikj +
∑

k

xk,jdjki + xi,j ≥ 1. (10)

Here (i, j, k) all denote individual agents, not types. These inequalities cannot be taken

directly to the data, because we do not observe the individual-level matching, but rather

an aggregate-level matching.

One starting point is to treat both the x’s and the d’s as random variables, where

the randomness derives from both the individual-level preference shocks, as well as

from the procedure whereby the observed matching is selected among the set of stable

matchings. We partition the men and women into types tM1 , . . . tML tW1 , . . . tWL . Since

individual-level preference shocks are i.i.d. we obtain that

P (dijk = 1) = P (di′j′k′ = 1) : ∀(i, i′) ∈ tMi , (j, j′) ∈ tMj , (k, k′) ∈ tMk . (11)

That is, the distribution of dijk is identical for all individuals of the same type. Hence,

below we will use the notation P (dijk = 1) and P (tWj >tMi
tWk ) interchangeably.

Given these assumptions, we can derive an aggregate version of Eq. (10). First, we

take expectations:

∑

k

E [xi,kdikj] +
∑

k

E [xk,jdjki] + E [xi,j] ≥ 1

⇔
∑

k

x̄i,k,j · P (dikj = 1) +
∑

k

x̄k,j,i · P (djki = 1) + E [xi,j] ≥ 1

with x̄i,k,j ≡ E [xi,kdikj|dikj = 1]. Next, we aggregate up to the type-level:

∑

l

{

P
{

tWl >tMi
tWj

}

X̄tMi ,tW
l

,tWj

}

+
∑

l

{

P
{

tMl >tWj
tMi

}

X̄tM
l

,tWj ,tMi

}

≥
∣
∣tWj
∣
∣
∣
∣tMi
∣
∣ (1−E[Xi,j])

(12)

Here X̄tMi ,tW
l

,tWj
≡
∑

k∈tW
l

∑

i∈tMi

∑

j∈tWj
X̄i,k,j and X̄tM

l
,tWj ,tMi

≡
∑

j∈tMi

∑

j∈tWj

∑

i∈tMi
X̄k,j,i.

In the above inequality, only the
∣
∣tWj
∣
∣ and

∣
∣tMi
∣
∣ are observed, but nothing else. This is

of little use empirically.
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On the other hand, because dijk ≥ 0, for all (i, j, k), we also have

E(Xikdikj) =E(Xikdikj|dikj = 1)P (dikj = 1) ≤ E(Xik)

⇒
∑

k∈tW
l

E(Xikdikj|dikj = 1)P (dikj = 1) ≤
∑

k∈tW
l

E(Xik)

⇔P (tWl >i j)
∑

k∈tW
l

X̄ikj ≤
∑

k∈tW
l

E(Xik)

⇒
∑

i∈tMi

P (tWl >i j)
∑

k∈tW
l

X̄ikj ≤
∑

i∈tMi

∑

k∈tW
l

E(Xik)

⇔P (tWl >tMi
j)
∑

i∈tMi

∑

k∈tW
l

X̄ikj ≤ XtMi ,tW
l

⇒P (tWl >tMi
tWj )

∑

j∈tWj

∑

i∈tMi

∑

k∈tW
l

X̃ikj ≤
∣
∣tWj
∣
∣XtMi ,tW

l

⇔P (tWl >tMi
tWj )X̄tMi ,tW

l
,tMj

≤
∣
∣tWj
∣
∣XtMi ,tW

l

(13)

Combining inequalities (12) and (13), we get

∑

l

∣
∣tWj
∣
∣XtMi ,tW

l
+
∑

l

∣
∣tMi
∣
∣XtM

l
,tWj

≥
∣
∣tWj
∣
∣
∣
∣tMi
∣
∣ (1 − E[Xi,j])

By the equalities
∑

l XtMi ,tW
l

=
∣
∣tMi
∣
∣ and

∑

l XtM
l

,tWj
=
∣
∣tWj
∣
∣, the above reduces to

2
∣
∣tMi
∣
∣
∣
∣tWj
∣
∣ ≥

∣
∣tMi
∣
∣
∣
∣tWj
∣
∣ (1 − E[Xij) ⇒ 2 ≥ (1 − E[Xij)

which is vacuous.

In summary, then, i.i.d. individual-level preference shocks seem inappropriate in

the aggregate NTU setting of our empirical work. Furthermore, the communication

probability δijkl plays a similar role in our empirical work as do preference shocks in

others’ work: namely, to better reconcile the theory to the data by enlarging the the

sets of marriages which one could observe in a stable matching.

5 Estimation results

5.1 Data and empirical implementation. In the empirical implementation, we

use data on new marriages, as recorded by the US Bureau of Vital Statistics. We con-

sider new marriages in the year 1988, and treat data from each state as a separate,
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independent matching. We aggregate the matchings into age categories, and create

canonical matchings. Table 1 has examples of aggregate matchings, and the corre-

sponding canonical matchings, for several states. In these matching matrices, rows

denote age categories for the husbands, and the columns denote the age categories for

the wives.

Table 1: Aggregate Matchings and the corresponding Canonical Matchings.

Age: Aggregate Matchings Canonical Matchings
|↓, ~→ 12-20 21-25 26-30 31-35 36-40 41-50 51-94 12-20 21-25 26-30 31-35 36-40 41-50 51-94

