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Abstract

Monotonicity in a scalar unobservable is a crucial identifying assumption for an impor-
tant class of nonparametric structural models accommodating unobserved heterogeneity, as
in, for example, Altonji and Matzkin (2005) and Imbens and Newey (2009). Tests for this
monotonicity have previously been unavailable. Here we propose and analyze tests for scalar
monotonicity using panel data for structures with and without time-varying unobservables,
either partially or fully nonseparable between observables and unobservables. As it turns out,
our tests also have power against relevant failures of exogeneity. Our nonparametric tests are
computationally straightforward, have well behaved limiting distributions under the null, are
consistent against precisely speci�ed alternatives, and have standard local power properties.
We provide straightforward bootstrap methods for inference. Some Monte Carlo experiments
show that, for empirically relevant sample sizes, these reasonably control the level of the test,
and that our tests have useful power. We apply our tests to study asset returns and demand
for ready-to-eat cereals.
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1 Introduction

Suppose an observable scalar Yt = Yit is structurally generated as

Yt = �(Xt; A); t = 1; :::; T; (1)

where � is an unknown function, Xt = Xit is an observable d � 1 vector, d 2 N; and A = Ai

is an unobservable attribute vector, heterogeneous across i: A leading example occurs when Yt

represents the quantity of a good demanded by a consumer, Xt represents income and prices, and
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A represents consumer i�s �xed taste parameters, as in Stigler and Becker (1977). Alternatively,

Yt can represent the quantity produced by a �rm, Xt cost and demand shifters, and A �rm i�s

�xed technology parameters.

When A is scalar and �(x; �) is strictly monotone ("monotonicity in a scalar unobservable" or
just "scalar monotonicity"), this structure is an important special case of the "structural function

and distribution" framework considered by Altonji and Matzkin (2005, section 4), henceforth

AM. Such monotonicity assumptions play a key role in an important strand of �exible structural

modeling, beginning with Roehrig (1988) and developed extensively by Matzkin (e.g., Matzkin,

2003; 2007) and Chesher (2003). Scalar monotonicity has gained increasing currency, being relied

on recently by Imbens and Newey (2009), Evdokimov (2009), and Komunjer and Santos (2010).

As Hoderlein (2005) notes, monotonicity is a strong assumption. Further, monotonicity is

crucial in this context, as key identi�cation results fail when scalar monotonicity is violated. It is

thus important to have tests for this. To the best of our knowledge, no such tests are currently

available. Accordingly, our goal here is to propose and analyze some straightforward methods

for testing scalar monotonicity. As it turns out, our tests are also sensitive to relevant failures of

exogeneity.

We do not restrict attention to structures with a single unobservable, however. We also

consider structures monotonic in A with separable time-varying unobservable "t;

Yt = �(Xt; A) + "t; t = 1; :::; T; (2)

as well as fully general nonseparable structures with vector-valued "t;

Yt = �(Xt; "t; A); t = 1; :::; T: (3)

Evdokimov (2009) considers the former structures, discussing their relevance to studying hetero-

geneous treatment e¤ects, such as the e¤ects of union membership on wages and the e¤ects of

wages on consumption. The latter can be used, among other things, to study price e¤ects on

consumer demand as well as nonlinear/nonparametric factor e¤ects on asset returns in the pres-

ence of unobserved heterogeneity. The fully non-separable structures are quite general; their only

signi�cant vulnerabilities to misspeci�cation are failures of monotonicity or exogeneity.

In Section 2, we provide some general results for structures monotonic in a scalar unobservable,

reviewing and extending known representation and identi�cation results. These results show the

necessity of monotonicity for identi�cation and provide the required foundations for our tests.

For clarity, and to maintain a manageable scope for the analysis here, we focus on the classical

strictly exogenous case, where Xt is independent of A (Xt ? A) for all t. This also serves as a

foundation for analysis under weaker conditions (see Hoderlein, Su, and White, 2010).
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In Section 3, we propose a monotonicity test for structures of the form (1). The test is fully

nonparametric and is available for T as small as 2: The test statistic is asymptotically normal

under the null, is consistent against a precisely characterized set of alternatives, and can detect

local alternatives with rate O(N�1=2h�d=4); where N is the number of cross-section observations

and h = hN is a kernel bandwidth.

We introduce and analyze a monotonicity test for structures with time-varying unobservables

of the forms (2) and (3) in Section 4. The test is again fully nonparametric, but here we require

T to be large, so as to average out the in�uence of the "t�s. The test statistic is asymptotically

a mixture of chi-squares under the null, is consistent against a precisely characterized set of

alternatives, and can detect local alternatives with rate O(N�1=2). Interestingly, the same test

works for both the "partially nonseparable" and the fully nonseparable cases.

Section 5 describes e¤ective bootstrap methods for �nding critical values and p�values for our
tests and reports the results of some Monte Carlo experiments designed to study the level and

power properties of the tests. We �nd that our tests perform reasonably well for N = 100 and

T = 2 in the absence of time-varying unobservables and for N;T = 50; 100 with time-varying

unobservables. Section 6 uses our tests to study asset returns and demand for ready-to-eat cereals,

and Section 7 contains a summary and concluding remarks. The Mathematical Appendix contains

formal proofs of our results, together with supplementary results supporting the discussion of the

main text.

2 Representation and Identi�cation with Scalar Unobservables

We begin with a version of an identi�cation result of AM, their theorem 4.1, for the strictly

exogenous case. We let U[0; 1] denote the uniform distribution on I � [0; 1]: We also write
�N � N [ f1g:

Proposition 2.1 Let X be a random d � 1 vector, d 2 �N; let " be a random scalar distributed

as U[0; 1]; and suppose that X ? ": Let m : Rd � I ! R be a measurable function, and suppose
that Y = m(X; "). Let F (y j x) � P [Y � y j X = x]. Then for given x 2 X � supp(X);

F (y j x) = m�1(x; y) for all y 2 Y � supp(Y ) (4)

if and only if m(x; �) is strictly increasing.

When m(x; �) is invertible, m�1(x; �) represents the inverse function such that e = m�1(x; y)

if and only if y = m(x; e). More generally, m�1(x; �) represents the correspondence de�ned by
m�1
x (�1; y]; the preimage in I of the half-ray (�1; y] underm(x; �): Also, we adopt the convention
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suggested by AM that if m(x; �) is strictly decreasing, then we replace m(x; �) with �m(x; �): The
key property is thus that m(x; �) is strictly monotone.

Let e = F (y j x); if eq.(4) holds, then F (� j x) is invertible and m is identi�ed as m(x; e) =

F�1(e j x). Because F�1(� j x) is the conditional quantile function, we call this full identi�cation
via conditional quantiles at x or, for brevity, full identi�cation.

These conditions are simpler than those of AM�s theorem 4.1, as we consider only the exoge-

nous case. Also, we show that strict monotonicity of m(x; �) is necessary for full identi�cation,
not just su¢ cient.

Representing Y using a scalar " in Proposition 2.1 is much less restrictive than it might seem.

To show this, we formally specify a structural data generating process.

Assumption A.1 Let (
;F ; P ) be a complete probability space on which are de�ned real-
valued random vectors X and U of countable dimensions d� 1 and `� 1 respectively, where the
distribution of U is nonatomic. Suppose � : Rd �R` ! R is a measurable function and that Y is

structurally generated as Y = �(X;U):

Note that both X and U can have a �nite number or a countable in�nity of elements. Usually,

d is �nite, and we observe X but not U: Requiring that U is nonatomic rules out cases where

U has atoms, e.g., for some u; P [U = u] > 0: Nonatomicity holds when U is continuously

distributed, but it is a weaker requirement. The lack of atoms is not necessarily restrictive, as �

can incorporate thresholding; for example, we can have �(x; u) = x 1fu < :5g; where 1 f�g is the
indicator function.

Proposition 2.2 Let Assumption A.1 hold. Then (i) there exists a Borel isomorphism1 � :

R` ! I such that " � �(U) is distributed as U[0; 1]; and Y = �(X; ��1(")) a:s: (ii) X ? U holds

if and only if X ? ":

Thus, whenever Y is structurally determined by a countably dimensioned nonatomic unobservable,

then it also has a representation involving a scalar unobservable. By (ii); this representation

preserves exogeneity. Further, it preserves important information about e¤ects of interest, as, for

example, Dx�(x; u) = Dx�(x; �
�1(e)) for e � �(u): In this sense, there is no loss of generality in

assuming a scalar unobservable compared to assuming any number of unobservables.

Which representation we use depends upon the purpose at hand. For thinking about economic

relationships, it is appropriate to think in terms of the structure of A.1. If indeed there is only

a single unobservable driver of Y; A.1 permits this. But even when this fails, the representation

1This Borel isomorphism is a one-to-one function � from R` onto I such that both � and its inverse ��1 are
Borel measurable. See Dudley (2002, pp. 487-493) or Corbae, et. al. (2009, pp. 416-417).
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with a scalar unobservable is convenient for speci�cation testing. This claim is justi�ed by the

next result, which gives a structural characterization of full identi�cation, not only in terms of

strict monotonicity but also exogeneity.

Proposition 2.3 Let Assumption A.1 hold, and suppose that for each x 2 X ; �(x; �) =
g(x; h(x; �)); where h : Rd � R` ! I and g : Rd � I ! R are measurable and V = h(X;U) is

nonatomic on I: (i) Suppose V ? X: Let x 2 X be given. Then F (� j x) = g�1(x; �) if and only
if g(x; �) is strictly increasing. (ii) Suppose V 6? X. Then there exists X � � X , P [X 2 X �] > 0,
such that for all x 2 X �; F (� j x) 6= g�1(x; �):

This supports speci�cation testing: By part (i); if we maintain that V is independent of X

and test F (� j x) = g�1(x; �); either (a) for given x or (b) for all x; then we can reject scalar
monotonicity. Equivalently, full identi�cation fails (a) at x or (b) on a set of positive probability.

Part (ii) says that if we test F (� j x) = g�1(x; �) for all x, then rejection again implies the failure
of full identi�cation on a set of positive probability. Now, however, rejection is due to failure of

exogeneity, of strict monotonicity, or both. In the following sections, we construct speci�cation

tests based on this result.

The allowed dependence of h(x; �) on x means that the representations of Propositions 2.2
and 2.3 need not coincide. Further, whereas ��1(�) is by construction one-to-one, h(x; �) can be
many-to-one. Of particular importance is that the broadly valid representation of Proposition 2.2

is generically non-monotonic in a precise sense: Proposition 2.2 ensures only that �(x; ��1(�)) is
measurable on I; but monotonic functions are shy in Lp(I;B; �); the space of Borel measurable
functions on I with �nite pth absolute moments, p 2 [1;1) (Stinchcombe, 2010). Shyness is
the function space analog of being a subset of a set of Lebesgue measure zero; see Corbae,

Stinchcombe, and Zeman (2009, pp. 545-547) (CSZ). In this precise sense, monotonicity is quite

a strong necessary assumption.

It might seem counterintuitive that V = h(X;U) can depend on X and yet be independent

of X; as permitted by Proposition 2.3. Although V and X generally are dependent in this case,

Benkard and Berry (2006) give an example where V and X are indeed independent. Our result

shows that full identi�cation is possible even in these cases.

3 Testing Monotonicity in Unobservable Attributes

Our �rst test applies to the fully nonseparable case where the unobservables vary across individuals

but not time, with 2 � T <1. That is, A.1 holds with

Yt = �(Xt; A); t = 1; :::; T:
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Here Ut = A; emphasizing that the unobservables are �xed attributes, conforming with notation

of Hoderlein (2005), Hoderlein and Mammen (2007), and Hoderlein and White (2009). As the

examples in the introduction show, this is an important special of the structure considered by

AM. Formally, we impose

Assumption B.0 Assumption A.1 holds with �(x; a) = g(x; �(a)); where � : R` ! I and
g : Rd � I! R are measurable; and Yt = �(Xt; A); t = 1; :::; T; 2 � T <1:

For simplicity in what follows, we let T = 2:

For concreteness, we refer to a time index t. Nevertheless, what follows applies to a wide variety

of contexts. For example, t can index twins, siblings in a family, individuals in a geographic area,

works by an artist, writer, composer, or director, or, in general, members of any group in�uenced

by a common unobservable.

AM and Imbens and Newey (2009) assume scalar monotonicity for all x 2 X (scalar monotonic-
ity a:s:). This is the case typically of interest. With �xed A (i.e., for given i) and when exogeneity

and scalar monotonicity a:s: hold, Proposition 2.3 ensures

H0 : F (Y1 j X1) = F (Y2 j X2) a:s: (5)

We call (5) full identi�cation a:s: Signi�cantly, exogeneity and the time-invariance of A jointly

ensure that Ft; the conditional CDF of Yt given Xt; is time invariant. When exogeneity or scalar

monotonicity a:s: fails, we generally have

P [F1(Y1 j X1) = F2(Y2 j X2)] < 1:

Theorem 8.1 of the appendix formally states and proves (5) and its converse, with a brief discussion

of the mild additional conditions required for the converse.

Thus, observing F1(Y1 j X1) 6= F2(Y2 j X2) for a randomly drawn individual is su¢ cient to
reject H0: We gain power by considering a measure of the average departure of F1(Y1 j X1) from
F2(Y2 j X2) in a random sample of size N: Thus, we measure the departures of F1(Y1 j X1) from
F2(Y2 j X2) using

DN �
NX
i=1

(F̂N1(Yi1 j Xi1)� F̂N2(Yi2 j Xi2))2:

where F̂N1 and F̂N2 are suitable estimators of F1 and F2:

Speci�cally, we rely on local polynomial estimation of Ft; t = 1; 2: Following Masry (1996), we

adopt the notation

j � (j1; :::; jd); jjj �
dX
i=1

ji; x
j � �d

i=1x
ji
i ; j! � �

d1
i=1ji!;

X
0�jjj�p

�
pX
k=0

kX
j1=0

� � �
kX

jd=0

j1+���+jd=k

;
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where j1; :::; jd are non-negative integers and x = (x1; :::; xd)
0 : Given observations f(Yit; Xit) ;

i = 1; :::; Ng; we estimate Ft (Yit j Xit) by solving the weighted least squares minimization problem

min
�

NX
j 6=i

241 fYjt � Yitg �
X

0�jjj�p
�0j ((Xjt �Xit) =h)

j

352Kh (Xjt �Xit) ;

where � stacks the �j�s (0 � jjj � p) in lexicographic order (with �0 in the �rst position, the

element with index (0; 0; :::; 1) next, etc.), Kh (�) � K (�=h) =h; K (�) is a symmetric probability
density function (PDF) on Rd, and h � h (n) is a bandwidth parameter. Note that we use

leave-one-out estimation here, which greatly facilitates the proofs of our results. Our estimator

F̂Nt (Yit j Xit) is the minimizing intercept term in the above problem.

Let Ll � (l+d�1)!=(l!(d�1)!) be the number of distinct d-tuples j with jjj = l: This denotes

the number of distinct lth order partial derivatives of Ft(� j �) with respect to x: Let L �
Pp
l=0 Ll:

Let � be a stacking function such that Xjt(x) � � ((Xjt � x) =h) denotes an L � 1 vector that
stacks ((Xjt � x) =h)j ; 0 � jjj � p; in lexicographic order (e.g., Xjt (x) = (1; ((Xjt � x) =h)0)0

when p = 1). Let Xjt;�i � Xjt (Xit) : Then it is easy to verify that

F̂Nt (Yit j Xit) = e01 [SNt (Xit)]
�1 1

N � 1

NX
j 6=i

Kji;t Xjt;�i 1 fYjt � Yitg ;

where e01 � (1; 0; :::; 0) is an L-vector, Kji;t � Kh (Xjt �Xit) ; and SNt (Xit) � 1
N�1

PN
j 6=i Kij;t

Xjt;�iX0jt;�i:

To study the asymptotic properties of DN under H0, under a sequence of Pitman local alter-

natives, and under the global alternative, we impose the following assumptions:

Assumption B.1 Let Zit � (Yit; X 0
it)
0 and Zi � (Z 0i1; Z 0i2)0: The sequence fZig

N
i=1 is IID.

Assumption B.2 (i) For t = 1; 2; let fXt and fZt denote the PDFs of Xit and Zit, respectively.

Let fZ denote the joint PDF of Zi1 and Zi2: All these PDFs exist and are uniformly bounded

over their supports.

(ii) Let Xt and Yt denote the supports of Xit and Yit; respectively. Both Xt and Yt are
compact, and fXt is uniformly bounded away from 0 on Xt for t = 1; 2:
Assumption B.3 (i) For t = 1; 2; and for each y 2 Yt; Ft(y j �) is Lipschitz continuous on Xt
and has all partial derivatives up to order p+ 1, p 2 N:

(ii) For t = 1; 2; and for each y 2 Yt; the (p+ 1)th order partial derivatives with respect to
x; DkFt (y j �) with jkj = p+ 1; are uniformly bounded on Xt; and are Hölder continuous on Xt :
for x; ~x 2 Xt, jDkFt (y j x)�DkFt (y j ~x) j � C jjx� ~xjj; where C is a generic �nite constant and

k�k is the Euclidean norm.
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(iii) For t = 1; 2; for each x 2 Xt; and for each y; ~y 2 Yt; jDkFt (y j x) � DkFt (~y j x) j � C

jjy � ~yjj:
Assumption B.4 (i) The kernel function K : Rd ! R+ is a continuous, bounded, and symmetric
PDF.

(ii) x! kxk2p+1K (x) is integrable on Rd with respect to Lebesgue measure.
(iii) LetKj(x) � xjK(x) for all j with 0 � jjj � 2p+1: For some C1 <1 and C2 <1; either

K (�) is compactly supported such thatK (x) = 0 for kxk > C1; and jKj(x)�Kj(~x)j � C2 kx� ~xk
for any x; ~x 2 Rd and for all j with 0 � jjj � 2p + 1; or K(�) is di¤erentiable, kDKj (x)k � C1;

and for some �0 > 1; jDKj (x) j � C1 kxk��0 for all kxk > C2 and for all j with 0 � jjj � 2p+ 1:
Assumption B.5 As N !1; h! 0; Nh2d=(logN)3 !1; Nh2(p+1)+d=2 ! 0; and hp+1�d=2 !
0:

Assumption B.1 is standard in conventional panel data modeling. Note that Zit can be de-

pendent across t. Assumption B.2 is standard for nonparametric local polynomial estimation.

Assumptions B.3-B.4 are used to obtain uniform consistency for the local polynomial estimator

of Masry (1996) and Hansen (2008). Assumption B.5 imposes appropriate conditions on the

bandwidth.

Let �St (x) � E
h
Kh (Xjt � x)Xjt (x)X0jt (x)

i
; �� (x) � � (x)K (x) ; �� (x) �

R
�� (~x)

��� (x� ~x)0 d~x andKt;x (Xjt � x) � h�de01 [�St (x)]
�1 �� ((Xjt � x) =h) : Let �1y (Zit) � 1 fYit � yg

�Ft (y j Xit) ; and �2t (y; ~y;x) � E [�1y (Zit)�1~y (Zit) j Xit = x] : De�ne

BN �
hd=2

(N � 1)2
NX
i=1

NX
j 6=i

[K1;Xi1 (Xj1 �Xi1)�1Yi1 (Zj1)�K2;Xi2 (Xj2 �Xi2)�1Yi2 (Zj2)]
2 (6)

�20 � 2
2X
t=1

E

�Z Z Z
�it (x)

2 �42 (y; ~y;Xit) fZt (y;Xit) fZt (~y;Xit) fXt (Xit) dy d~y dx

�
; (7)

where �it (x) � e01[�S1 (Xit)]
�1 �� (x) [�S2 (Xit)]�1e1:

The next result says that after centering, hd=2DN is asymptotically normal under H0.

Theorem 3.1 Suppose Assumptions B.1-B.5 hold. Then under H0; hd=2DN �BN
d! N

�
0; �20

�
:

Clearly, BN = BN1 + OP
�
hd=2

�
; where BN1 � hd=2

(N�1)2
P2
t=1

PN
i=1

PN
j 6=i[Kt;Xit(Xjt �Xit)

�1Yit (Zjt)]
2: Thus, the result also holds if we replace BN with BN1:

To implement the test, we consistently estimate BN and �20 using

B̂N � hd=2

(N � 1)2
NX
i=1

NX
j 6=i

[�̂ij;1 � �̂ij;2]2 ; and

�̂2N � 2hd

N (N � 1)

2X
t=1

NX
i=1

NX
j 6=i

"
1

N

NX
l=1

�̂li;t�̂lj;t

#2
;
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where �̂ij;t � e01[SNt (Xit)]
�1Kji;tXjt;�i1̂Yit (Zjt), 1̂Yit (Zjt) � 1 fYjt � Yitg � ~FNt (Yit j Xjt) ;

and ~FNt (y j x) is the pth order local polynomial estimate of Ft (y j x) using all N observa-

tions fYit; XitgNi=1 ; kernel K; and bandwidth h: We demonstrate below in Theorem 3.2 that

B̂N �BN = oP (1) and �̂2N � �20 = oP (1) : Then we can compare

JN �
�
hd=2DN � B̂N

�
=

q
�̂2N

to the one-sided critical value z�; the upper � percentile from the N (0; 1) distribution. We reject

the null at level � if JN > z�:

To examine the asymptotic local power of the test, we consider the following sequence of

Pitman local alternatives:

H1 (
N ) : F1(Yi1 j Xi1)� F2(Yi2 j Xi2) = 
N �N (Zi) ;

where 
N ! 0 as N !1 and �N (�) is a continuous function such that �0 � limN!1E[�N (Zi)]
2

<1: The following theorem establishes the local power of the test.

Theorem 3.2 Let Assumptions B.1-B.5 hold. Then under H1
�
N�1=2h�d=4

�
; JN

d! N (�0=�0; 1) :

Thus, the test has nontrivial power against Pitman local alternatives that converge to zero at rate

N�1=2h�d=4: The asymptotic local power function is given by 1�� (z� � �0=�0) ; where � is the
standard normal CDF.

The following theorem establishes the consistency of the test.

Theorem 3.3 Suppose Assumptions B.1-B.5 hold. Then under H1 � H1(1); N
�1h�d=2JN =

�A=�0 + oP (1) ; where �A � E [F1(Yi1 j Xi1)� F2(Yi2 j Xi2)]2 ; so that P (JN > cN ) ! 1 under

H1 for any nonstochastic sequence cN = o
�
Nhd=2

�
:

Thus, when the structural conditions of Theorem 8.1 hold, this test can detect any failure of full

identi�cation a:s:; whether due to failure of strict monotonicity, failure of exogeneity, or both.

Remark. When T > 2; the statistic DN becomes

DN �
T�1X
t=1

TX
s=t+1

NX
i=1

(F̂Nt(Yit j Xit)� F̂Ns(Yis j Xis))2:

We consistently estimate the bias and variance by

B̂N =
hd=2

(N � 1)2
T�1X
t=2

TX
s=t+1

NX
i=1

NX
j 6=i

[�̂ij;t � �̂ij;s]2 ;

�̂2N � 2hd

N (N � 1)

T�1X
t=1

TX
s=t+1

NX
i=1

NX
j 6=i

8<:
"
1

N

NX
l=1

�̂li;t�̂lj;t

#2
+

"
1

N

NX
l=1

�̂li;s�̂lj;s

#29=; :

9



It is easy to show under local alternatives H1
�
N�1=2h�d=4

�
: Ft(Yit j Xit) � Fs(Yis j Xis) =

N�1=2h�d=4�N;ts (Zit; Zis) for each pair (t; s) ; that JN
d! N (�0=�0; 1) ; where �0 �

PT�1
t=1

PT
s=t+1

limN!1E [�N;ts (Zit; Zis)]
2 <1 and �20 =plimN!1 �̂2N :

4 Structures with Time-Varying Unobservables

4.1 Partially Nonseparable Structures

We now extend our analysis to structures where there may also be time-varying unobservables,

"t: We �rst treat the case where "t is additive:

Yt = g(Xt; �(A)) + "t; t = 1; :::; T:

Because these structures are partly but not fully nonseparable in unobservables, we call them "par-

tially nonseparable". Below, we consider fully nonseparable structures, where Yt = g(Xt; "t; �(A));

t = 1; :::; T:

For the partially nonseparable case, we impose

Assumption C.0 Assumption A.1 holds with �(x; u) = g(x; �(a)) + '(v); where � : R`1 ! I;
' : R`2 ! R; and g : Rd � I ! R are measurable; and with Ut = (A; Vt); Yt = �(Xt; Ut) =

g(Xt; �(A)) + '(Vt); t = 1; 2; ::: :

Thus, Ut = (A; Vt) contains a time-invariant attribute vector, A; and a time varying driver, Vt:

We write B � �(A) and "t � '(Vt): The latter is often called a "shock".

Evdokimov (2009) (E) studies such structures extensively. He gives many salient examples and

provides identi�cation and estimation results. An important further example arises in �nance,

where Yt is the per period return of an asset, Xt represents market and other factors driving

returns, A is alpha, the �rm-speci�c return generating attribute, and "t is an idiosyncratic shock.

This nonlinear asset return factor structure permits arbitrary interaction between alpha and the

systematic factors driving returns; it may thus be useful not only for better understanding asset

returns but also for improving portfolio allocation.

Just as for AM, a main goal for E is the identi�cation of g: Although the presence of "t

complicates matters, the main identi�cation results are the same. As E shows, one can use

deconvolution to extract the distribution of Mt � g(Xt; B) given Xt: Then strict monotonicity

identi�es g(x; �) as F�1(� j x); where F (� j x) now denotes the CDF of Mt given Xt = x: In fact,

Proposition 2.3 applies to show that either (i) strict monotonicity or (ii) strict monotonicity and

exogeneity are necessary and su¢ cient for identi�cation.

Without "t; we compared F1(Y1 j X1) to F2(Y2 j X2): Here, we would like to compare F1(M1 j
X1) to F2(M2 j X2); both equal B given identi�cation. But since "t is unobservable, so is
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Mt = Yt � "t: Directly comparing F1(M1 j X1) to F2(M2 j X2) is not possible. E�s results do
permit a comparison of F1(m j x) to F2(m j x) for all (m;x); but this has no power when (Y1; X1)
and (Y2; X2) are identically distributed (ID), a leading special case. Moreover, using E�s results

for inference is challenging, as so far there is no asymptotic distribution theory available for his

estimators; only convergence rates are available.

Nevertheless, straightforward speci�cation testing is possible when T is large as well as N .

For convenience, we assume that fXt; "tg is ID. Let non-negative weight functions w1 and w2 be
de�ned on X : Given su¢ cient moments, we use w1 to de�ne ~Y1 = ~Y1t � E(Yt w1(Xt) j B); the
equality holds by ID. Then

~Y1 = E(g(Xt; B) w1(Xt) j B) + E("t w1(Xt) j B)

=

Z
g(x;B) w1(x) dF (x) + E("t w1(Xt))

� �g1(B) + ~"1;

where the second line holds given exogeneity (Xt ? B) and the further condition "t ? B j w1(Xt):
In particular, these conditions ensure that ~"1 � E("t w1(Xt)) is a constant. Assuming that

"t ? B j w1(Xt) allows dependence between "t and Xt as well as "t and B: An alternative

su¢ cient (but not necessary) condition giving ~Y1 = �g1(B) + ~"1 is "t ? B j Xt: Together with
Xt ? B; this implies (and is implied by) (Xt; "t) ? B:

Similarly, with ~Y2 = ~Y2t � E(Yt w2(Xt) j B); Xt ? B; and "t ? B j w2(Xt); we have

~Y2 = �g2(B) + ~"2;

with

�g2(b) �
Z
g(x; b) w2(x) dF (x) and ~"2 � E("t w2(Xt)):

For example, let X1 be a subset of X with 0 < p1 � P [Xt 2 X1] < 1; let X2 � XnX1; and
take w1(x) = 1fx 2 X1g=p1 and w2(x) = 1fx 2 X2g=(1 � p1): In this case, "t ? B j w1(Xt) and
"t ? B j w2(Xt) are equivalent.

Strict monotonicity a:s: of g(Xt; �) directly ensures that b ! �g1(b) is strictly monotone in b:

By Proposition 2.1 (with X absent), it follows that B = �g�11 ( ~Y1 � ~"1) is the percentile of ~Y1 � ~"1
in its distribution. But since ~"1 is a constant, this percentile is also that of ~Y1 in its distribution,

say ~F1; de�ned by
~F1(y) � P [ ~Y1 � y]:

Thus, B is identi�ed as

B = �g�11 (
~Y1 � ~"1) = ~F1( ~Y1):

11



In the �nance context, where B = A is the �rm�s alpha, this has a natural interpretation:

With w1(x) = 1; this says that alpha is the �rm�s percentile in the distribution of unconditional

expected �rm-speci�c returns. An interesting question here is whether ~F1 is degenerate, in which

case there is no �rm-speci�c heterogeneity.

We also have

B = �g�12 (
~Y2 � ~"2) = ~F2( ~Y2);

where ~F2 � P [ ~Y2 � y]. This motivates a speci�cation test based on

~H0 : ~F1( ~Y1) = ~F2( ~Y2):

When T and N are large, we can consistently estimate ~Y�i and ~F� ; � = 1; 2; yielding

B̂N;T;1;i � F̂N;T;1( �YT;1;i) and B̂N;T;2;i � F̂N;T;2( �YT;2;i);

where we de�ne

�YT;� ;i � T�1
TX
t=1

Yit w� (Xit); and

F̂N;T;� (y) � N�1
NX
j=1

1f �YT;� ;j � yg; � = 1; 2:

Under strict monotonicity, the estimators B̂N;T;� ;i are consistent for Bi as N;T ! 1; other-
wise, they di¤er under suitably strong monotonicity failures. Lemma 8.3 provides a precise formal

statement of the latter claim. An interesting situation arises here, as failures of strict monotonic-

ity (hence identi�cation of g) rendered undetectable by the weighted averaging (because �g1 and

�g2 are nevertheless strictly monotone) are in fact cases where B is identi�ed, regardless of the

non-monotonicity of g(x; �): Identi�cation of B is often of interest in its own right, for example in

modeling asset returns.

Here, the exogeneity assumptions Xt ? B and "t ? B j w� (Xt); � = 1; 2 permit inference

on monotonicity of �g1 and �g2. Further, as we discuss preceding Theorem 8.4 in the appendix,

dropping these conditions introduces multiple generic sources of non-monotonicity: rejecting ~H0

may then be due to non-monotonicity of either E(g(Xt; B) w� (Xt) j B) or E("t w� (Xt) j B); or
both. When E("t w� (Xt) j B) is non-constant in B; as generally holds when either Xt ? B or

"t ? B j w� (Xt) fail, it is generically non-monotonic. Non-monotonicity of E(g(Xt; B) w� (Xt) j B)
can arise either from the non-monotonicity of g or from the failure of exogeneity, Xt ? B: The

appendix contains further discussion.