12-20 231 47 8 0 0 1 0 1 1 1 0 0 1 0

21-25 329 798 156 32 11 7 0 1 1 1 1 1 1 0

26-30 71 477 443 136 27 8 0 1 1 1 1 1 1 0

MI 31-35 11 148 249 196 83 21 0 1 1 1 1 1 1 0

36-40 2 41 105 144 114 51 1 1 1 1 1 1 1 1

41-50 0 15 42 118 121 162 25 0 1 1 1 1 1 1

51-94 0 2 11 11 35 137 158 0 1 1 1 1 1 1

12-20 8 1 0 0 0 0 0 1 1 0 0 0 0 0

21-25 17 31 4 0 0 0 0 1 1 1 0 0 0 0

26-30 2 21 22 7 1 0 0 1 1 1 1 1 0 0

NV 31-35 0 4 10 5 3 0 0 0 1 1 1 1 0 0

36-40 0 3 8 2 2 2 0 0 1 1 1 1 1 0

41-50 0 1 1 2 6 3 3 0 1 1 1 1 1 1

51-94 0 0 0 0 0 5 3 0 0 0 0 0 1 1

12-20 307 83 12 6 0 0 0 1 1 1 1 0 0 0

21-25 453 1165 214 64 10 6 1 1 1 1 1 1 1 1

26-30 113 698 703 190 51 17 0 1 1 1 1 1 1 0

PA 31-35 17 184 393 277 78 26 2 1 1 1 1 1 1 1

36-40 9 73 152 191 148 84 5 1 1 1 1 1 1 1

41-50 3 27 83 146 187 273 28 1 1 1 1 1 1 1

51-94 1 7 12 38 48 182 268 1 1 1 1 1 1 1

These aggregate canonical matchings have many 1’s. Indeed it is apparent from

simply eye-balling the table that the rationalizability condition in Theorem 7 is violated:

the matchings for all three of these states contain more than two connected cycles,

implying that they are not rationalizable. For example, consider the following submatrix

for Michigan:

|↓, ~→ 12-20 21-25 26-30

12-20 1 1 1

21-25 1 1 1

26-30 1 1 1

which has two connected cycles. As a consequence of the non-rationalizability of these

matchings, we use the approach in Section 4.2 to relax the requirements of stability.

Finally, one feature of the table is relevant for the discussion below. Note that the

matchings in Table 1 contain more non-zero entries below the diagonal, which means

that in a preponderance of marriages, the husband is older than the wife.
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In our empirical exercise, the specification of utility (Eq. (4)) is very simple, and

it only involves the ages of the two partners to a match. Suppose that man m of age

Agem is matched to woman w of age Agew. The following utility functions capture

preferences over age differences, and partner’s age.

Utilitym = β1|Agem − Agew|− + β2|Agem − Agew|+ + εm

Utilityw = β3|Agem − Agew|− + β4|Agem − Agew|+ + εw,

where εm and εw are assumed to follow a standard normal distributions. In this spec-

ification, we assume that utility is a piecewise-linear function of age, with the “kink”

occurring when the age-gap between husband and wife is zero.

The sample moment inequality (Eq. (7)), with the modification in Eq. (8), becomes:

1

T

∑

t

gijkl(Xt; β) =
( 1

T

∑

t

1((ij), (kl) is antiedge in Xt) ∗ δt
ijkl

)

− {1 − Pr(dilj = 1; β1,2) Pr(dlik = 1; β3,4)} · {1 − Pr(djki = 1; β3,4)Pr(dkjl = 1; β1,2)}

for all combinations of pairs, (i, j) and (k, l).

5.2 Component-wise identified sets. Table 2 summarizes the identified set for

several levels of γ, and presents the highest and lowest values that each parameter

attains in the identified set. The unrestricted interval in which we searched for each

parameter was [−2, 2]. So we see that, for a value of γ = 27, the identified set contains

the full parameter space, implying that the data impose no restrictions on parameters.

At the other extreme, when γ ≥ 36, the identified set becomes empty, implying that

the observed matchings can no longer be rationalized. The latter is consistent with our

discussion above, where we noted that when the communication probability δ becomes

very large (which is the case when γ is large), then the observed matchings will violate

the rationalizability conditions in Theorem 7.

For γ = 35, we see that β1 and β3 take negative values, while the values of β2 and

β4 tend to take negative values but also contain small positive values. This suggests

that husbands’ utilities are decreasing in the wife’s age when the wife is older, but when

the wife is younger, his utility is less responsive to the wife’s age. A similar picture

emerges for wives’ utilities, which are increasing in the husband’s age when the husband

is younger, but when the husband is older, the wife’s utility is less responsive to her

husband’s age. All in all, our findings here support the conclusion that husbands’ and
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Table 2: Unconditional Bounds of β.

β1 β2 β3 β4

γ min max min max min max min max
27 -2.00 2.00 -2.00 2.00 -2.00 2.00 -2.00 2.00
30 -2.00 2.00 -2.00 2.00 -2.00 2.00 -2.00 2.00
33 -2.00 0.25 -2.00 1.75 -2.00 0.25 -2.00 1.50
35 -2.00 -0.75 -2.00 1.00 -2.00 -0.75 -2.00 0.75

wives’ utilities are more responsive to the partner’s age when the wife is older than the

husband.

5.3 Joint identified sets. A richer picture emerges when we consider the joint values

of parameters in the identified set. Figure 1 illustrates the contour sets (at different

values of γ) for the husband’s preference parameters (β1, β2), holding the wife’s prefer-

ence parameters (β3, β4) fixed. To simplify the interpretation of these findings in light

of the stability restrictions, we recall two features of our aggregate matchings (as seen

in Table 1): first, there are more anti-edges below the diagonal, where agem > agew.

Second, there are more “downward-sloping” anti-edges than “upward-sloping” ones.

That is, there are more anti-edges (i, j), (k, l) with k > i, l > j than with i > k, l > j,

as illustrated here.

Downward-sloping anti-edge:

(i, j)

GGGGGGGG
(i, l)

(k, j) (k, l)

Upward-sloping anti-edge:

(k, j) (k, l)

(i, j)

wwwwwwww

(i, l)

Because of these features, we initially focus on the parameters (β2, β4), which de-

scribe preferences when the husband is older than the wife.

The graphs in the bottom row of Figure 1 correspond to β4 = −2, corresponding to

the case that the wife prefers a younger husband: with a downward-sloping anti-edge,

this implies that it is likely that djik = 1 and dlki = 0. In turn, using the stability

restrictions (2), this implies that dilj = 0 (that husbands prefer younger wives), but

places no restrictions on the sign of dkjl. For this reason, we find that in these graphs,

β2 tends to take positive values at the highest contour levels so that, when husbands

are older than their wives, they prefer the age gap to be as large as possible.