These statistics now permit speci�cation tests based on an exact analog of DN ,

D̂NT �
NX
i=1

(B̂N;T;1;i � B̂N;T;2;i)2:
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Use of multiple weighting functions w� ; � = 1; :::; T ; leads to analogous test statistics

D̂NT �
T �1X
�=1

TX
&=�+1

NX
i=1

(B̂N;T;� ;i � B̂N;T;&;i)2:

To study the asymptotic properties of D̂NT under ~H0, we write kZk2+
 � fE jZj
2+
 g1=(2+
)

and impose the following assumptions:

Assumption C.1 (i) Let Zit � ("it; X 0
it)
0 and Zi � fZi1; Zi2; :::g: The sequence f(Zi; Bi)g is IID.

(ii) For each i; f(Xit; "it)g is strictly stationary and strong mixing with mixing coe¢ cient � (�)
satisfying

P1
s=1 � (s)


=(2+
) <1 for some 
 > 0:

Assumption C.2 Let T 2 N: For � = 1; 2; :::; T ; w� : X ! R+ is a measurable function such
that for some C <1; kg (Xit; Bi) w� (Xit)k2+
 < C and k"itw� (Xit)k2+
 < C:

Assumption C.3 (i) For � = 1; 2; :::; T ; the CDF ~F� of ~Y�;i � E [Yitw� (Xit) j Bi] admits a
PDF ~f� that is uniformly bounded on its support. (ii) For � = 1; 2; :::; T and su¢ ciently large T;
the CDF ~FT� of �YT;� ;i admits a PDF ~fT� that is continuous on its support, and g� is continuous,

where g� (Bi) � E(g(Xit; Bi)w� (Xit) j Bi):
Assumption C.4 Let �i � ( ~Y1;i; :::; ~YT ;i)0;  

�
�i; �j

�
�
PT �1
�=1

PT
&=�+1[1f ~Y�;j � ~Y�;ig� ~F� ( ~Y�;i)�

1f ~Y&;j � ~Y&;ig + ~F&( ~Y&;i)]; and  � (u; v) �
R
 (�; u) (�; v) ~F (d�) ; where ~F denotes the CDF of

�i: The non-zero eigenvalues
2 �j ; j = 1; 2; :::; for  � (u; v) satisfy

P1
j=1 j�j j <1:

Assumption C.5 As N !1; T=N !1:

Together, Assumptions C.0 and C.1 specify the data generating process. Given the exogene-

ity assumptions Xt ? B and "t ? B j w� (Xt); � = 1; :::; T ; strict monotonicity implies ~H0; as
discussed above. Assumption C.1 rules out cross-section dependence across individuals and non-

stationarity across time. We can relax strict stationarity at the cost of more complicated notation.

Assumption C.2 imposes some moment conditions. Assumption C.3(i) is weak. Assumption C.4

is used to establish the asymptotic distribution of a certain degenerate second-order U -statistic.

Assumption C.5 imposes conditions on (N;T ) that greatly facilitate the asymptotic analysis. As

we show below, however, suitable bootstrap methods deliver reliable �nite sample inference even

when T is a modest multiple of N:

De�ne the bias term

BNT � N�2
T �1X
�=1

TX
&=�+1

NX
i=1

NX
j 6=i
[1f ~Y�;j � ~Y�;ig � ~F� ( ~Y�;i)� 1f ~Y&;j � ~Y&;ig+ ~F&( ~Y&;i)]

2:

We can now describe the asymptotic distribution of D̂NT under ~H0 as N !1:
2The eigenvalues depend on the choice of basis for the underlying Hilbert space; the speci�cs are not critical

here. See Chen and White (1998) for details.
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Theorem 4.1 Suppose Assumptions C.0-C.5 hold. Then under ~H0 : ~F� ( ~Y�;i) = ~F&( ~Y&;i) for

� ; & = 1; 2; :::; T ; D̂NT � BNT
d!
P1
j=1 �j(Z2j � 1); where fZjg is a sequence of IID N (0; 1)

random variables.

The proof shows that D̂NT is asymptotically equivalent to an infeasible test statistic ( �DNT )

based on the unobservable ~Y�;i�s. After centering with BNT , �DNT can be written as a second-order
degenerate U -statistic whose asymptotic distribution has been well studied (see, e.g., Chen and

White, 1998).

To implement the test, we consistently estimate BNT with

B̂NT � N�2
T �1X
�=1

TX
&=�+1

NX
i=1

NX
j 6=i
[1f �YT;� ;j � �YT;� ;ig�F̂N;T;� ( �YT;� ;i)�1f �YT;&;j � �YT;&;ig+F̂N;T;� ( �YT;&;i)]2:

It is straightforward to show that B̂NT � BNT = oP (1) : Then we have

JNT � D̂NT � B̂NT
d!

1X
j=1

�j
�
Z2j � 1

�
under ~H0:

As the limiting distribution depends on the di¢ cult to estimate nuisance parameters f�jg ; we
will propose a bootstrap method to obtain the needed p-values.

To examine the asymptotic local power of the JNT test, we consider the sequence of Pitman

local alternatives

~H1 (
N ) : ~F� ( ~Y�;i)� ~F&( ~Y&;i) = 
N�N;�;&( ~Y�;i; ~Y&;i) for 1 � � 6= & � T ;

where 
N ! 0 as N !1 and the �N;�;&�s are continuous functions such that � � limN!1
PT �1
�=1PT

&=�+1E[�N;�;&(
~Y�;i; ~Y&;i)]

2 < 1: The following theorem establishes the asymptotic local power

of the JNT test.

Theorem 4.2 Suppose Assumptions C.0-C.5 hold. Then under ~H1
�
N�1=2� ; JNT d!

P1
j=1 �j

(Z2j � 1) + �:

Theorem 4.2 shows that the JNT test detects local alternatives converging to the null at rate

N�1=2.

The next theorem establishes the consistency of the test.

Theorem 4.3 Suppose Assumptions C.0-C.5 hold. Then under ~H1 � ~H1 (1) ; N
�1JNT = � +

oP (1) ; where � �
PT �1
�=1

PT
&=�+1E

h
~F� ( ~Y�;i)� ~F&( ~Y&;i)

i2
; so that P (JNT > cN ) ! 1 under H1

for any nonstochastic sequence cN = o (N) :
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4.2 Fully Nonseparable Structures

We now consider fully nonseparable structures of the form

Yt = g(Xt; "t; �(A)); t = 1; 2; ::: :

Formally, we impose

Assumption D.0 Assumption A.1 holds with �(x; u) = g(x; '(v); �(a)); where � : R`1 ! I;
' : R`2 ! R; and g : Rd � R � I ! R are measurable; and with Ut = (A; Vt); Yt = �(Xt; Ut) =

g(Xt; '(Vt); �(A)); t = 1; 2; ::: .

As above, Ut = (A; Vt) contains a time-invariant attribute vector, A; and a time varying driver,

Vt; we again write B � �(A) and "t � '(Vt): Taking "t to be scalar is without loss of generality,

in view of Proposition 2.2. We �rst discuss speci�cation testing; we then brie�y provide further

discussion of identi�cation.

The key step in treating this case is to view (Xt; "t) here as corresponding to Xt in the partially

nonseparable case. Thus, we impose the exogeneity condition (Xt; "t) ? B; and the monotonicity

condition becomes that g(x; e; �) is strictly monotone. The only di¤erence is that because "t is
unobservable, we cannot directly construct weights using "t; instead, the weights are functions only

of Xt: As above, let fXt; "tg be ID, and let non-negative weight functions w1 and w2 be de�ned
on X ; such that E(w� (Xt)) = 1; � = 1; 2: Let ~Y1 = ~Y1t � E(Yt w1(Xt) j B) and ~Y2 = ~Y2t � E(Yt

w2(Xt) j B): Then

~Y1 = E(g(Xt; "t; B) w1(Xt) j B) =
Z
g(x; e;B) w1(x) dF (x; e) � �g1(B); and

~Y2 = E(g(Xt; "t; B) w2(Xt) j B) =
Z
g(x; e;B) w2(x) dF (x; e) � �g2(B);

where the second equality in each line holds given (Xt; "t) ? B:

The development of the previous section applies immediately, with the obvious modi�cations,

so that ~F1( ~Y1) = B = ~F2( ~Y2) given strict monotonicity. Thus, we again test

~H0 : ~F1( ~Y1) = ~F2( ~Y2):

The statistics and tests are identical. Lemma 8.3 and Theorem 8.4 apply with (Xt; "t) replacing

Xt; so we do not repeat our previous discussion. The only real di¤erence from the partially

separable case is that here the test may lack power against certain alternatives that can only be

revealed by using weights that depend on "t:

To close this subsection, we brie�y discuss identi�cation. If indeed g(x; e; �) is strictly monotone
and (Xt; "t) ? B; then, as we have just seen, B is identi�ed as, e.g., B = ~F ( ~Y ); with ~Y = ~Yt �
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E(Yt j B) and ~F the CDF of ~Y : Thus, B can be consistently estimated when T !1; in this sense,
B is known asymptotically. One can then identify g using the results of Section 2, treating X

and B as the observables, with " the sole scalar unobservable. Speci�cally, with g(x; �; b) strictly
monotone and (X;B) ? "; Proposition 2.1 identi�es g(x; �; b) and e: These identi�cations may be
useful for testing whether or not the structural function is partially nonseparable. Further, they

may be helpful in re�ning estimation for the partially nonseparable case treated by E. As these

topics are well beyond the scope of the present study, we leave them for future research.

5 Monte Carlo Simulations

In this section we conduct some Monte Carlo experiments to evaluate the �nite sample perfor-

mance of our tests. We �rst consider the nonseparable case where the unobservables are attributes

varying across individuals but not time. Then we consider the nonseparable case where we have

both time-invariant and time-varying unobservables.

5.1 Unobservable Attributes

We consider two data generating processes (DGPs):

DGP 1. Yit = 1 +Xit + (1 + �Xit)Ai

DGP 2. Yit =
q
0:4 +X2

itAi � �A2i'(0;0:5) (Xit) ;
where for i = 1; :::; N; t = 1; 2; Ai is IID U (0; 1) ; Xit is IID, computed as the sum of 48

independent U (�0:25; 0:25) random variables; Xit is independent of Aj for each i; j; t; '(0;0:5)
is the normal PDF with mean 0 and variance 0:5; and � controls the degree of violation of

monotonicity in Ai:We use � = 0 and � > 0 to study the �nite sample level and power properties

of our test, respectively. Note that by construction, both Xit and Yit have compact support for

each t: On the other hand, according to the central limit theorem we can treat Xit as being nearly

standard normal random but with compact support [�12; 12].
To construct the test statistic DN , we estimate the conditional CDF Ft (Yit j Xit) using leave-

one-out local linear regression (p = 1). We choose the Gaussian kernelK (x) = (2�)�1=2 exp
�
�1
2x
2
�
:

Since there is no data-driven procedure for the optimal choice of bandwidth for our test, we follow

a rule of thumb, choosing the bandwidth as h = 0:5sXN�1=4; where sX is the geometric average of

the sample standard deviations fXitgNi=1 ; t = 1; 2: Note that we use undersmoothing to eliminate
the e¤ect of the �nite sample bias of the CDF estimates.

It is well known that the asymptotic normal distribution typically does not give a good ap-

proximation to the �nite sample distribution of many nonparametric tests. Thus, we suggest a

bootstrap method, yielding bootstrap critical values or p-values. For this, we generate bootstrap

data f(Y �it ; X�
it) : i = 1; :::; N; t = 1; 2g as follows:
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1. Set X�
it = Xit for each (i; t) and generate Ai as IID U (0; 1) random variables.

2. Generate Y �it as ~F
�1
NT (Ai j X�

it) where ~F
�1
NT (� j x) is a nonparametric estimate of the quantile

function F�1 (� j x) (since F�11 (� j x) = F�12 (� j x) under the null).

We consider two types of nonparametric estimates for F�1 (� j x) : one is the local linear (LL)
quantile regression estimate (e.g., Yu and Jones, 1998), and the other is obtained by inverting

a weighted Nadaraya-Watson (WNW) estimate of F (y j x) (e.g., Cai, 2002). Speci�cally, the
former is de�ned as the minimizing intercept in the problem

min
f�0;�1g

2X
t=1

NX
i=1

��
�
Yit � �0 � �01 (Xit � x)

�
K~h (Xit � x) ; (8)

where �� (z) � z(� � 1 fz � 0g) is the �check� function, and ~h � ~h (N) is the bandwidth. It is

well known that the solution to this problem is determined by �tting certain observations exactly

and that the resulting quantile function estimate must be non-monotonic in its argument � at

some values of Xit. As a result, Y �it = ~F�1NT (Ai j X�
it) may not be monotonic in Ai for some

values of X�
it; this might have some adverse impact on test performance. Further, the LL estimate

does not constrain the corresponding CDF estimate to lie between zero and one. To avoid these

potential problems, Cai (2002) proposed a WNW estimator for F (y j x) and inverted it to obtain
the estimate of F�1 (� j x). Let

F̂wnw(y j x) �
P2
t=1

PN
i=1 pit(x)K~h(Xit � x)1 fYit � ygP2
t=1

PN
i=1 pit(x)K~h(Xit � x)

; (9)

where the nonnegative weight functions, pit(x); are chosen such that

2X
t=1

NX
i=1

pit(x) = 1; and
2X
t=1

NX
i=1

pit(x)(Xit � x)K~h(Xit � x) = 0: (10)

Cai (2002) proposed choosing fpit(x)g using empirical likelihood, i.e., to maximize
P2
t=1

PN
i=1

log fpit(x)g subject to the constraints speci�ed in (10). Then ~F�1NT (� j x) is given by inffy 2 R :
F̂wnw(y j x) � �g: This ensures the monotonicity of Y �it = ~F�1NT (Ai j X�

it) in Ai. For our bootstrap,

we take ~h = 2~sXN�1=6 where ~sX is the sample standard deviation of fXit; 1 � i � N; t = 1; 2g :
We consider two sample sizes, N = 100; 200 in our simulation study. Due to the considerable

computational burden for the bootstrap, we use 250 replications for each sample size N and 100

bootstrap resamples in each replication.

Table 1 reports the empirical rejection frequencies for our test at various nominal levels for

DGPs 1-2. The bootstrap p-values are obtained in two ways: one is based on the LL conditional

quantile regression, and the other is based on Cai�s inverse CDF estimator. When � = 0; the
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Table 1: Finite sample rejection frequency for DGPs 1-2
DGP N � Bootstrap based on LL estimate Bootstrap based on inverse CDF

1% 5% 10% 1% 5% 10%

1 100 0 0.008 0.032 0.088 0.012 0.056 0.130
0.5 0.052 0.164 0.256 0.208 0.376 0.488
1 0.752 0.864 0.908 0.904 0.960 0.968

200 0 0.008 0.036 0.076 0.020 0.048 0.112
0.5 0.192 0.412 0.528 0.496 0.716 0.796
1 0.996 1.000 1.000 0.996 1.000 1.000

2 100 0 0.004 0.036 0.080 0.012 0.052 0.104
0.5 0.020 0.092 0.168 0.032 0.128 0.220
1 0.728 0.884 0.944 0.744 0.916 0.956

200 0 0.004 0.048 0.080 0.004 0.052 0.112
0.5 0.044 0.136 0.216 0.040 0.156 0.240
1 0.988 1.000 1.000 1.000 1.000 1.000

corresponding rows report the empirical level. We summarize the main �ndings from Table 1.

First, the level of our test is fairly well behaved, and it can be close to the nominal level for sample

sizes as small as N = 100: When N increases, the level generally improves somewhat. Second,

the power of our test is reasonably good. It increases quickly as either � increases or the sample

size doubles. Third, the inverse CDF method generally outperforms the LL method.

5.2 Time-varying Unobservables and Unobservable Attributes

We consider the following three DGPs:

DGP 3. Yit = 1 +Xit + (1 + �Xit)Bi + �"it

DGP 4. Yit =
q
0:4 +X2

itBi � �B2i '(0;0:5) (Xit) + �"it
DGP 5. Yit = '(0;0:5) (Xit) + (0:6 + 0:15Xit) "it + (1 + �Xit)Bi;

where for i = 1; :::; N; t = 1; :::; T; Bi = Ai and Xit are generated as in DGPs 1-2; "it is IID

N (0; 1) across i and t; and independent of Xjs and Bj for all i; t; j; s; and � is taken to ensure

that the signal-to-noise ratio in DGPs 3-4 is 1 across all simulations. The structures in DGPs 3-4

are partially nonseparable, whereas that in DGP 5 is fully nonseparable.

To construct our test statistic, we need to choose the weight functions w� (�), � = 1; 2; :::; T .
For �xed T , let ~q0 = �1; ~qT =1; and let ~q� denote the sample �=T -quantile of fXit; 1 � i � N;

1 � t � Tg for 1 � � � T � 1: Then let

w� (Xit) = 1 f~q��1 � Xit � ~q�g ; � = 1; 2; :::; T :

Under Assumption C.2(i) we can show that the sample quantiles estimate their population analog
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at the rate (NT )�1=2, so this estimation error plays an asymptotically negligible role in our

analysis.

As remarked earlier, the asymptotic distribution of JNT depends on the sequence of eigenvalues

f�jg ; which is di¢ cult to estimate accurately in practice. Further, our asymptotic theory relies
on T=N ! 1 as N ! 1; which may appear too strong for many applications. Nevertheless,
we can circumvent both issues using a suitable bootstrap method. Speci�cally, we propose the

following procedure to obtain bootstrap p-values for the JNT test:

1. For i = 1; :::; N; set B̂N;T;i � F̂N;T ( �YT;i), where �YT;i � T�1
PT
t=1 Yit; and F̂N;T (�) �

N�1PN
i=1 1f �YT;i � �g:

2. For i = 1; :::; N; and t = 1; :::; T; estimate g(Xit; B̂N;T;i) using the local linear regression of

Yit on (Xit; B̂N;T;i) and by imposing the monotonicity of g (x; b) in b (details given below).

Let ĝ(Xit; B̂N;T;i) denote the estimate.

3. Let "̂i � ("̂i1; :::; "̂iT )
0 ; where "̂it � Yit � ĝ(Xit; B̂N;T;i): For i = 1; :::; N; randomly draw

"�i from f"̂1; :::; "̂Ng with replacement. Let "�it denote the tth element of "�i : Generate Y �it
according to3

Y �it = ĝ(Xit; B̂N;T;i) + "
�
it:

4. Compute the bootstrap test statistic J�NT in the same way as JNT using f(Xit; Y �it) ; 1 �
i � N; 1 � t � Tg.

5. Repeat steps 3 and 4 B times to obtain B bootstrap test statistics fJ�NT;jgBj=1: Calculate
the bootstrap p-values p� � B�1

PB
j=1 1fJ�NT;j � JNT g and reject ~H0 if p�is smaller than

the prescribed level of signi�cance.

We impose the null hypothesis of monotonicity in Step 2. There exists a vast literature

on the problem of estimating a monotone regression function. See, e.g., Dette, Neumeyer, and

Pilz (2006, DNP) and the references there. DNP consider kernel estimation of a monotone

regression function that is a function of a single variable. Compared to other approaches, theirs

has the great advantage of simplicity, as it does not require constrained optimization; further, it is

asymptotically equivalent to the unconstrained kernel estimate. Here we modify their procedure

to allow another variable (Xit here) to enter the regression function non-monotonically. This

procedure has three steps:
3This method also works for the fully nonseparable structure, where Yit = g(Xit; "it; Bi) with (Xit; "it) ? Bi;

as in DGP 5. Let �g (Xit; Bi) � E (YitjXit; Bi) = E [g(Xit; "it; Bi)jXit; Bi] : Then Yit = �g (Xit; Bi) + "it; where

"it � Yit � �g (Xit; Bi) ; and �g (x; �) is monotone for all x provided g(x; "; �) is monotone for all (x; ") : This ensures
that we can generate the bootstrap analog of Yit using estimates of �g for the fully nonseparable case.
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Table 2: Finite sample rejection frequency for DGPs 3-5 (� = 0)

DGP N T 5% test 10% test
T = 2 T = 3 T = 5 T = 10 T = 2 T = 3 T = 5 T = 10

3 50 50 0.116 0.080 0.080 0.084 0.176 0.144 0.144 0.160
50 100 0.084 0.060 0.044 0.032 0.180 0.140 0.120 0.128
100 50 0.068 0.072 0.036 0.028 0.124 0.132 0.116 0.096
100 100 0.048 0.064 0.024 0.028 0.112 0.112 0.092 0.072

4 50 50 0.156 0.072 0.068 0.036 0.248 0.156 0.136 0.064
50 100 0.084 0.080 0.084 0.036 0.180 0.160 0.148 0.116
100 50 0.088 0.044 0.020 0.016 0.180 0.120 0.052 0.052
100 100 0.076 0.036 0.032 0.016 0.124 0.084 0.060 0.028

5 50 50 0.100 0.012 0.024 0.032 0.184 0.048 0.052 0.084
50 100 0.092 0.028 0.032 0.032 0.180 0.056 0.076 0.116
100 50 0.084 0.024 0.008 0.024 0.140 0.060 0.028 0.060
100 100 0.080 0.012 0.012 0.028 0.132 0.032 0.024 0.080

Step 1. Let J be a large integer such that J ! 1 as N ! 1: For i = 1; :::; N; t = 1; :::; T;
and j = 1; :::; J; compute the conventional local linear estimate ~g (Xit; j=J) of g (Xit; j=J) by using

the product of Gaussian kernels (k) and bandwidth (h = (hx; hb)) chosen according to Silverman�s

rule of thumb.

Step 2. For i = 1; :::; N and t = 1; :::; T; obtain the estimate ĝ�1 (Xit; z) = (Jhd)�1
PJ
j=1

R z
�1

k
�
h�1d [~g (Xit; j=J)� b]

�
db; which estimates the inverse function g�1 (Xit; �) at z; where the inverse

is taken with respect to the second argument of g for �xed Xit:

Step 3. Compute the estimate ĝ(Xit; B̂N;T;i) = inffz : ĝ�1 (Xit; z) � B̂N;T;ig:

Under conditions similar to those of DNP, we can show that ĝ(Xit; B̂N;T;i) is asymptotically

equivalent to ~g(Xit; B̂N;T;i); although only the former is guaranteed to be monotone in its second

argument. In the simulations, hd = h2b ; and we choose J = 40 to save computation time.

Tables 2-3 report the empirical rejection frequencies for the JNT test at the 5% and 10%

nominal levels for � = 0 and 1, respectively. Here, we use 250 replications for each sample size

(N;T ) and 200 bootstrap resamples in each replication. From Table 2, we see that the choice of

T and thus the weight function w� (� = 1; 2; :::; T ) is important for the level behavior of the test.
For small values of T (say 2); the test tends to be oversized, but the size distortion becomes less

severe as either N or T increases. On the other hand, the test is undersized when T , N; and T
are all large, giving a conservative test. Table 3 indicates that our JNT test has useful power in

detecting departures from monotonicity in unobservables. The power performance also depends

on the choice of T : Choices of T that are too small or too large may have adverse e¤ects on

power performance. Also, both N and T a¤ect the power: for DGPs 3 and 5, as N doubles, the
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Table 3: Finite sample rejection frequency for DGPs 3-5 (� = 1)

DGP N T 5% test 10% test
T = 2 T = 3 T = 5 T = 10 T = 2 T = 3 T = 5 T = 10

3 50 50 0.804 0.908 0.900 0.668 0.876 0.956 0.964 0.800
50 100 0.768 0.928 0.928 0.832 0.880 0.980 0.976 0.964
100 50 0.944 0.972 0.960 0.760 0.980 1 0.992 0.908
100 100 1 1 1 1 1 1 1 1

4 50 50 0.216 0.196 0.216 0.176 0.344 0.352 0.340 0.292
50 100 0.184 0.252 0.268 0.236 0.292 0.412 0.408 0.384
100 50 0.192 0.268 0.200 0.144 0.332 0.444 0.320 0.292
100 100 0.364 0.552 0.452 0.360 0.512 0.666 0.596 0.548

5 50 50 0.848 0.964 0.992 1 0.924 0.988 0.996 1
50 100 0.692 0.984 1 1 0.800 1 1 1
100 50 0.964 1 1 1 0.992 1 1 1
100 100 1 1 1 1 1 1 1 1

power increases regardless of whether T doubles or not; whereas for DGP 4, the power noticeably

increases only when both N and T increase.

6 Two Applications

In this section we apply the methods put forward here to two applications, one from �nance and

one from consumer demand. They are meant to illustrate the power of our test to detect model

deviations from exogeneity and scalar monotonicity. We have selected these two examples, because

they are in a sense polar cases: In the �nance literature, since Fama and French�s (1993) seminal

contribution, the emphasis is on reduced form explanation. Exogeneity is taken as given; our

test hence examines whether there is a single �rm-speci�c �fourth factor�that impacts the �rm�s

valuation. Commonly, such a factor would be associated with the �rms�s quality or reputation.

Maintaining the assumption of exogeneity, our test becomes a test of scalar monotonicity.

In contrast, in consumer demand, the models are rather structural, and exogeneity is hence im-

plausible. Nevertheless, since the seminal work of Berry, Levinsohn, and Pakes (1995), monotonic-

ity in a scalar unobservable is commonly assumed. Typically, the unobservable is an unobserved

product characteristic, most often associated with quality. A recent reference that discusses non-

parametric identi�cation with scalar monotonicity is Berry and Haile (2010). Maintaining scalar

monotonicity, our test becomes a test of exogeneity of the own price.
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6.1 An Application from Finance

A major advance in understanding asset return behavior is the Fama and French (1993) ("FF")

factor model of asset returns, which can be written

Yit = �i + �
0
iXt + �it; (11)

where Yit is the excess return of asset i in period t (net returns minus the T-Bill return); Xt =

(RMRFt; SMBt;HMLt)
0 is a vector of returns factors, where RMRFt is the period t excess return

on a value-weighted aggregate market proxy portfolio, and SMBt and HMLt are period t returns

on value-weighted, zero-investment factor-mimicking portfolios for size and book-to-market equity,

respectively, �it is an exogenous shock, �i is the asset�s idiosyncratic return ("alpha"), and the

elements of �i are risk premia associated with the corresponding risk factors.

An extension of this model permits time-varying risk premia, �it :

Yit = �i + �
0
itXt + �it: (12)

See, for example, Harvey (1989), Ferson and Harvey (1991, 1993), Jagannathan and Wang (1996),

and Ghysels (1998) for discussion of the importance of time-varying risk premia.

Here, we apply our monotonicity test to stock returns following a nonparametric version of

the time-varying Fama-French model,

Yit = g(Xt; "it; Bi); (13)

where "it corresponds to (�it; �
0
it)
0 and Bi corresponds to �i: Our theory allows, but does not

require, Xt to also vary with i. The exogeneity condition is that (Xt; "it) ? Bi. This is plausible

if we think of Bi (, �i) as a persistent attribute speci�c to �rm i, say, its �rm culture, while

market factors Xt are unrelated to the �rm�s attributes, and we view "it (, (�it; �
0
it)) as transitory

shocks like changes in �rm management and in investor risk preferences that drive risk premia.

The other regularity conditions of our theory also plausibly apply to the stock returns data we

describe below, so we interpret our test as a test for strict monotonicity in B:

Although the monotonicity property is straightforward, it is important to understand the

possible reasons for rejection in the present context. One possibility is that a single Bi interacts

with shocks, risk factors, and risk preferences determining risk premia in possibly complicated

ways. Another is that there are multiple �rm-speci�c factors in�uencing asset returns. If either

possibility holds, then eq.(12) is not a correct description of the data generating process, so that

linear FF models with time-varying risk premia are misspeci�ed, and there is no single persistent

factor that captures the �rm�s attributes in a way that allows attaching a single permanent quality

factor to their returns.
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6.1.1 Data

Our factor data come from French�s webpage4 and are merged with data from Yahoo! �nance.

We obtained weekly stock price data for N = 50 companies randomly chosen from the S&P 500;

a list of the �rms analyzed can be found in Table A.1 of the appendix. We limit ourselves to �fty

�rms to ensure that T > N , while keeping computation costs manageable.

The data span a period of T = 610 weeks between 7/17/1998 and 3/26/2010. Note that when

querying Yahoo�s "weekly" data, the listed date is for the beginning of the trading week (usually

a Monday), but the reported price is that week�s closing price (usually a Friday). The data from

French�s webpage reports a week�s last trading day�s data, and labels that observation with the

date of that week�s last trading day.

For each �rm i, we calculate returns in period t as Yit = [(Pit=Pi;t�1)� 1]�RFt; where Pit is
the closing price (adjusted for splits and dividends) and RFt is the risk free return, also obtained

from French�s webpage.

6.1.2 Results

To apply our test procedure to the data described above, we use the following speci�cations:

The estimation method is local linear regression; the bandwidth is chosen by Silverman�s rule of

thumb, as in the simulations, but adjusted according to the number of continuous regressors. The

kernel is a product of Gaussian kernels. The weighting is performed as follows: we �rst calculate

(Xit;k � �Xk)
2 for the k-th regressor (here �Xk is the sample mean), then sum over the regressors

(indexed by k); we then use the quantile-partition weights based on this sum. The test statistic

is computed just as in the simulations, following exactly the same steps as in Section 5.2.

The results are summarized in Table 4. In all instances, we soundly reject the strict monotonic-

ity hypothesis. This implies that there is no single persistent factor that captures �rm di¤erences

in a way that corresponds to alpha. This calls into question the linear time-varying FF model and

suggests that additional e¤ort might be pro�tably directed toward gaining a better understanding

of the relation between �rms�stock returns, �rm characteristics, market factors, and investor risk

preferences. This also resolves a puzzle: why do countless studies �nd statistically signi�cant

non-zero alphas if the market is in fact e¢ cient? These results suggest a compelling reason: the

linear FF model, even with time-varying risk premia, is not an accurate description of the DGP.

Our procedure permits a more stringent test of this aspect of market e¢ ciency.

4We obtained weekly Fama-French factor data from Ken French�s website: http://mba.tuck.

dartmouth.edu/pages/faculty/ken.french/data_library.html

The precise de�nitions of the factors can also be found here:

http://mba.tuck.dartmouth.edu/pages/faculty/ken.french/Data_Library/f-f_factors.html
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Table 4: p-values for monotonicity test - asset returns

Bootstrap Replications N T p-values
T = 2 T = 3 T = 5 T = 10

B = 200 50 610 < 0:005 < 0:005 < 0:005 < 0:005
B = 5000 50 610 0:0002 0:0002 < 0:0002 < 0:0002
B = 10000 50 610 0:0001 0:0001 < 0:0001 < 0:0001

Note, however, that even with the failure of monotonicity, useful information about risk pre-

mia may still be recovered from nonparametric speci�cations of the sort used here. Although

monotonicity failure rules out identifying alpha, the further exogeneity condition Xt ? (Bi; "it)

permits recovery of expected risk premia, such as E(Dkg(x; "it; Bi)); where Dk � @=@xk; even in

the absence of strict monotonicity, as implied by results of AM. Certain quantile e¤ects may also

be of interest; these are identi�ed by results of Hoderlein and Mammen (2007).