By a similar reasoning, β2 takes negative values when β4 = 1. When wives prefer

older husbands (which is the case when β4 = 1), then with a downward-sloping anti-
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Figure 1: Identified sets of (β1, β2) given (β3, β4) and γ.
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edge, this implies that djik = 0 and dlki = 1. Consequently, stability considerations

would restrict the husband’s preferences so that dkjl = 0 (and husbands prefer older

wives), leading to β2 < 0.

On the other hand, because there are more downward-sloping anti-edges, when the

wife is older than the husband, restriction (2) implies that one of two cases – either

the husband prefers a younger wife, or the wife prefers an older husband – must be

true. In Figure 1, as β3 increases from −2 to 1 (from the left to the right column), the

wife’s utilities becomes more favorable towards a younger husband. As a result, more

restrictions are imposed to the husbands’ utilities, which yields a tighter negative range

for β1 in the identified sets.

Overall, we see that β1 < 0 and β3 < 0, implying that as long as the wife is

older than the husband, both prefer a smaller age gap. On the other hand, β2 and β4

are negatively correlated: as β4 increases, β2 decreases. This suggests that, when the

husband is older than the wife, one side prefers a smaller gap but the other side is less

responsive on the age gap.

5.4 Confidence sets. Figure 2 summarizes the 95% confidence sets with γ = 32 (in

light blue) and 35 (dark blue). In computing these confidence sets, we use the subsam-

pling algorithm proposed by Chernozhukov, Hong, and Tamer (2007). Comparing the

confidence sets in Figure 2 to their counterpart identified sets in Figure 1, the confi-

dence sets are apparently larger than the identified sets. This is not surprising, given

the modest number of matchings (fifty-one: one for each state) which we used in the

empirical exercise.

Nevertheless, the main findings from Figure 1 are still apparent; β1 < 0 across

a range of values for (β3, β4), and β2 < 0 (resp. > 0) when β4 > 0 (resp. < 0).

These somewhat “antipodal” preferences between a husband and wife are a distinctive

consequence of the stability conditions of an NTU matching model.

6 Conclusions

We have characterized the full observable implications of stability for aggregate match-

ings: with transfers and without them. The implications are easy to check, and strongly

restrict the data. We have developed an econometric procedure for estimating prefer-

ence parameters from aggregate data; our procedure is based on moment inequalities

derived from the stability restrictions.

We focused on aggregate matching data because it seems that often data come
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Figure 2: 95% confidence sets of (β1, β2) given (β3, β4) and γ = 32 (light blue) and 35
(dark blue).
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in an aggregate form, and because many applied researchers have already looked at

aggregate matchings. More broadly, though, the idea of stability is akin to the absence

of arbitrage, and as such it is a very weak notion of equilibrium for a market; thus,

our emphasis on stability represents an attempt to derive results for matching markets

which are robust to the exact matching process, which we remain agnostic about.

An alternative approach would have been to specify a detailed structural model of

how agents match, and estimate this model by traditional means. This would have some

clear advantages. One could empirically back out some of the details involved in how a

matching is produced, and understand the source of frictions that may prevent a market

from reaching a fully stable matching. On the other hand, it would also require very

strong assumptions about how agents act, and on the technology involved in matching,

and one worries that the estimation results may be unrobust if these assumptions were

wrong. Our focus on stability avoids these problems, and the results here show that it

is enough to yield nontrivial empirical implications which can be used for estimating

preference parameters.

Moreover, our focus here has been on two-sided matching markets, but similar no-

tions of stability also apply to other market configurations, such as one-sided matching

markets (corresponding to the “roommates” problem). Our empirical approach may

also be useful in those settings.
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A Examples

Example 12. The following example shows that two maximal stable matchings may

have a different number of non-zero entries.

>m1
>m2

>m3
>w1

>w2
>w3

w3 w2 w3 m2 m3 m3

w2 w1 w1 m1 m2 m1

w1 w3 w2 m3 m1 m2

1

NNNNNNNNNNNNNN 1

==
==

==
= 1

1

�������
1 1

1

pppppppppppppp

������������������
1

�������

��������������
1

Then both X and X ′ are maximal stable matchings:

X =






0 0 1

1 1 1

0 0 1






X ′ =






1 1 0

0 1 0

1 1 1






The following example is rationalizable using many different preference profiles. The

algorithm used in the proof of Theorem 7 can only construct some of them.

Example 13. Consider the following aggregate matching.

X =









1 1 1 0

1 0 0 1

0 0 0 1

1 0 1 0









We illustrate the algorithm used in the proof of Theorem 7.

There is a minimal cycle, {(i1, j1), (i4, j1), (i4, j3), (i1, j3)}.

Ī1 = {i1, i4}, J̄1 = {j1, j3}

Ī2 = {i2}, J̄2 = {j2}
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Ī3 = ∅, J̄3 = {j4}

Ī4 = {i3}, J̄4 = ∅

All orientations labeled (1) are determined by the minimal cycle. The orientations

denoted (2), (3), and (4) are determined as we apply the algorithm.

j1 j3 j2 j4

i1 1

(2)

��

(2)
++

(1)

��

1
(2)

//
(1)

oo 1 0

i4 1

(2)

��

(1) // 1

(1)

OO

0 0

i2 1
(3)

,,0 0 1

(4)

��
i3 0 0 0 1

B Proofs

B.1 Proof of Theorem 7.. We first record a simple fact about minimal cycles:

Lemma 14. If c = 〈x0, . . . , xN〉 is a minimal cycle, then no vertex appears twice in c.

B.1.1 Proof of necessity. We break up the proof into a collection of simple lemmas.

An orientation of (V, L) is a mapping d : L → {0, 1}. We shall often write

d((i, j), (i, k)) as di,j,k and d((i, j), (l, j)) as dj,i,l. A preference profile (>mi
, >wj

) defines

an orientation d by setting dj,i,l = 1 iff mi >wj
ml and di,j,k = 1 iff wj >mi

wk.