6.2 An Application from Consumer Demand

In contrast to �nance, in consumer demand exogeneity is a frequently criticized assumption, for

instance due to simultaneity (the �rms base their price-setting behavior on expected demand,

but demand depends on prices), or due to omitted characteristics of the product. However, it

is often argued that this endogeneity is due to a product-speci�c factor that may in fact enter

monotonically (Berry, Levinsohn, Pakes (1992); Berry and Haile (2010)). Hence, for the rest of

this section, we maintain the assumption that scalar monotonicity holds. Note that our general

nonseparable approach is ideally suited to this problem: as we are considering an aggregate

consumption relationship, we face, in general, a highly nonlinear relationship.

6.2.1 Data

The data are supermarket scanner data collected by Information Resources, Inc. (IRI). The

scanner data consist of variables measuring price, quantity, and promotional variables for the full

range of available RTE cereal products on a weekly basis, for three years beginning January 2005

and ending December 2007, so that T = 156. The data have a panel structure, where the cross-

section dimension is a particular supermarket retail chain operating in a particular geographic

market. For example, San Diego is represented by three major chains; these are three distinct

cross-section units. The cross-section dimension is N = 70 supermarket-city pairs. We analyze the

top-selling product for each of the �ve manufacturers. Table A.2 presents a variety of summary

statistics for quantity-weighted market share, price, and promotional variables.

Although there are some di¤erences, IRI�s de�nition of a geographic market is roughly equiva-
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Table 5: p-values for endogeneity test - cereal

Product N T p-values
T = 2 T = 3 T = 5 T = 10

G MILLS CHEERIOS 15OZ 70 156 0.0 0.0 0.0 0.0
KELLOGG FROSTED FLAKES 20OZ 70 156 0.0 0.0 0.0 0.0
POST HNY BNCHS OF OATS REG 16OZ 70 156 0.0 0.0 0.0 0.0
QUAKER LIFE REGULAR 21OZ 70 156 0.110 0.185 0.0 0.0
STR BDS RAISIN BRAN 20OZ 70 156 0.0 0.0 0.0 0.0

lent to the Census Bureau�s metropolitan statistical area (MSA) or combined metropolitan statis-

tical area (CMSA). This is convenient for merging income or demographics data with the scanner

data. Here, we merge income data from the Bureau of Labor Statistics (BLS). Speci�cally, we

obtain average weekly wage data for each geographic market from the BLS�s Quarterly Census of

Employment and Wages (QCEW) database. Wage data are collected quarterly, so although the

scanner data contains data at a weekly frequency, the QCEW wage data is only updated quarterly.

Although we could merge additional demographic information from the Census Bureau, due to

the nonparametric setup, we focus only on those explanatory variables that have the strongest

impact in Megerdichian�s (2009) parametric study. See Megerdichian (2009) for further details on

the data used here.

6.2.2 Results

In implementing the test, we have applied speci�cations nearly identical to those of the �nance

application. The dependent variable is quantity-weighted market share and the explanatory vari-

ables are price, promotions (ranging between zero and one; see Megerdichian, 2009), and weekly

wage. Table 5 gives the test results.

As is obvious from these results, exogeneity is widely rejected. For all but one product the

p-values are virtually zero. (To save space, we report "0.0" as a shorthand for p < :005:) Only for

�Quaker Life" do we have some evidence that endogeneity might not be an issue, though at higher

values of T we also obtain rejections. A Bonferroni-Hochberg test (Hochberg, 1988) of multiple

hypotheses applied to all results in this row gives p < :005: Assuming monotonicity and using our

general nonparametric test, we conclude that endogeneity is indeed the issue the demand and IO

literatures believe it to be. This simple model thus does not properly address confounding e¤ects

and the simultaneous structure typical in this literature. We leave a more elaborate approach,

closer to the structural IO models now common in the literature, for future analysis.
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7 Summary and Concluding Remarks

Monotonicity in a scalar unobservable is a crucial identifying assumption for an important class

of nonparametric structural speci�cations accommodating unobserved heterogeneity. Tests for

this monotonicity have previously been unavailable. Here we propose and analyze tests for scalar

monotonicity using panel data for structures with and without time-varying unobservables, either

partially or fully nonseparable between observables and unobservables. Our nonparametric tests

are computationally straightforward, have well behaved limiting distributions under the null, are

consistent against relevant and precisely speci�ed alternatives, and have standard local power

properties. We provide straightforward bootstrap methods for inference. Some Monte Carlo

experiments show that these reasonably control the level of the test, and that our tests have

useful power. We apply our tests to study asset returns and demand for ready-to-eat cereals.

For clarity, and to maintain a manageable scope for the analysis here, we focus throughout

on the strictly exogenous case. As we show, when exogeneity is not a maintained assumption,

then our tests detect either non-monotonicity or exogeneity failure. Thus, it is important to

explore whether rejection may be due to the latter failure. For this, one can relax exogeneity

to conditional exogeneity, where one maintains that, e.g., Xt is independent of A; given control

variables, Zt (Xt ? A j Zt). The analysis of this case is rather more involved, but, as we show
in Hoderlein, Su, and White (2010), analogous results and methods apply in this case as well.

As in the analysis of this paper, we abstract there from panel dynamics. An interesting topic for

further study is to examine whether and how tests for scalar monotonicity can be conducted in

dynamic panel structures.

Another interesting topic for future research is to pursue our suggestions at the end of Section

4 about testing whether the structural function is partially nonseparable and re�ning estima-

tion for the partially nonseparable case treated by E. Finally, there is a considerable variety of

opportunities for applying these tests and their further extensions.

8 Mathematical Appendix

Proof of Proposition 2.1 For all (x; y) 2 X � Y; we have

F (y j x) � P [Y � y j X = x] = P [m(X; ") � y j X = x]

= P [m(x; ") � y] =

Z 1

0
1fm(x; e) � yg de

= �fm�1
x (�1; y]g;

where � denotes Lebesgue measure and m�1
x (�1; y] is the preimage in I of the half-ray (�1; y]

under m(x; �): The second line uses X ? " and " � U[0; 1]:
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Let x be given. If m(x; �) is strictly increasing, m�1
x (�1; y] = (0;m�1(x; y)] and F (y j x) =

m�1(x; y) for all y: By our convention, this also covers m(x; �) strictly decreasing.
Now suppose that m(x; �) is not strictly increasing. First, suppose that m(x; �) is invertible,

and also suppose F (y j x) = m�1(x; y) for all y: The monotonicity of F (� j x) and the invertibility
of m�1(x; �) imply that m�1(x; �) is strictly increasing. But this implies that m(x; �) is strictly
increasing, a contradiction, so F (y j x) 6= m�1(x; y) for some y:

Finally, if m(x; �) is not invertible, then m�1(x; �) is a correspondence, not a function. But
F (� j x) is a function, so F (y j x) = m�1(x; y) cannot hold for all y 2 Y. �

Proof of Proposition 2.2 (i) The existence of the Borel isomorphism � : R` ! I such that
" � �(U) � U[0; 1] is a well known straightforward consequence of the Borel isomorphism theorem5

(see, e.g., CSZ, p.417, or Dudley (2002, theorem 13.1.1)). It follows immediately that Y =

�(X;U) = �(X; ��1[�(U)]) = �(X; ��1(")) a:s: (ii) If X ? U , it follows from Dawid (1979,

lemma 4.2(i)) and " = �(U) that X ? ": Conversely, if X ? "; it follows from Dawid (1979,

lemma 4.2(i)) and U = ��1(") that X ? U: �

Proof of Proposition 2.3 (i) Because V is nonatomic on I, there exists a Borel isomorphism
' such that " = '(V ) and " � U[0; 1]: Thus, " and m(X; ") = g(X;'�1(")) satisfy the conditions

of Proposition 2.1, and the result follows.

(ii) Given A.1, we can apply Proposition 2.2 to verify that �(x; ��1(�)) has the measurability
properties required for g(x; �(x; �)); and that V = �(U) is uniformly distributed on I; hence
nonatomic. Accordingly, we take g(x; �) = �(x; ��1(�)): Then for all (x; y) 2 X � Y;

F (y j x) � P [Y � y j X = x] = P [g(X;V ) � y j X = x]

=

Z 1

0
1fg(x; v) � yg dF (v j x)

� �[g�1x (�1; y] j x]:

As V is not independent of X; there exists X � � X , P [X 2 X �] > 0, such that for all x� 2 X �;
V j X = x� is not U[0; 1]. Let any x� 2 X � be given. If g(x�; �) is strictly increasing, then for all
y 2 Y; g�1x� (�1; y] = (0; g�1(x�; y)]: But F (� j x�) = �[(0; g�1(x�; �)] j x�] 6= g�1(x�; �); as �[� j x�]
is not Lebesgue measure on I.

Next, suppose that g(x�; �) is not strictly increasing. First, suppose that g(x�; �) is invertible,
and also suppose F (y j x�) = g�1(x�; �) for all y: The monotonicity of F (� j x�) and the invertibility
of g�1(x�; �) imply that g�1(x�; �) is strictly increasing. But this implies that g(x�; �) is strictly
increasing, a contradiction, so F (� j x�) 6= g�1(x�; �): Finally, if g(x�; �) is not invertible, then

5We thank Max Stinchcombe for pointing this out.
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g�1(x�; �) is a correspondence, not a function. But F (� j x�) is a function, so F (y j x�) = g�1(x�; y)

cannot hold for all y 2 Y. �

For any Borel set G of Rd we de�ne Pt[G] � P [Xt 2 G]; t = 1; :::; T: For any Borel set H

of �Tt=1Rd, we de�ne P1;:::;T [H] � P [(X1; :::; XT ) 2 H]: The requirement imposed in (ii) below

that the product measure P1P2 � � �PT is absolutely continuous (�) with respect to the joint
measure P1;:::;T ensures that sets with positive P1P2 � � �PT measure have positive P1;:::;T measure.
This rules out extreme forms of dependence (e.g., X1 = X2 a:s:). In (ii), we also require that

P [Yt = h(B)] < 1 for all measurable h; t = 1; :::; T; where B is a function only of A: This rules

out the trivial case in which Y1 = � � � = YT a:s:

Theorem 8.1 Suppose Assumption B.0 holds. Let the Xt�s have common minimal support X,

and write B � �(A):

(i) Suppose (a) g(Xt; �) is strictly monotone a:s:, t = 1; :::; T ; and (b) Xt ? B; t = 1; :::; T:

Then B = F (Yt j Xt) a:s:; t = 1; :::; T:
(ii) Suppose that X contains at least two points, that P1P2 � � �PT � P1;:::;T ; and that P [Yt =

h(B)] < 1 for all measurable h; t = 1; � � � ; T: Suppose either (i:a) or (i:b) does not hold. Then
P [F1(Y1 j X1) = � � � = FT (YT j XT )] < 1:

Proof of Theorem 8.1 We give the proof for T = 2: The proof for T > 2 is similar.

(i) Suppose (a) and (b) hold. Without loss of generality, we treat the case where g(Xt; �) is
strictly increasing a:s:; the strictly decreasing case is handled by replacing g(Xt; �) with �g(Xt; �):
Given (a) and (b); Proposition 2.3(i) applies, as the measurability of � and the nonatomicity

of A ensure that B � �(A) is nonatomic, and the other conditions hold by assumption. This

gives g�1(X1; Y1) = F1(Y1 j X1) a:s: and g�1(X2; Y2) = F2(Y2 j X2) a:s: From (a); we have

g�1(X1; Y1) = B = g�1(X2; Y2); so

F1(Y1 j X1) = F2(Y2 j X2) a:s:

Further, Xt ? B; t = 1; 2; ensures that for all (x; y) 2 X � Y;

F1(y j x) = P [g(X1; B) � y j X1 = x] = P [g(x;B) � y]

= P [g(X2; B) � y j X2 = x] = F2(y j x);

so F1 = F2 = F; say, which implies

B = F (Y1 j X1) = F (Y2 j X2) a:s:

(ii:1) First suppose that strict monotonicity a:s: (i.e., (a)) holds, but (b) fails, so that (X1; X2) 6?
B:Again we explicitly treat only the strictly increasing case. ThenB = g�1(X1; Y1) = g�1(X2; Y2):
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By the the proof of Proposition 2.3(ii), we also have

F1(Y1 j X1) = �1[(0; B] j X1] =
Z B

0
dF1(b j X1)

F2(Y2 j X2) = �2[(0; B] j X2] =
Z B

0
dF2(b j X2);

where Ft(b j x) de�nes the conditional CDF of B given Xt = x: Letting F1;2(b j x1; x2) de�ne the
conditional CDF of B given X1 = x1; X2 = x2; we have

P [F1(Y1 j X1) = F2(Y2 j X2)] = P [ �1[(0; B] j X1] = �2[(0; B] j X2] ]

= 1� P [ �1[(0; B] j X1] 6= �2[(0; B] j X2] ]

= 1�
Z
X�X

[

Z 1

0
1f�1[(0; b] j x1] 6= �2[(0; b] j x2]g dF1;2(b j x1; x2)] dF (x1; x2):

The desired result follows if the integral in the expression above is positive.

To simplify notation, write

�B(x1; x2) �
Z 1

0
1f�1[(0; b] j x1] 6= �2[(0; b] j x2]g dF1;2(b j x1; x2);

Then Z
X�X

Z 1

0
1f�1[(0; b] j x1] 6= �2[(0; b] j x2]g dF1;2(b j x1; x2) dF (x1; x2)

=

Z
�B(x1; x2) dP1;2(x1; x2):

The desired result follows from corollary 4.10 of Bartle (1966) (i.e., for integrable f � 0;
R
f

d� = 0 i¤ f = 0 �� a:e:), provided �B(x1; x2) is positive on a set of positive P1;2�measure.
To show this, let Xt � fx 2 X : �t[ � j x] 6= �(�)g and X ct � XnXt: By assumption, P1[X1] > 0

or P2[X2] > 0:Without loss of generality, take P2[X2] > 0; then 0 � P1[X1] � 1: Two cases exhaust
the possibilities: either P1[X1] = P2[X2] = 1 or not. First, suppose not; we take P1[X c1 ] > 0: This
covers the cases 0 � P1[X1] < 1 and 0 < P2[X2] � 1: Then �B(x1; x2) > 0 on X c1 � X2: (If not,
x2 62 X2:) Because P1P2 � P1;2, P1P2(X c1 �X2) = P1(X c1 ) P2(X2) > 0 implies P1;2(X c1 �X2) > 0;
as was to be shown.

The remaining case is P1[X1] = 1 and P2[X2] = 1; i.e. X1 = X2 = X : Suppose
R
�B(x1; x2)

dP1;2(x1; x2) = 0: Then by Bartle (1966, corollary 4.10), �B(x1; x2) = 0 P1;2 � a:e:, which further
implies �1[(0; b] j x1] = �2[(0; b] j x2] for almost all b; x1; and x2: Since X contains at least two

points, this can only hold if there exists �0, say, such that �1[(0; b] j x1] = �2[(0; b] j x2] = �0[(0; b]];

for almost all b; x1; and x2: If �0 = �; this is a contradiction. If �0 6= �; a further monotone

transformation of B can be applied without loss of generality to ensure �0 = �. But this is again

a contradiction. Thus,
R
�B(x1; x2) dP1;2(x1; x2) > 0:
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(ii:2) Now suppose that (a) fails. Since

P [F1(Y1 j X1) = F2(Y2 j X2)] = 1� P [F1(Y1 j X1) 6= F2(Y2 j X2)];

the desired result follows if P [F1(Y1 j X1) 6= F2(Y2 j X2)] > 0:
From the proof of Proposition 2.3(ii), we have

Ft(Yt j Xt) = �tfg�1Xt (�1; Yt] j Xtg = �tfg�1Xt (�1; g(Xt; B)] j Xtg

� ct(Xt; B) � Ct:

Since (a) fails, there exists a set X0 � X with P1[X0] > 0 or P2[X0] > 0 such that when Xt 2 X0;
g(Xt; �) is not strictly monotone. When Pt[X0] > 0; P [Ct = B j Xt 2 X0] is de�ned, and we have

0 � P [Ct = B j Xt 2 X0] < 1:

When Pt[X c0 ] > 0; P [Ct = B j Xt 2 X c0 ] is de�ned, and we have

P [Ct = B j Xt 2 X c0 ] = 1:

Without loss of generality, take P2[X0] > 0; then 0 � P1[X0] � 1: Two cases exhaust the

possibilities: either P1[X0] = P2[X0] = 1 or not. First, suppose not; we take P1[X c0 ] > 0: This

covers the cases 0 � P1[X0] < 1 and 0 < P2[X0] � 1: We have

P [F (Y1 j X1) 6= F (Y2 j X2)] = P [C1 6= C2]

� P [(C1 6= C2) \ (X1 2 X c0 ) \ (X2 2 X0)]

= P [(C1 = B) \ (B 6= C2) \ (X1 2 X c0 ) \ (X2 2 X0)]:

Now

P1P2[(C1 = B) \ (B 6= C2) \ (X1 2 X c0 ) \ (X2 2 X0)]

= P1[(C1 = B) \ (X1 2 X c0 )] P2[(B 6= C2) \ (X2 2 X0)]

= P1[X c0 ] P2[X0] (1� P2[B = C2 j X2 2 X0])

> 0;

as P1[X c0 ] > 0; P2[X0] > 0; and P [B = C2 j X2 2 X0] < 1: Because P1P2�P1;2; it follows that
P [(C1 = B)\ (X1 2 X c0 )\ (B 6= C2)\ (X2 2 X0)] > 0: Thus, P [F (Y1 j X1) 6= F (Y2 j X2)] > 0; as
was to be shown.

The remaining case is P1[X0] = 1 and P2[X0] = 1; i.e., X0 = X : Again, we must show
P [C1 6= C2] > 0: Suppose not. Then for almost all b; x1; and x2; we have c1(x1; b) = c2(x2; b):
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Because X0 = X contains at least two values, this can hold only if c1(x1; b) = c2(x2; b) = c0(b);

say, for all (x1; x2; b) 2 X � X � B; B � supp(B): This can hold only if: (i) Xt ? B; t = 1; 2;

and, because for each x 2 X ; g(x; �) is not strictly monotone, (ii) g(x; b) = g0(b); say, for all

(x; b) 2 X � B; i.e., P [Yt = g0(B)] = 1; t = 1; 2: But this contradicts our assumption that there is

no such g0: Thus, P [C1 6= C2] > 0; as was to be shown. �

Let DrFt (yjx) � @jrjFt (y j x) =@r1x1 � � � @rdxd for r = (r1; :::; rd) with jrj = p + 1: Let

�jt (y; x) � Ft (yjXjt)�
P
0�jjj�p

1
j!D

jFt (yjx) (Xjt � x)j =
P
jjj=p+1

1
j!

R 1
0 D

jFt(yjx+v (Xjt � x))
(1� v)p dv (Xjt � x)j ; and�jt;�i � �jt (Yit; Xit) : Recall SNt (Xit) � 1

N�1
PN
j 6=iKji;tXjt;�i X0jt;�i:

De�ne

VNt (Zit) � 1

N � 1

NX
j 6=i

Kji;tXjt;�i�1Yit (Zjt) and

BNt (Zit) � 1

N � 1

NX
j 6=i

Kji;tXjt;�i�jt;�i:

Similarly, let ~SNt (x) � 1
N

PN
j=1Kh (Xjt � x)Xjt (x)Xjt (x)0 ; ~VNt (y; x) � 1

N

PN
j=1Kh(Xjt �

x)Xjt (x)�1y (Zjt) ; and ~BNt (y; x) � 1
N

PN
j=1Kh (Xjt � x) Xjt (x)�jt (y; x) : Note that �St (x) =

E[~SNt (x)] and that �St (Xit) gives the expectation of SNt (Xit) with respect to all elements but

Xit: Let �Bt (x) � E[~BNt (x)]: The following lemma establishes the consistency of F̂Nt (Yit j Xit)
uniformly in (i; t) :

Lemma 8.2 Suppose Assumptions B.1-B.5 hold. Then uniformly in (i; t) we have: (i) F̂Nt (YitjXit)
�Ft (YitjXit) = e01[�St (Xit)]

�1VNt (Zit) + e01[�St (Xit)]
�1�Bt (Zit) +OP (�

2
N +�Nh

p+1); (ii) F̂Nt(Yit

jXit)� Ft (YitjXit) = OP
�
�N + h

p+1
�
:

Proof of Lemma 8.2 Let ~FNt (y j x) denote the version of the pth order local polynomial
estimator of Ft (y j x) that uses all N observations fXit; YitgNi=1 ; kernel K, and bandwidth h:
Since [~SNt (x)]�1 ~SNt (x) = [SNt (Xit)]�1SNt (Xit) = IL; an L� L identity matrix, we obtain the
following standard bias and variance decompositions:

~FNt (y j x)� Ft (y j x) = e01[~SNt (x)]
�1 ~VNt (y; x) + e

0
1[~SNt (x)]

�1~BNt (y; x) ; (14)

and

F̂Nt (Yit j Xit)� Ft (Yit j Xit) = e01[SNt (Xit)]
�1VNt (Zit) + e

0
1[SNt (Xit)]

�1BNt (Zit) : (15)

By Theorems 2 and 4 in Masry (1996),6

~SNt (x) = �St (x) +OP (�N ) ; ~VNt (y; x) = OP (�N ) ; and ~BNt (y; x)� �Bt (y; x) = OP
�
�Nh

p+1
�
;

6The compact support of the kernel function K in Masry (1996) can be easily relaxed, following the line of proof

in Hansen (2008, theorem 4).
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where �N � N�1=2h�d=2
p
logN and the probability orders hold uniformly in x 2 Xt: With

this and Assumptions B.4-B.5, it is easy to show that SNt (Xit) = ~SNt (Xit) + OP
�
N�1h�d

�
=

�St (Xit) +OP (�N ) uniformly in (i; t) ; as N�1h�d = o (�N ) : This implies

[SNt (Xit)]
�1 =

�
�St (Xit) +

�
SNt (Xit)� �St (Xit)

�	�1
= [�St (Xit)]

�1 +OP (�N ) : (16)

Proof. By the same arguments as used in the proof of theorem 4.1 of Boente and Fraiman (1991),

we can show that ~VNt (y; x) = OP (�N ) uniformly in (y; x) under Assumption B.3. It follows that

VNt (Yit; Xit) = ~VNt (Yit; Xit) +OP

�
N�1h�d

�
= OP (�N ) uniformly in (i; t) : (17)

Similarly,

BNt (Yit; Xit)� �Bt (Yit; Xit) = ~BNt (Yit; Xit)� �Bt (Yit; Xit) +OP
�
N�1h�d

�
= OP

�
�Nh

p+1 +N�1h�d
�
: (18)

It follows that F̂Nt (Yit j Xit)�Ft (Yit j Xit) = e01
�
[�St (Xit)]

�1 +OP (�N )
�
fVNt (Xit) + [�Bt (Yit; Xit)

+OP
�
�Nh

p+1 +N�1h�d
�
]g = e01[�St (Xit)]

�1VNt (Yit; Xit) + e01[�St (Xit)]
�1�Bt (Yit; Xit) + OP (�

2
N

+�Nh
p+1): This proves (i). Noting that �St (Xit) is p:d: a:s: and �Bt (y; x) = O

�
hp+1

�
uniformly

in (y; x) ; we obtain (ii); given (17).

Proof of Theorems 3.1 and 3.2

We only prove Theorem 3.2, as the proof of Theorem 3.1 is a special case. First, we decompose

hd=2DN as follows:

hd=2DN = hd=2
NX
i=1

h
F̂N1(Yi1 j Xi1)� F̂N2(Yi2 j Xi2)

i2
= hd=2

NX
i=1

[F1(Yi1 j Xi1)� F2(Yi2 j Xi2)]2

+ hd=2
NX
i=1

h
F̂N1(Yi1 j Xi1)� F1(Yi1 j Xi1)� F̂N2(Yi2 j Xi2) + F2(Yi2 j Xi2)

i2
+ 2hd=2

NX
i=1

h
F̂N1(Yi1 j Xi1)� F1(Yi1 j Xi1)� F̂N2(Yi2 j Xi2) + F2(Yi2 j Xi2)

i
� [F1(Yi1 j Xi1)� F2(Yi2 j Xi2)]

� DN1 +DN2 + 2DN3:

Under H1
�
N�1=2h�d=4

�
; we prove the theorem by showing that (i) DN1

P! �0; (ii) DN2�BN
d!

N
�
0; �20

�
; (iii) DN3 = oP (1) ; (iv) B̂N = BN + oP (1) ; and (v) �̂2N = �20 + oP (1). For (i),

DN1 = N�1PN
i=1 �N (Zi)

2 = �0 + oP (1) under H1
�
N�1=2h�d=4

�
: It remains to show (ii)-(iv).
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To show (ii), we �rst apply Lemma 8.2 to obtain

DN2 = hd=2
NX
i=1

�
e01[�S1 (Xi1)]

�1VN1 (Zi1)� e01[�S2 (Xi2)]�1VN2 (Zi2)

+ e01[�S1 (Xi1)]
�1�B1 (Zi1)� e01[�S2 (Xi2)]�1�B2 (Zi2) +OP

�
�2N + �Nh

p+1
�	2

= hd=2
NX
i=1

�
e01[�S1 (Xi1)]

�1VN1 (Zi1)� e01[�S2 (Xi2)]�1VN2 (Zi2)
	2

+ 2hd=2
NX
i=1

�
e01[�S1 (Xi1)]

�1VN1 (Zi1)� e01[�S2 (Xi2)]�1VN2 (Zi2)
	

�
�
e01[�S1 (Xi1)]

�1�B1 (Zi1)� e01[�S2 (Xi2)]�1�B2 (Zi2)
	

+ hd=2
NX
i=1

�
e01[�S1 (Xi1)]

�1�B1 (Zi1)� e01[�S2 (Xi2)]�1�B2 (Zi2)
	2

+ Nhd=2OP
�
�2N + �Nh

p+1
�
OP

�
�N + h

p+1
�

� DN21 + 2DN22 +DN23 + oP (1) (19)

where the de�nitions of DN21; DN22; and DN23 are self-evident. Using the notation de�ned above

eq. (6), we haveDN21 = hd=2

(N�1)2
PN
i=1

hPN
j 6=i & (Zi; Zj)

i2
; where & (Zi; Zj) � K1;Xi1 (Xj1 �Xi1)�1Yi1

(Zj1)�K2;Xi2 (Xj2 �Xi2)�1Yi2 (Zj2) : Decompose

DN21 =
hd=2

(N � 1)2
NX
i=1

NX
j 6=i

NX
k 6=i;j

& (Zi; Zj) &(Zi; Zk) +
hd=2

(N � 1)2
NX
i=1

NX
j 6=i

& (Zi; Zj)
2

� VN +BN ; say.

Let �& (Zi; Zj ; Zk) � [& (Zi; Zj) & (Zi; Zk) + & (Zj ; Zi) & (Zj ; Zk) + & (Zk; Zi) & (Zk; Zj)]=3: Then

VN =
hd=2

(N � 1)2
NX
i=1

NX
j 6=i

NX
k 6=i;j

�& (Zi; Zj ; Zk)

=
6hd=2

(N � 1)2
X

1�i<j<k�N
�& (Zi; Zj ; Zk) =

N (N � 2)
N � 1

�VN ;

where �VN � 6hd=2

N(N�1)(N�2)
P
1�i<j<k�N �& (Zi; Zj ; Zk) :Note that for all i 6= j 6= k; � � E [�& (Zi; Zj ; Zk)]

= 0; �&1 (z) � E [�& (z; Zj ; Zk)] = 0; and �&2 (z; ez) � E [�& (z; ~z; Zk)] =
1
3E[& (Zk; z) & (Zk; ~z)]: Let

�&3 (z; ez; �z) � �& (z; ~z; �z)� �&2 (z; ~z)� �&2 (z; �z)� �&2 (~z; �z) : By the Hoe¤ding decomposition,
�VN = 3H

(2)
N +H

(3)
N ;

where H(2)
N � 2hd=2

N(N�1)
P
1�i<j�N �&2 (Zi; Zj) and H

(3)
N � 6hd=2

N(N�1)(N�2)
P
1�i<j<k�N �&3(Zi; Zj ; Zk):

Noting that E [�&3 (z; ~z; Zi)] = 0 and that �&3 is symmetric in its arguments by construction,
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it is straightforward to show that E[H(3)
N ] = 0 and E[H

(3)
N ]2 = O

�
N�3h�d

�
: Hence, H(3)

N =

OP
�
N�3=2h�d=2

�
= oP

�
N�1� by the Chebyshev inequality. It follows that VN = N(N�2)

N�1
�VN =

f1 + o (1)gHN + oP (1) ; where

HN �
2hd=2

N

X
1�i�j�N

3 �&2 (Zi; Zj) =
2hd=2

N

X
1�i<j�N

Z
& (z; Zi) & (z; Zj) dF (z) :

Noting thatHN is a second order degenerate U -statistic, we can easily verify that all the conditions
of theorem 1 of Hall (1984) are satis�ed and a central limit theorem applies to HN :

HN
d! N

�
0; �20

�
;

where the asymptotic variance of HN is given by �20 � limN!1 �2N and

�2N � 2hdEiEj

�Z
& (Zi; z) & (Zj ; z) dFZ (z)

�2
= 2hdEiEj

�Z
fK1;Xi1 (x1 �Xi1)�1y1 (Zi1)�K2;Xi2 (x2 �Xi2)�1y2 (Zi2)g

�
�
K1;Xj1 (x1 �Xj1)�1y1 (Zj1)�K2;Xj2 (x2 �Xj2)�1y2 (Zj2)

	
fZ (z) dz

i2
;

where z = (y1; x
0
1; y2; x

0
2)
0 and Ei denotes expectation with respect to Zi: By straightforward

calculations, we can show that �2N =
P2
t=1 �

2
Nt +O

�
hd
�
where for t = 1; 2;

�2Nt � 2hdEiEj [
Z
Kt;Xit (xt �Xit)�1yt (Zit)Kt;Xjt (xt �Xjt)�1yt (Zjt) dFZt (zt)]2:

Using the notation above eq.(6), we have

�2N1 = 2h�3dEiEj

Z �
e01[�S1 (Xi1)]

�1��
�
x1 �Xi1

h

�
�1y1 (Zi1)

� e01[�S1 (Xj1)]
�1��

�
x1 �Xj1

h

�
�1y1 (Zj1) fZ1 (y1; x1) dy1dx1

�2
' 2h�3dEiEj

Z �
e01[�S1 (Xi1)]

�1�� (~x1)�
�
�
~x1 +

Xi1 �Xj1
h

�0
[�S1 (Xj1)]

�1e1

� �1y1 (Zi1)�1y1 (Zj1) fZ1 (y1; Xi1) dy1d~x1
i2

= 2h�dEiEj [

Z Z �
e01[�S1 (Xi1)]

�1��
�
Xj1 �Xi1

h

�
[�S1 (Xj1)]

�1e1

�2
�1y1 (Zi1)�1~y1 (Zi1)

� �1y1 (Zj1)�1~y1 (Zj1) fZ1 (y1; Xi1) fZ1 (~y1; Xi1) dy1d~y1]

= 2h�dEiEj [

Z Z �
e01[�S1 (Xi1)]

�1��
�
Xj1 �Xi1

h

�
[�S1 (Xj1)]

�1e1

�2
�21 (y1; ~y1;Xi1)

� �21 (y1; ~y1;Xj1) fZ1 (y1; Xi1) fZ1 (~y1; Xi1) dy1d~y1]

' 2E

�Z Z Z
�i1 (x)

2 �41 (y1; ~y1;Xi1) fZ1 (y1; Xi1) fZ1 (~y1; Xi1) fX1 (Xi1) dy1 d~y1 dx

�
:
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Similarly, �2N2 = 2E
hR R R

�i2 (x)
2 �42 (y; ~y;Xi2) fZ1 (y;Xi2) fZ1 (~y;Xi2) fX2 (Xi2) dy d~y dx

i
+o (1) :

It follows that VN
d! N

�
0; �20

�
and

DN21 �BN
d! N

�
0; �20

�
: (20)

Let b (Zi) � e01
�
[�S1 (Xi1)]

�1�B1 (Zi1)� [�S2 (Xi2)]�1�B2 (Zi2)
	
: Then DN22 = DN22;1�DN22;2;

where DN22;1 � hd=2
PN
i=1 e

0
1[
�St (Xit)]

�1VNt (Zit) b (Zi) for t = 1; 2: Write

Dn22;1 = N�1hd=2
NX
i=1

NX
j 6=i

e01[�S1 (Xi1)]
�1Kji;1Xj1;�i�1Yi1 (Zj1) b (Zi)

+N�1hd=2
NX
i=1

e01[�Sr (Xi)]
�1Kji;1Xj1;�i�1Yi1 (Zj1) b (Zi)

� Dn22;1a +Dn22;1b; say.