Let d be an orientation defined from a preference profile. Then X is stable if and

only if, for all (i1, j1) and (i2, j2), if Xi1j1 = Xi2j2 = 1 then

di1j2j1dj2i1i2 = 0 and di2j1j2dj1i2i1 = 0. (14)

We say that the pair ((i1, j1), (i2, j2)) is an antiedge if i1 6= i2, j1 6= j2 and Xi1j1 =

Xi2j2 = 1.

Fix an orientation d of (V, L). A path {(i, j)n : n = 0, . . . , N} is a flow for d if

either d((i, j)n, (i, j)n+1) = 1 for all n ∈ {0, . . . N − 1}, or d((i, j)n, (i, j)n+1) = 0 for all

n ∈ {0, . . . N − 1}. If the second statement is true, we call the path a forward flow .

Our first observation is an obvious consequence of the property of being minimal:
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Lemma 15. Let {(i, j)n : n = 0, . . . , N} be a minimal path with N ≥ 2, then for any

n ∈ {0, . . . N − 2},

(in = in+1 ⇒ jn+1 = jn+2) and (jn = jn+1 ⇒ in+1 = in+2)

That is, any two subsequent edges in a path must be at a right angle:

1 1 1

1

1 1 1

1

The path on the left is not minimal; the path on the right is.

Fix an orientation d derived from the preferences rationalizing X.

Lemma 16. Let p = 〈(i, j)n : n = 0, . . . , N〉 be a minimal path. If d((i, j)1, (i, j)0) = 1

or d((i, j)N , (i, j)N−1) = 0, then p is a flow for d.

Proof. By Lemma 15, for any n ∈ {1, . . . N − 1} the pair of vertices (i, j)n−1 and

(i, j)n+1 form an antiedge: we have X(i,j)n−1
= X(i,j)n+1

= 1, in−1 6= in+1 and jn−1 6=

jn+1. Further, (i, j)n has one element in common with (i, j)n−1 and the other in

common with (i, j)n+1. Thus by Equation 14, d((i, j)n, (i, j)n−1) = 1 implies that

d((i, j)n, (i, j)n+1) = 0, i.e. d((i, j)n+1, (i, j)n) = 1.

The argument in the previous paragraph shows that the existence of some n′ with

d((i, j)n′ , (i, j)n′−1) = 1 implies d((i, j)n, (i, j)n−1) = 1 for all n ≥ n′. So if d((i, j)1, (i, j)0) =

1 then d((i, j)n+1, (i, j)n) = 1 for all n ∈ {1, . . . N − 1}; and if d((i, j)N , (i, j)N−1) = 0,

then d((i, j)n+1, (i, j)n) = 0 for all n ∈ {0, . . . N − 1}. Either way, p is a flow.

As an immediate consequence of Lemma 16, we obtain the following

Lemma 17. Let p = 〈(i, j)n〉 be a minimal cycle, then p is a flow for d.

Let p = 〈(i, j)n〉 be a path and (i, j) /∈ p. A path p̄ = 〈(̄i, j̄)n : n = 0, . . . , N̄〉

connects p and (i, j) if (̄i, j̄)0 ∈ p and (̄i, j̄)N = (i, j).

Lemma 18. Let c = 〈(i, j)n〉 be a minimal cycle, and p = 〈(̄i, j̄)n : n = 0, . . . , N̄〉 be

a minimal path connecting c to some (̄i, j̄). Then 〈(̄i, j̄)n : n = 1, . . . , N̄〉 is a forward

flow.

Proof. Let c = 〈(i, j)n : n = 0, . . . , N〉 be the cycle in the hypothesis of the lemma.

We write (i, j)n for (i, j)n mod (N), so we can index the cycle by any positive integer
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index. By Lemma 17, c is a flow for d: we can in fact suppose that it is a forward flow,

otherwise, if d((i, j)1, (i, j)0) = 0, then we can re-index by setting (i, j)k = (i, j)N−k.

To prove Lemma 18 we need to deal with two different cases. Let (i, j)n∗ = (̄i, j̄)0.

By definition of a cycle, then, (̄i, j̄)0 shares either i or j with (i, j)n∗−1. Suppose,

without loss of generality, that they share i, so ī0 = in∗−1. The two cases in question

are represented below, where the center vertex is (̄i, j̄)0. Case 1 on the left has (̄i, j̄)1

also sharing i with (̄i, j̄)0, while Case 2 has (̄i, j̄)0 sharing j with (̄i, j̄)1.

1

1 // 1

OO

1

1

1

1 // 1

OO

1

1

Case 1: Suppose that ī1 = ī0 = in∗−1. Consider the minimal path

p′ = 〈(i, j)n∗−1, (̄i, j̄)1, . . . , (̄i, j̄)N̄〉.

Since in∗−2 6= ī1, the path

p̂ = 〈(i, j)n∗−2, (i, j)n∗−1, (i, j)1〉

is a minimal path from (i, j)n∗−2 to (i, j)1. We have that d((i, j)n∗−1, (i, j)n∗−2) = 1, as

c is a forward flow. It follows by Lemma 16 that d((̄i, j̄)1, (i, j)n∗−1) = 1 and thus p̂

is also a forward flow. Then, by Lemma 16 again, p′ is a forward flow; in particular,

d((̄i, j̄)n+1, (̄i, j̄)n) = 1 for n ∈
{
1, . . . N̄ − 1

}
.

Case 2: Suppose that ī1 6= ī0 = in∗−1. Then the path

〈(i, j)n∗−1, (̄i, j̄)0, (̄i, j̄)1〉

is a minimal path connecting (i, j)n∗−1 and (̄i, j̄)1.

We have that d((i, j)n∗−1, (i, j)n∗−2) = 1, as c is a forward flow. By an application

of Lemma 16, analogous to the one in Case 1, we obtain that p is a forward flow.

Regardless of whether we are in Case 1 or 2 we establish that 〈(̄i, j̄)n : n = 1, . . . , N̄〉

is a forward flow.