Noting that b (Zi) = OP (h
p+1); it is straightforward to show that Dn22;1b = OP (h

p+1�d=2) =

oP (1) : Noting that E (DN22;1a) = 0 and E(D2
N22;1a) = O(Nhd+2(p+1)) = o (1) ; we haveDN22;1a =

oP (1) by the Chebyshev inequality. Similarly, we can show that DN22;1b = oP (1) and thus

DN22;1 = oP (1) : By the same token, DN22;2 = oP (1) : It follows that

DN22 = oP (1) : (21)

By Lemma 8.2 and Assumption B.5, we have DN23 = Nhd=2OP (h
2(p+1)) = OP (Nh

2(p+1)+d=2)

= oP (1) : This, in conjunction with (19), (20) and (21), implies that DN2 �BN
d! N

�
0; �20

�
:

Next, we show (iii). By Lemma 8.2, under H1
�
N�1=2h�d=4

�
we have

DN3 = N�1=2hd=4
NX
i=1

�
e01[�S1 (Xi1)]

�1VN1 (Zi1)� e01[�S2 (Xi2)]�1VN2 (Zi2)
	
�N (Zi)

+ N�1=2hd=4
NX
i=1

�
e01[�S1 (Xi1)]

�1�B1 (Zi1)� e01[�S2 (Xi2)]�1�B2 (Zi2)
	
�N (Zi)

+ N1=2hd=4OP
�
�2N + �Nh

p+1
�

� DN31 +DN32 + oP (1) ; say.

For the �rst term, let DN31 = DN31a + DN32b; where DN31a � N�1=2hd=4
PN
i=1 e

0
1[
�S1 (Xi1)]

�1

VN1 (Zi1) �N (Zi) and DN32b � N�1=2hd=4
PN
i=1 e

0
1[
�S2 (Xi2)]

�1VN2 (Zi2) �N (Zi): By the leave-

one-out property of our local polynomial estimator and since Zi is IID, it is easy to show that

E [DN31a] = 0: Now, write E [DN31a]
2 = dN1 + dN2; where

dN1 � N�1hd=2
NX
i=1

E
�
fe01[�S1 (Xi1)]�1VN1 (Zi1)g2�2N (Zi)

�
; and

dN2 � N�1hd=2
NX
i=1

NX
j 6=i

E
�
e01[�S1 (Xi1)]

�1VN1 (Zi1)VN1 (Zj1)
0 [�S1 (Xj1)]

�1e1�N (Zi)�N (Zj)
	
:
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For dN1; we have

dN1 = N�3hd=2
NX
i=1

E

248<:
NX
k 6=i

K1;Xi1 (Xk1 �Xi1)�1Yi1 (Zk1)

9=;
2

�2N (Zi)

35
= N�3hd=2

NX
i=1

NX
k 6=i

E
h
fK1;Xi1 (Xk1 �Xi1)�1Yi1 (Zk1)g

2
�2N (Zi)

i
= O

�
N�1h�d=2

�
:

Now dN2 = N�3hd=2
PN
i=1

PN
j 6=i
PN
k 6=i

PN
l 6=j E[K1;Xi1 (Xk1 �Xi1)�1Yi1 (Zk1)K1;Xi1(Xl1�Xj1)�1Yj1

(Zl1) �N (Zi)�N (Zj)]: Noting that the term with all four indices (i; j; k; l) distinct vanishes in

the last expression, it is is straightforward to show that dN2 = O
�
hd=2

�
: Hence, E [DN31a]

2 =

O
�
N�1h�d=2 + hd=2

�
= o (1) and DN31a = oP (1) by the Chebyshev inequality. Similarly DN31b =

oP (1) : It follows that DN31 = oP (1) : Noting that �Bt (y; x) = O
�
hp+1

�
uniformly in (y; x), we

have

DN32 = N�1=2hd=4
NX
i=1

�
e01[�S1 (Xi1)]

�1�B1 (Zi1)� e01[�S2 (Xi2)]�1�B2 (Zi2)
	
�N (Zi)

� N1=2hd=4 max
t2f1;2g

sup
x

��e01[�St (x)]�1�Bt (y; x)��N�1
NX
i=1

j�N (Zi)j

= N1=2hd=4O
�
hp+1

�
OP (1) = OP

�
N1=2hp+1+d=4

�
= oP (1) :

Consequently, DN3 = oP (1) :

We now show (iv). Noting that a2 � b2 = (a� b)2 + 2 (a� b) b; we have B̂N � BN =

dN3 + 2dN4; where dN3 � hd=2

(N�1)2
PN
i=1

PN
j 6=i f�̂ij;1 � �̂ij;2g

2 ; dN4 � hd=2

(N�1)2
PN
i=1

PN
j 6=i[�̂ij;1�

�̂ij;2][K1;Xi1 (Xj1 �Xi1)�1Yi1 (Zj1) � K2;Xi2 (Xj2 �Xi2)�1Yi2 (Zj2)]; and �̂ij;t = e01[SNt (Xit)]
�1

Kji;tXjt;�i1̂Yit (Zjt) � Kt;Xit (Xjt �Xit)�1Yit (Zjt) : Noting that [SNt (Xit)]�1 = [�St (Xit)]
�1 +

OP (�N ) and 1̂y (Zit) � �1y (Zit) = Ft (y j Xit) � F̂Nt (y j Xit) = OP
�
�N + h

p+1
�
uniformly in

(i; t) and y; we have �̂ij;t = e01[�St (Xit)]
�1Kji;tXjt;�i

�
1̂Yit (Zjt)� �1Yit (Zjt)

	
+OP (�N ) : It follows

that

jdN3j � OP

�
�2N + h

2(p+1)
�
max
t2f1;2g

sup
x



[�St (x)]�1

2 hd=2

(N � 1)2
2X
t=1

NX
i=1

NX
j 6=i

fkKji;tXjt;�ikg2

= OP

�
h�d=2

�
�2N + h

2(p+1)
��
= oP (1) ;

and

jdN4j � OP
�
�N + h

p+1
�
max
t2f1;2g

sup
x



[�St (x)]�1

 hd=2

(N � 1)2
2X
t=1

2X
s=1

NX
i=1

NX
j 6=i

kKji;tXjt;�ik

� jKs;Xis (Xjs �Xis)j

= OP

�
h�d=2

�
�N + h

p+1
��
= oP (1) :
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Consequently, B̂N �BN = oP (1) :

Lastly, to show (v) we de�ne

��2Nt � 2hd

N2

X
i6=j

�Z
Kt;Xit (xt �Xit)�1yt (Zit)Kt;Xjt (xt �Xjt)�1yt (Zjt) fZt (zt) dzt

�2
;

~�2Nt � 2hd

N2

X
i6=j

"
1

N

NX
l=1

e01[SNt (Xlt)]
�1Kil;tXit;�l�1Ylt (Zit) e

0
1[SNt (Xlt)]

�1Kjl;tXjt;�l�1Ylt (Zjt)

#2
;

�̂2Nt � 2hd

N2

X
i6=j

"
1

N

NX
l=1

e01[SNt (Xlt)]
�1Kil;tXit;�l1̂Ylt (Zit) e

0
1[SNt (Xlt)]

�1Kjl;tXjt;�l1̂Ylt (Zjt)

#2
;

where zt = (yt; x
0
t) ; N2 � N (N � 1) ; and

P
i6=j �

PN
i=1

PN
j 6=i : By the uniform consistency of

F̂Nt; we have �̂2Nt = ~�2Nt + oP (1) : By (16) and the law of large numbers for U-statistics, we

can show that ~�2Nt = �2Nt + oP (1) = �2Nt + oP (1) : The result then follows by noticing that

�̂2N =
PT
t=1 �̂

2
Nt and

PT
t=1 �

2
Nt = �20 + o (1) : �

Proof of Theorem 3.3

Using the notation de�ned in the proof of Theorem 3.2, we again writeN�1DN = N�1h�d=2(DN1

+DN2 + 2DN3): Under the alternative, it is easy to show that N�1h�d=2DN1 = E[F1(Yi1jXi1)�
F2(Yi2j Xi2)]2 + oP (1) ; N

�1h�d=2DN2 = OP
�
�2N + h

2(p+1)
�
= oP (1) ; and N�1h�d=2DN3 =

OP
�
�N + h

p+1
�
= oP (1) : On the other hand, N�1hd=2B̂N = OP

�
N�1� = oP (1) and �̂2N =

�20+oP (1). It follows that N
�1hd=2JN = (N

�1hd=2DN�N�1hd=2 �B̂N )=
q
�̂2N

P! E[F1(Yi1jXi1)�
F2(Yi2jXi2)]2=�0; and the conclusion follows. �

For the next result, let FX denote the CDF of the random variableX; and let R+ � [0;1): Part
(i) shows that strict monotonicity of g(x; �) is preserved by weighted averaging over x. Part (ii)
shows that strict monotonicity of the weighted average can also occur when departures from strict

monotonicity of g(x; �) are su¢ ciently mild. Together, results (ii:1) and (ii:2) show that when

one weighting function places zero weight on the region where strict monotonicity of g(x; �) fails,
there is another weighting function that can detect su¢ cient departures from strict monotonicity.

Lemma 8.3 Let g : Rd � I ! R be measurable, let X be a random element of Rd; and suppose
that E[g(X; b)] <1 for all b 2 I: Let w : X ! R+ be a bounded measurable function with

R
w(x)

dFX(x) = 1:

(i) If g(X; �) is strictly increasing a:s:; then �gw(�) is strictly increasing, where �gw(�) �
R
g(x; �)

w(x) dFX(x):

(ii) If g(X; �) is not strictly increasing a:s:; there exists a set X �; P [X 2 X �] > 0; such that for
each x 2 X �; g(x; �) is not strictly increasing. Let X �w � X �\Xw; where Xw � fx 2 X : w(x) > 0g:
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(1) Suppose P [X 2 X �w] > 0: Then �gw(�) is not strictly increasing if and only if there exist
0 � b�1 < b�2 � 1 such thatZ

[g(x; b�2)� g(x; b�1)] w(x) 1fx 2 X �wg dFX(x)

� �
Z
[g(x; b�2)� g(x; b�1)] w(x) 1fx 62 X �wg dFX(x):

(2) Suppose P [X 2 X �w] = 0: Then �gw(�) is strictly increasing. Further, P [X 2 Xw] < 1

so P [X 62 X �w] > 0; and, with ~Xw � XnXw and ~X �w � X � \ ~Xw; we have P [X 2 ~X �w] > 0:

Then there exists a bounded measurable function ~w : X ! R+with
R
~w(x) dFX(x) = 1 and

~Xw = X ~w � fx 2 X : ~w(x) > 0g: Let

�g ~w(�) �
Z
g(x; �) ~w(x) dFX(x):

Then �g ~w(�) is not strictly increasing if and only if there exist 0 � b�1 < b�2 � 1 such thatZ
[g(x; b�2)� g(x; b�1)] ~w(x) 1fx 2 ~X �wg dFX(x)

� �
Z
[g(x; b�2)� g(x; b�1)] ~w(x) 1fx 62 ~X �wg dFX(x):

Proof of Lemma 8.3 (i) Under the conditions given,
R
g(x; b) w(x) dFX(x) < 1 for all b 2 I:

If g(X; �) is strictly increasing a:s:; then for all 0 � b1 < b2 � 1;

�gw(b2)� �gw(b1) =

Z
g(x; b2) w(x) dFX(x)�

Z
g(x; b1) w(x) dFX(x)

=

Z
[g(x; b2)� g(x; b1)] w(x) dFX(x)

> 0;

where the inequality follows from corollary 4.10 of Bartle (1966) as [g(x; b2) � g(x; b1)] w(x) is

positive on a set of positive measure.

(ii)(1) By assumption, g(X; �) is not strictly increasing a:s:; so there exists X �; P [X 2 X �] > 0;
such that for each x 2 X �; g(x; �) is not strictly increasing. Further, with X �w � X � \ Xw; we
assume P [X 2 X �w] > 0: Then for the given 0 � b�1 < b�2 � 1;

�gw(b
�
2)� �gw(b�1) =

Z
[g(x; b�2)� g(x; b�1)] w(x) dFX(x)

=

Z
[g(x; b�2)� g(x; b�1)] w(x) 1fx 2 X �wg dFX(x)

+

Z
[g(x; b�2)� g(x; b�1)] w(x) 1fx 62 X �wg dFX(x)

� 0;
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where the �nal inequality follows from the assumed properties of g: This implies that �gw is not

strictly increasing. Conversely, if there exist no such b�1; b
�
2; then for all 0 � b1 < b2 � 1;

�gw(b2) � �gw(b1) > 0; so �gw is strictly increasing. (2) If P [X 2 X �w] = 0; then the argument of

part (i) gives that �gw is strictly increasing. Further, pw � P [X 2 Xw] < 1; as otherwise it must
be that P [X 2 X �] = 0; violating our assumption. Then 1 � pw = P [X 62 Xw] > 0; and we

can let ~w(x) � 1fx : x 2 ~Xwg=(1 � pw): This choice for ~w is measurable, bounded, and
R
~w(x)

dFX(x) = 1; ensuring that �g ~w is well de�ned, that ~Xw = X ~w � fx 2 X : ~w(x) > 0g; and that
P [X 2 ~X �w] > 0: For the given 0 � b�1 < b�2 � 1; the argument of part (1) now applies to give that
�g ~w is not strictly increasing. The converse argument is also identical to part (1): �

For the next result, we impose Assumption C.0 and write B � �(A): For convenience, let

fXt; "tg be identically distributed. For succinctness in what follows, we drop the t subscript.
Provided the necessary moments exist, we have

~Y� � E(Y w� (X) j B) = �g� (B) + �"� (B); where now

�g� (B) � E(g(X;B) w� (X) j B) and �"� (B) � E(" w� (X) j B):

We let ~F� denote the CDF of ~Y� : Note that for simplicity, we de�ned �g� in the text in a manner

that incorporated X ? B; here �g� explicitly does not rely on this.