Lemma 19. There are no two connected distinct minimal cycles.
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Proof. Suppose, by way of contradiction, that there are two minimal cycles c1 and c2,

and a path p = 〈(i, j)n : n = 0, . . . , N〉 connecting (i, j)0 ∈ c1 with (i, j)N ∈ c2. We can

suppose without loss of generality that p is minimal. We can also suppose that N ≥ 3

because if N < 3 we can add (i′, j′) ∈ c1 to p with ((i′, j′), (i, j)0) ∈ L, and (i′′, j′′) ∈ c2

to p with ((i′′, j′′), (i, j)N) ∈ L; the corresponding path will also be a minimal path

connecting c1 and c2.

By Lemma 18 applied to c1 and p,

〈(i, j)n : n = 1, . . . N〉

is a forward flow. On the other hand, Lemma 18 applied to c2 and p implies that

〈(i, j)N−k : k = 1, . . . N〉

is a forward flow. The first statement implies that d((i, j)2, (i, j)1) = 1 and the second

that d((i, j)1, (i, j)2) = 1, a contradiction.

B.1.2 Proof of sufficiency. To prove sufficiency, we explicitly construct an orientation d

that satisfies Equation 14. We then show that there is a rationalizing preference profile.

We first deal with the case where all vertices in X are connected and there is at

most one minimal cycle. By decomposing an arbitrary X into connected components,

we shall later generalize the argument. If there is no cycle in X, choose a singleton

vertex and treat it as the “cycle” in the sequel.

Let C be the submatrix having the indices in the minimal cycle. If c = 〈(i, j)n〉

is the minimal cycle, let I1 = ∪n {in} and J1 = ∪n {jn}. Then C is the matrix

(xi′,j′)(i′,j′)∈I1×J1
. Thus C contains the minimal cycle.

We re-arrange the indices of X to obtain a matrix of the form:

(J1) (J2) (J3)

(I1) C X1 O · · ·

(I2) Y1 O X2 · · ·

(I3) O Y2 O · · ·
...

...
...

(15)
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We define the submatrices Xn and Yn by induction. For n ≥ 1, let

In+1 = {i /∈ ∪n
1Ik|∃j ∈ ∪n

1Jk s.t. (i, j) ∈ V }

Jn+1 = {j /∈ ∪n
1Jk|∃i ∈ ∪n

1Ik s.t. (i, j) ∈ V }

Now, let Xn be the matrix (xi′,j′)(i′,j′)∈In×Jn+1
and Yn be the matrix (xi′,j′)(i′,j′)∈In+1×Jn

.

Finally, re-label the indices such that if i ∈ In and i′ ∈ In′ and n < n′ then i < i′. The

numbering of indexes in In is otherwise arbitrary. Re-label j’s in a similar fashion.

For every i ∈ In there is a k < n and j ∈ Jk such that (i, j) ∈ V , and similarly, for

every j ∈ Jn there is a k < n and i ∈ Ik such that (i, j) ∈ V . Thus, for i ∈ In there is

a sequence

(i, jk0
), (ik1

, jk0
), . . . (ikN

, jkN′ ),

with N = N ′ + 1 or N ′ = N − 1, which defines a path connecting (i, jk0
) to the cycle

c. Similarly, if j ∈ Jn there is a path connecting (ik0
, j) to c.

The observation in the previous paragraph has two consequences:

Claim 20. If i ∈ In and j ∈ Jn (n > 1), then (i, j) /∈ V .

Claim 20 is true because otherwise there would be two different paths connecting

(i, j) to c, one having (i, jk0
) and the other (ik0

, j) as second element. Then we would

have a distinct second cycle.

Claim 21. Let i ∈ In (n > 1), and let there be two distinct j and j′ (j′ > j) such that

(i, j), (i, j′) ∈ V . Then (i′, j′) ∈ V implies that i′ ∈ In′ with n′ > n.

Claim 21 is true because otherwise we would again have two different paths con-

necting (i, j′) to c; one path with (i, j) and one with (i′, j′) as its second element.

Define the orientation d as follows.

1. If (i, j) ∈ c and (i, j′) ∈ c then define di,j,j′ to be 1 if (i, j) comes immediately

after (i, j′) in c. That is, di,j,j′ = 1 if there is n such that

(i, j′) = (i, j)n mod (N) and (i, j) = (i, j)n+1 mod (N).

2. If (i, j) ∈ c and (i′, j) ∈ c then define dj,i,i′ to be 1 if (i, j) comes immediately

after (i′, j) in c.

3. If (i, j) /∈ c and (i, j′) ∈ c then define di,j,j′ to be 1.
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4. If (i, j) /∈ c and (i′, j) ∈ c then define dj,i,i′ to be 1.

5. If (i, j) /∈ c and (i, j′) /∈ c then define di,j,j′ to be 1 iff j > j′.

6. If (i, j) /∈ c and (i′, j) /∈ c then define dj,i,i′ to be 1 iff i > i′.

7. If (i, j) ∈ V and (i′, j) /∈ V , then define dj,i,i′ to be 1.

Let di,j′,j = 0 when 1-7 imply that di,j,j′ = 1; similarly dj,i′,i = 0 when 1-7 imply

that dj,i,i′ = 1.

Lemma 22. If (i, j) is a vertex in c, then there is at most one j′ such that j′ 6= j and

(i, j′) ∈ c; in addition, (i, j) and (i, j′) are adjacent in c. Similarly, there is at most

one i′ 6= i such that (i′, j) ∈ c; in addition, (i, j) and (i′, j) are adjacent in c

Proof. We let the index of c range over all the integers by denoting (i, j)n mod (N) by

(i, j)n.

Let (i, j) be a vertex in c, and n > 0 be such that (i, j) = (i, j)n. Suppose there is

j′ such that j′ 6= j and (i, j′) ∈ c. If it does not exist, we are done. Since now N ≥ 2,

(i, j) is in the minimal path connecting (i, j)n−1 and (i, j)n+1. By Lemma 15, then,

either in−1 = i or in+1 = i, and exactly one of these is true. In the first case, we can set

j′ = jn−1 and in the second we can set j′ = jn+1. Suppose, without loss of generality,

that j′ = jn+1.

We show that there is not a j′′ 6= j, j′ with (i, j′′) ∈ c. Suppose that there is

such a j′′. Let (i, j′′) = (i, j)m. By Lemma 15, we have either m < n − 1 or

m > n + 1. When m > n + 1, the path 〈(i, j)n−1, . . . , (i, j)m〉 is not minimal be-

cause 〈(i, j)n−1, (i, j)n, (i, j)m〉 is a proper subset connecting (i, j)n−1 and (i, j)m. When

m < n − 1, the path 〈(i, j)m, (i, j)n, (i, j)n+1〉 is not a minimal because (i, j)m and

(i, j)n+1 are directly connected. Thus c is not a minimal cycle, a contradiction.

Lemma 23. Let (i, j) be a vertex in c. If (i, j′) ∈ V is not a vertex in c, then, for all

i′ 6= i, (i′, j′) /∈ c. Similarly, if (i′, j) ∈ V is not a vertex in c, then, for all j′ 6= j,

(i′, j′) /∈ c.

Proof. Suppose, by way of contradiction, that (i, j) ∈ c, (i′, j′) ∈ c, with i 6= i′, j 6= j′,

and (i, j′) /∈ c. Since (i, j), (i′, j′) ∈ c, there is a minimal path 〈(i, j)k : k = 0, . . . , K〉

connecting (i′, j′) to (i, j). Then, since (i, j′) /∈ c, the minimal cycle

〈(i, j)0, . . . , (i, j)K , (i, j′), (i′, j′)〉

is distinct from c and connected to c.
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Lemma 24. 1. If di,j,j′ = 1 and di,j′,j′′ = 1 then di,j,j′′ = 1.

2. If dj,i,i′ = 1 and dj,i′,i′′ = 1 then dj,i,i′′ = 1.

Proof. We prove only the first statement. The second statement can be proved by

similar fashion to the following first three cases.

First, we can rule out that di,j,j′ = 1 because (i, j) ∈ c, (i, j′) ∈ c, and (i, j) comes

immediately after (i, j′) in c (case 1). To see this, note that di,j′,j′′ = 1 would imply

that either (i, j′′) ∈ c, which is not possible by Lemma 22.

Second, suppose that di,j,j′ = 1 because (i, j) /∈ c and (i, j′) ∈ c. Then di,j′,j′′ = 1

implies that (i, j′′) ∈ c. Thus di,j,j′′ = 1 by case 3.

Third, suppose that di,j,j′ = 1 because (i, j) /∈ c and (i, j′) /∈ c and j > j′. If

di,j′,j′′ = 1 because (i, j′′) /∈ c and j′ > j′′ then di,j,j′′ = 1 by case 5 by the transitivity of

>. On the other hand, if di,j′,j′′ = 1 because (i, j′′) ∈ c then di,j,j′′ = 1 (case 3) as well.

Finally, if di,j,j′ = 1 because of Case 7 then we obtain di,j,j′′ = 1 by Case 7 as well.

Lemma 25. The orientation d satisfies (14).

Proof. Let ((i, j), (i′, j′)) be an antiedge: so (i, j), (i′, j′) ∈ V , j 6= j′ and i 6= i′. Suppose

that di,j′,j = 1. We shall prove that dj′,i,i′ = 0.

Suppose first that di,j′,j = 1 because of case 1. Then (i, j′) ∈ c. So, if (i′, j′) /∈ c

we obtain that dj′,i,i′ = 0 by case 3. On the other hand, if (i′, j′) ∈ c then the edges

((i, j), (i, j′)) and ((i, j′), (i′, j′)) are in c. In fact, these edges must be consecutive, or

(i, j′) will appear twice in c. Then, di,j′,j = 1 because of case 1 implies that (i, j′) comes

immediately after (i, j) in c; the edge ((i, j′), (i′, j′)) comes after ((i, j), (i, j′)) in c, so

we obtain that dj′,i,i′ = 0 by case 1.

Suppose second that di,j′,j = 1 because of case 3. So (i, j) ∈ c and (i, j′) /∈ c. Then

i ∈ I1 because i is an index for a vertex in the minimal cycle c. Now, by Lemma 23,

there is no ĩ with (̃i, j′) ∈ c. Since (i′, j′) ∈ V we must have i′ ∈ In for n > 1. By the

labeling we adopted, then, i < i′. Hence, dj′,i′,i = 1 by case 6.

Thirdly, suppose that di,j′,j = 1 because of case 5. If i ∈ I1, there exists j′′ such

that (i, j′′) ∈ c and di,j′,j′′ = 1 because of case 3, and dj′,i′,i = 1 by the previous result.

If i ∈ In (n > 1), then we have shown in Claim 21 that (i′, j′) ∈ V implies that i′ ∈ Ik

with k > n. Hence dj′,i′,i = 1 because of Case 5.

Finally, note that we cannot have di,j′,j = 1 because of Case 7 because (i, j) ∈ V .

Given the orientation d we have constructed, define two collections of partial orders,

(>i : i ∈ I) and (>j : j ∈ J) where we say that j >i j′ when di,j,j′ = 1 and that i >j i′

when dj,i,i′ = 1. By Lemma 24, these are well-defined strict partial orders.
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Now define the preferences of man i to be some complete strict extension of >i to J ,

and similarly for the women. By Lemma 25, these preferences rationalize the matching

X.

The previous construction assumed that X had one minimal cycle. If X has more

than one minimal cycle, these must not be connected in the graph. Therefor, if we

partition the graph into connected components, there will be at most one minimal

cycle in each.

In particular, we can partition the set of vertices V of X to be V = V1 ∪ · · · ∪ VN

and Vm ∩ Vn = ∅. All vertices in each Vn are connected, but no pair of vertices in

different sets are connected. The partition corresponds to the connected components

of the graph.

Now re-label the indices of types such that the aggregate canonical matching X is

a diagonal block matrix:

X =









X1 O · · · O

O X2 · · · O
...

... · · ·
...

O O · · · XN









All vertices in Vn correspond to Xn.

The previous construction, applied to each Xn separately, yields a rationalizing

preference profile of each Xn. Now, extend the preferences of each man i: say that i

indexes rows in Xn, then define a partial order ≻i on J to agree with >i on the indexes

of columns of Xn, and such that any index of a column of Xn is ranked above any

other index; then define i’s preferences to be any complete extension of ≻i. Women’s

preferences are defined analogously.

The resulting profile of preferences rationalizes X because if (v, v′) is an antiedge

with v, v′ ∈ Vn, for some n, then (14) is satisfied by the previous construction of

preferences, and if v and v′ are in different components of the partition of V , then (14)

is satisfied because any agent ranks an index in their component over an index in a

separate component.

B.2 Proof of Proposition 3.

Proof. We shall first prove Statement 1. Suppose, by way of contradiction, that X is

a maximal stable matching for a preference profile ((>m)m∈M , (>w)w∈W ). Without loss

of generality, suppose that X13 = X22 = X31 = 1.
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We have X32 = 0 and X is maximal. Then there is Xij = 1 s.t. ((3, 2), (i, j)) ∈ E.

We must have 3 6= i and 2 6= j so we must have (i, j) = (1, 3). Now, there are two

possibilities:

(m1 >w2
m3) ∧ (w2 >m1

w3) (16)

(m3 >w3
m1) ∧ (w3 >m3

w2) (17)

Suppose first that (16) holds. Since X is maximal and X12 = 0, (1, 2) must be part

of an edge. By a similar reasoning to above, we must have that ((1, 2), (3, 1)) ∈ E.

By (16) we have that m1 >w2
m3 so ((1, 2), (3, 1)) ∈ E implies that m1 >w1

m3 and

w1 >m1
w2. Then, by (16), we have

w1 >m1
w2 >m1

w3.

Then m1 >w1
m3 implies that ((1, 3), (3, 1)) ∈ E which is impossible as X13 = X31 = 1.

Suppose, second, that (16) does not hold and that (17) holds. Since X is maximal

and X33 = 0, (3, 3) must be part of an edge. By a similar reasoning to above, we must

have that ((3, 3), (2, 2)) ∈ E. By (17) we have that w3 >m3
w2 so ((3, 3), (2, 2)) ∈ E

implies that m2 >w3
m3 and w3 >m2

w2. Then, by (17), we have

m2 >w3
m3 >w3

m1.

Then w3 >m2
w2 implies that ((1, 3), (2, 2)) ∈ E which is impossible as X13 = X22 = 1.

We prove Statement 2 next. Let X be an individual matching. Suppose there is (h, l)

s.t. Xhl = 1 and the submatrix X−(hl) is not maximally stable. Clearly, since X is stable,

so is X−(hl). Since X−(hl) is not maximally stable, there is a stable (K − 1) × (L − 1)

aggregate matching X ′ that dominates X−(hl), in fact there is a stable matrix X ′ which

dominates X−(hl) and exactly one (i∗, j∗) has X ′
i∗j∗ = 1 and x

−(hl)
i∗j∗ = 0.

Consider the K×L matrix x̂ that coincides with X everywhere except that X̂i∗j∗ = 1.

Since X is maximally stable it must be that ((i∗, j∗), (h, l)) ∈ E, as the stability of X ′

ensures that there is no other pair (i, j) with ((i∗, j∗), (i, j)) ∈ E and X̂ij = 1.

Note that, for all j 6= l, Xhj = 0 implies that there is some (s, t) with s 6= h, Xst = 1

and ((s, t), (hj)) ∈ E. Additionally, since X is an individual matching, Xst = 1 implies

that also t 6= l. In a similar fashion, for all i 6= h there is (s, t) with s 6= h, t 6= l,

Xst = 1 and ((s, t), (h, j)) ∈ E.

Now consider the matching X̃ that coincides with X everywhere except that X̃hl = 0
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and X̃i∗j∗ = 1. Note that ∀(i, j)(X̃il = X̃hj = 0). We claim that X̃ is a stable matching:

the submatrix X̃−(hl) coincides with X ′, so there are no edges among pairs (i, j) with

i 6= h and j 6= l. As for (i, j) with i = h or j = l, we have X̃ij = 0 so they cannot be

part of an edge.

Finally, consider a maximal stable matching
ˆ̂
X that dominates X̃. Note that

we prove that for any j 6= l, there is some (s, t) with s 6= h and t 6= l such that

((s, t), (h, j)) ∈ E and
ˆ̂
Xst = xst = 1. Thus the stability of

ˆ̂
X requires that

ˆ̂
Xhj = 0.

Similarly we get that
ˆ̂
Xil = 0 for any i 6= h. We also have that

ˆ̂
Xi∗j∗ = 1 because

ˆ̂
X

dominates X̃. Then ((i∗, j∗), (h, l)) ∈ E and the stability of
ˆ̂
X implies

ˆ̂
Xhl = 0. Thus

we prove that
ˆ̂
X satisfies the property in the statement.

B.3 Proof of Theorem 10. We prove necessity first. Let X be an aggregate match-

ing that is rationalizable by the matrix α. Suppose, by way of contradiction, that the

graph (V, L) associated to X has a minimal cycle c = 〈y0, . . . , yN〉.

We say that an edge ((i, j), (i′, j′)) ∈ L is vertical if j = j′ and that it is horizontal

if i = i′. Since the cycle c is minimal, a horizontal edge in c must be followed by a

vertical edge; and a vertical edge in c must be followed by a horizontal edge (Lemma 15).

Thus c has an even number of vertices. Since y0 = yN , this implies that N is an even

number.

Consider the aggregate matching X ′, which coincides with X on all entries except

the ones in c. For the entries that are vertices in c, let

X ′
y2n−1

= Xy2n−1
+ 1, n = 1, . . . , N

2

X ′
y2n

= Xy2n
− 1, n = 0, . . . , N

2
− 1

Fix a row i of X ′. For each column j, if yn = (i, j) for some n, then (modulo N)

either yn−1 or yn+1 share the same j. Without loss of generality, say that yn+1 shares the

same j. By definition of X ′, then Xyn
+Xyn+1

= X ′
yn

+X ′
yn+1

. Thus
∑

j X ′
i,j =

∑

j Xi,j.

A similar argument implies that, for each j,
∑

i X
′
i,j =

∑

i Xi,j. Hence X ′ is a feasible

aggregate matching in program (3).

Since α rationalizes X, we have that
∑

i,j αi,jXi,j >
∑

i,j αi,jX
′
i,j. Thus,

∑

i,j

αi,j(X
′
i,j − Xi,j) =

∑

n=1,..., N
2

αy2n−1
−

∑

n=0,..., N
2
−1

αy2n
< 0 (18)
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But then we can consider the aggregate matching X ′′ defined as

X ′′
y2n−1

= Xy2n−1
− 1, n = 1, . . . , N

2

X ′′
y2n

= Xy2n
+ 1, n = 0, . . . , N

2
− 1,

on the vertices of c, and which coincides with X on all entries that are not vertexes

of c.

By the same argument we made for X ′, X ′′ is feasible in program (3).

Now, Equation (18) implies that

∑

i,j

αi,j(X
′′
i,j − Xi,j) = −

∑

n=1,..., N
2

αy2n−1
+

∑

n=0,..., N
2
−1

αy2n
> 0;

a contradiction of X being rationalized by α.

Second, we prove sufficiency. Suppose that X is an aggregate matching such that

the associated graph contains no cycles. Let α be the canonical matching derived from

X. We shall prove that α rationalizes X.

Clearly,
∑

i,j αi,jXi,j =
∑

i,j Xi,j. Suppose that X ′ is an aggregate matching such

that X ′ is feasible in program (3) for X, and that
∑

i,j αi,jX
′
i,j ≥

∑

i,j Xi,j. We shall

prove that X ′ = X.

Give α as surplus matrix,
∑

i,j Xi,j is the maximal surplus that can be achieved

in Program (3). To see this, note that all pairs who are matched generate the same

value: 1 if they are a pair that is matched under Xi,j and 0 otherwise. The number

of different men is
∑

i,j Xi,j (=
∑

i

∑

j Xi,j). The number of different women is also
∑

i,j Xi,j (=
∑

j

∑

i Xi,j). Thus there are at most
∑

i,j Xi,j pairs that can be formed.

The maximum value in (3) obtains when all of them generate a surplus of 1. Thus we

have
∑

i,j αi,jX
′
i,j =

∑

i,j Xi,j.

As a consequence, X ′
i,j = 0 when Xi,j = 0. Otherwise we would have a pair (i, j)

that are generating a surplus of 0 under α, and we cannot have
∑

i,j αi,jX
′
i,j =

∑

i,j Xi,j.

Thus X ′
i,j = 0 for all (i, j) /∈ V .

We shall assume that (V, L) has exactly one connected component. When that

assumption fails, we can apply the argument in the sequel to each component separately.

Choose a vertex v0 in V . Since (V, L) contains no cycle, for each v ∈ V there is a

unique path connecting v0 to v in (V, L). Let η(v) be the length of the path connecting

v0 to v. We shall prove the result by induction on η(v). Specifically, we show that for

each v with maximal η, either the row or the column of v must be identical in both X

and X ′. We can then consider the submatrix that omitting that row or column, and
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repeat our argument.

Specifically, define a partial order ≻ on V , such that v1 ≻ v2 if and only if v1 is on

the unique path from v0 to v2. Then (V,≻) defines a set of maximal chains denoted as

{V1, . . . VL}. Each maximal chain has a unique vertex with highest value of η(v). The

following argument can be made for each of these chains.

Let (i, j) be a vertex with a maximal value of η(v). Since η(v) is maximal, one of

the following two cases hold.

1. there is no i′ with ((i, j), (i′, j)) ∈ L

2. there is no j′ with ((i, j), (i, j′)) ∈ L

That is, there are either no horizontal edges, or no vertical edges, incident to (i, j).

Suppose that Case 1 holds, so Xh,j = 0 for all h 6= i. Then, X ′
h,j = 0 for all h 6= i,

and
∑

h Xh,j =
∑

h X ′
h,j, imply that Xi,j = X ′

i,j. Thus, column j in both matrices X ′

and X coincide.

Consider the submatrices X\j and X ′
\j, obtained after eliminating column j. Then

α\j is the canonical matching of X\j; an entry of X ′
\j is 0 when the corresponding entry

of X\j is 0, and
∑

(i,h):h 6=j

αi,hX
′
i,h =

∑

(i,h):h 6=j

αi,hXi,h.

Finally, the resulting graph (V\j, L\j) contains no cycle.

Similarly, when Case 2 holds, row i of both matrices must coincide. We can then

consider the submatrices obtained after eliminating row i.

By applying the above argument to this sequence of submatrices, we will show that

X ′
i,j = Xi,j for all (i, j) ∈ V . We have already shown that X ′

i,j = Xi,j = 0 for all

(i, j) /∈ V . Hence X = X ′.

C Detailed Data Description

We use Marriage and Divorce Data of the National Vital Statistics System of the

National Center for Health Statistics (NCHS).10

The data are based on marriage and divorce certificates, and include all records

for States with small numbers of events and a sample of records for States with larger

numbers of events. Since the sample size significantly decreased from year 1989, and

10http://www.nber.org/data/marrdivo.html
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NCHS stopped producing data after 1995 due to lack of funds, we use data of year

1988.

In order to produce cross-sectional marriage distributions across the states in US, we

restrict our attention to marriage samples (i) of states of the United States or District

of Columbia, (ii) in which both groom and bride reside in a same state. In 784,211,

total number of observations, 10,204 from Puerto Rico, Virgin Islands, Guam, Canada,

Cuba, Mexico, or Remainder of the world are eliminated, and also samples with states

not stated are eliminated. In addition, 47,289 observations are deleted since groom and

bride are reported to reside in distinct states. In all, total sample size is 726,718.

In categorizing men and women by there types, we only used ages; although Marriage

microdata also includes variables such as education or previous marital status, there

are significant number missing observations, so we do not use other variables. Marriage

age varies from 12 to 94 for groom and from 12 to 92 for bride. Both men and women

are categorized as 7 different age groups, and the thresholds are 12-20, 21-25, 26-30,

31-35, 36-40, 41-50, and 51-94.
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