In part (i) of the next result, we assume X ? B and " ? B j w� (X) for all � 2 f1; :::; T g;
ensuring that ~"� = �"� (B) is constant. We de�ne the function �
� : I! I as

�
� (b) � P [�g� (B) � �g� (b)]; b 2 I:

This quanti�es the departure of �g� from monotonicity. When �g� is strictly monotone, �
� (b) = b:

Otherwise, �
� exhibits variations re�ecting those of �g� : Part (i) of the next result shows that a

test of ~H0 has power if and only if there exists �� such that �[b : �
1(b) = �
��(b)] < 1; where �

denotes Lebesgue measure. This holds with T = 2 when �g1 is strictly monotone and �g2 is not

strictly monotone on a set of positive ��measure. Equivalently, the test has no power if and only
if all the �
��s coincide, except possibly on a set of ��measure zero. This occurs when all �g��s are
strictly monotone. It also occurs when g(x; �) does not depend on x; a case ruled out in Theorem
8.1. Other examples exist, but these are exceptional; we conjecture that they are shy.

In part (ii); we drop the requirements that X ? B and " ? B j w� (X): Now we write

~Y� = ~g� (B) � �g� (B) + �"� (B);

and we de�ne the functions ~
� : I! I as

~
� (b) � P [~g� (B) � ~g� (b)]; b 2 I:
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Here, ~
� measures the departure of ~g� from monotonicity. Non-monotonicity may come from �g� ;

from �"� ; or both.

Thus, maintaining X ? B and " ? B j w� (X) enables study of the monotonicity of the �g��s
in isolation. Dropping this introduces generic non-monotonicity into ~g� , as �"� is then no longer

constant and is thus generically non-monotonic. (Recall the shyness of monotone functions.)

Further, the failure of X ? B generally introduces non-monotonicity into �g� . For example, take

w� (X) = 1; and suppose that g(X;B) = X + B and that X 6? B holds because X = �B2 + �;

where � ? B: (This choice is illustrative, as the relation between X and B is generically non-

monotonic.) Then

�g� (B) � E(g(X;B) w� (X) j B) = E(X +B j B) = E(�B2 + � +B j B)

= B(1�B) + E(�):

Thus, although g(x; �) is monotone for each x; �g� is not monotone. Of course, if we instead have
X = B + �; then �g� (B) = 2B + E(�); so the failure of X ? B is not guaranteed to induce

non-monotonicity in �g� : Such cases are exceptional, however. Moreover, when X 6? B; the role of

w� (X) in de�ning �g� (B) further reinforces its generic non-monotonicity. �

Theorem 8.4 Suppose Assumption C.0 holds with fXt; "tg identically distributed. For T � 2;

let w� : X ! R+; � = 1; :::; T be as in Lemma 8.3. Suppose that E(g(X; b)) < 1 for each b 2 I
and that E(") <1:

(i) Suppose X ? B and " ? B j w� (X); � = 1; :::; T : Then P [ ~F1( ~Y1) = � � � = ~FT ( ~YT )] = 1 if

and only if �[b : �
1(b) = �
� (b)] = 1 for all � :

(ii) P [ ~F1( ~Y1) = � � � = ~FT ( ~YT )] = 1 if and only if �[b : ~
1(b) = ~
� (b)] = 1 for all � :

Proof of Theorem 8.4 (i) We have

P [ ~F1( ~Y1) = � � � = ~FT ( ~YT )] = P [\T�=2f ~F1( ~Y1) = ~F� ( ~Y� )g];

so the implication rule gives

1� P [ ~F1( ~Y1) = � � � = ~FT ( ~YT )] �
TX
�=2

P [ ~F1( ~Y1) 6= ~F� ( ~Y� )]:

The �rst result follows by showing that �[b : �
1(b) = �
� (b)] = 1 implies P [ ~F1( ~Y1) 6= ~F� ( ~Y� )] = 0;

so that P [ ~F1( ~Y1) = � � � = ~FT ( ~YT )] = 1: Now

P [ ~F1( ~Y1) = ~F� ( ~Y� )] =

Z 1

0
1f ~F1(�g1(b) + ~"1) = ~F� (�g� (b) + ~"� )g db:
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Given X ? B and " ? B j w� (X), ~"� is constant. It follows that

~F� (�g� (b) + ~"� ) = P [�g� (B) + ~"� � �g� (b) + ~"� ] = �
� (b):

Thus, for all � ;

P [ ~F1( ~Y1) = ~F� ( ~Y� )] =

Z 1

0
1f�
1(b) = �
� (b)g db = �[b : �
1(b) = �
� (b)] = 1;

where the �nal equality holds by assumption. It follows that P [ ~F1( ~Y1) = ~F� ( ~Y� )] = 1; so

P [ ~F1( ~Y1) 6= ~F� ( ~Y� )] = 0; as was to be shown.

For the converse, suppose �[b : �
1(b) = �
��(b)] < 1: We have

P [ ~F1( ~Y1) = � � � = ~FT ( ~YT )] = 1� P [[T�=2f ~F1( ~Y1) 6= ~F� ( ~Y� )g]:

Now

P [[T�=2f ~F1( ~Y1) 6= ~F� ( ~Y� )g] � P [ ~F1( ~Y1) 6= ~F��( ~Y��)] = 1� �[b : �
1(b) = �
��(b)]:

But �[b : �
1(b) = �
��(b)] < 1; so 1 � �[b : �
1(b) = �
��(b)] > 0, implying P [ ~F1( ~Y1) = � � � =
~FT ( ~YT )] < 1:

(ii) Identical to (i), replacing �
� with ~
� and dropping ~"� : �

Lemma 8.5 Suppose Assumptions C.1(ii), C.2, and C.3(i) hold. Then for � = 1; 2; :::; T ; (i)
E( �YT;� ;i � ~Y�;i)

2 = O
�
T�1

�
; and (ii) Ej ~FT� ( ~Y�;i)� ~F� ( ~Y�;i)j = O

�
T�1=2

�
:

Proof of Lemma 8.5 Noting that ~Y�;i = E [Yitw� (Xit) jBi] = E [g (Xit; Bi)w� (Xit) jBi] +
E ["itw� (Xit) jBi]� g� (Bi)+"� (Bi) ; we have �YT;� ;i� ~Y�;i = T�1

PT
t=1 [g (Xit; Bi)w� (Xit)� g� (Bi)]

+T�1
PT
t=1["itw� (Xit) � "� (Bi)] � �NT1 + �NT2; say. Let �i;t � g (Xit; Bi)w� (Xit) � g� (Bi) :

Then E [�NT1] = 0; and E
�
�2NT1

�
= T�1E

�
�i;t
�2
+ 2T�1

PT
s=1Cov

�
�i;1; �i;1+s

�
= O

�
T�1

�
asPT

s=1Cov
�
�i;1; �i;1+s

�
�


�i;1

22+
P1

s=1 � (s)

=(2+
) < 1 by the Davydov inequality and As-

sumptions C.1(ii) and C.2. Similarly, E
�
�2NT2

�
= OP

�
T�1

�
: Thus (i) follows.
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For (ii), we have

E
��� ~FT� ( ~Y�;i)� ~F� ( ~Y�;i)

��� =

Z ��� ~F� (y)� ~FT� (y)
��� ~f� (y) dy

=

Z ���E h1n ~Y�;i � y
o
� 1

�
�YT;� ;i � y

	i��� ~f� (y) dy
�

Z
E
���1n ~Y�;i � y � 0o� 1n ~Y�;i � y � ~Y�;i � �YT;� ;i

o��� ~f� (y) dy
�

Z
E
h
1
n
jy � ~Y�;ij � j ~Y�;i � �YT;� ;ij

oi
~f� (y) dy

= E
h
~F�

�
~Y�;i + j ~Y�;i � �YT;� ;ij

�
� ~F�

�
~Y�;i � j ~Y�;i � �YT;� ;ij

�i
= 2E

h
~f� ( ~Y

�
�;i)j ~Y�;i � �YT;� ;ij

i
� C

h
E( ~Y�;i � �YT;� ;i)

2
i1=2

= O(T�1=2);

where the �rst and second inequalities follow from the triangle inequality and the fact j1 fz < 0g�
1 fz < ag j � 1 fjzj < jajg ; respectively; the third equality holds by the Fubini theorem; the next
inequality holds by the mean value theorem , where ~Y ��;i lies between ~Y�;i � j ~Y�;i � �YT;� ;ij and
~Y�;i+ j ~Y�;i� �YT;� ;ij; the last inequality follows from Assumption C.3(i) and the Jensen inequality;

and the last equality follows from (i).�

Proof of Theorems 4.1 and 4.2

We only prove Theorem 4.2. For notational simplicity, we only prove the case where T = 2:
Let ~FT� and ~fT� denote the CDF and PDF of �YT;� ;i, � = 1; 2; respectively. Let �FN;T;� (y) �
1
N

PN
i=1 1f ~Y�;i � yg: De�ne

~DNT �
NX
i=1

h
F̂N;T;1( ~Y1;i)� F̂N;T;2( ~Y2;i)

i2
and �DNT �

NX
i=1

h
�FN;T;1( ~Y1;i)� �FN;T;2( ~Y2;i)

i2
:

We prove Theorem 4.2 by showing that (i) D̂NT � ~DNT = oP (1) ; (ii) ~DNT � �DNT = oP (1) ; and

(iii) �DNT � B̂NT � �
d!
P1
j=1 �j(Z2j � 1) under ~H1

�
N�1=2� :

For (i) ; noting that a2 � b2 = (a� b)2 + 2 (a� b) b; we have

D̂NT � ~DNT =

NX
i=1

h
F̂N;T;1( �YT;1;i)� F̂N;T;1( ~Y1;i)� F̂N;T;2( �YT;2;i) + F̂N;T;2( ~Y2;i)

i2
+2

NX
i=1

h
F̂N;T;1( �YT;1;i)� F̂N;T;1( ~Y1;i)� F̂N;T;2( �YT;2;i) + F̂N;T;2( ~Y2;i)

i
�
h
F̂N;T;1( ~Y1;i)� F̂N;T;2( ~Y2;i)

i
� #̂NT1 + 2#̂NT2; say.
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By the cr inequality,

#̂NT1 � 2
2X
�=1

NX
i=1

24 1
N

NX
j=1

h
1f �YT;� ;j � �YT;� ;ig � 1f �YT;� ;j � ~Y�;ig

i352

� 4

2X
�=1

NX
i=1

24 1
N

NX
j=1

h
1f �YT;� ;j � �YT;� ;ig � ~FT�

�
�YT;� ;i

�
� 1f �YT;� ;j � ~Y�;ig+ ~FT� ( ~Y�;i)

i352

+4

2X
�=1

NX
i=1

h
~FT�

�
�YT;� ;i

�
� ~FT� ( ~Y�;i)

i2
:

The �rst term in the last expression is oP (1) because by the stochastic equicontinuity (SE) of the

empirical process

�NT (�) � N�1=2
NX
j=1

[1f �YT;� ;j � �g � ~FT� (�)] (22)

and Lemma 8.5(i), N�1=2PN
j=1[1f �YT;� ;j � �YT;� ;ig � ~FT� ( �YT;� ;i)� 1f �YT;� ;j � ~Y�;ig+ ~FT� ( ~Y�;i)] =

oP (1) uniformly in i: The second term is oP (1) because by Lemma 8.5(ii) and Assumption

C.5,
PN
i=1[

~FT�
�
�YT;� ;i

�
� ~FT� ( ~Y�;i)]2 =

PN
i=1

~fT� ( ~Y
�
�;i)

2( �YT;� ;i � ~Y�;i)
2 � C

PN
i=1(

�YT;� ;i � ~Y�;i)
2 =

OP
�
NT�1

�
= oP (1) ; provided ~fT� is uniformly bounded for su¢ ciently large T , where ~Y ��;i lies

between ~Y�;i and �YT;� ;i: By the strong law of large number for strong mixing processes (e.g.,

Corollary 3.48 of White (2001)), �YT;� ;i � ~Y�;i = oa:s: (1) under Assumptions C.1(ii) and C.2.

This implies that as T ! 1; the limiting support of �YT;� ;i will coincide with that of ~Y�;i: By
the continuity of g� in Assumption C.3(ii), the support of ~Y�;i is compact. This implies that

for su¢ ciently large T; with probability 1 the support of �YT;� ;i is also compact, so that ~fT� is

uniformly continuous on this support and must be bounded.

Let �1�;ij = 1f �YT;� ;j � �YT;� ;ig � ~FT�
�
�YT;� ;i

�
� 1f �YT;� ;j � ~Y�;ig + ~FT� ( ~Y�;i) and �2�;i =

~FT�
�
�YT;� ;i

�
� ~FT� ( ~Y�;i) for � = 1; 2 and i; j = 1; :::; N: Let �3;ij = 1f �YT;1;j � ~Y1;ig � ~FT1( ~Y1;i)�

1f �YT;2;j � ~Y2;ig+ ~FT2( ~Y2;i); and �4;i = ~FT1( ~Y1;i)� ~FT2( ~Y2;i): Analogously to the proof of Lemma

8.5 and by the triangle and cr inequalities, we can show that uniformly in i; j = 1; :::; N;

Ej�1�;ij j � Ej1f �YT;� ;j � �YT;� ;ig�1f �YT;� ;j � ~Y�;igj+Ej ~FT�
�
�YT;� ;i

�
� ~FT� ( ~Y�;i)j = O(T�1=2); (23)

and

E
�
�24;i

�
� 4

2X
�=1

Ef[ ~FT� ( ~Y�;i)� ~F� ( ~Y�;i)]
2g+ 2Ef[ ~F1( ~Y1;i)� ~F2( ~Y2;i)]

2g

= O
�
T�1 +N�1� under ~H1(N�1=2): (24)
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Now decompose #̂NT2 as follows

#̂NT2 = N�2
NX
i=1

NX
j=1

NX
k=1

�
�11;ij � �12;ij + �21;i � �22;i

� �
�3;ik � �4;i

�
= N�2

NX
i=1

NX
j=1

NX
k=1

�
�11;ij � �12;ij

�
�3;ik +N

�1
NX
i=1

NX
k=1

�
�21;i � �22;i

�
�3;ik

�N�1
NX
i=1

NX
j=1

�
�11;ij � �12;ij

�
�4;i �

NX
i=1

�
�21;i � �22;i

�
�4;i

� #̂NT2;1 + #̂NT2;2 � #̂NT2;3 � #̂NT2;4; say.

Let #̂NT2;1� = N�2PN
i=1

PN
j=1

PN
k=1 �1�;ij�3;ik for � = 1; 2: It is easy to show that #̂NT2;1� =

�NT2;1� +oP (1) under ~H1
�
N�1=2� ; where �NT2;1� = N�2PN

i=1

PN
j 6=i
PN
k 6=j;i �1�;ij�3;ik: Note that

E (�NT2;1� ) = 0; and

E[�2NT2;1� ] = N�4
NX
i=1

NX
j 6=i

NX
k 6=j;i

NX
i0=1

NX
j0 6=i0

NX
k 6=j0;i0

E
�
�1�;ij�3;ik�1�;i0j0�3;i0k0

�
:

If there are �ve or six distinct indices among fi; j; k; i0; j0; k0g ; then the corresponding terms in the
above summation drop out. For all other cases, it is straightforward to bound jE[�1�;ij�3;ik�1�;i0j0
�3;i0k0 ]j by a proportion of Ej�1�;ij j = O

�
T�1=2

�
by the uniform boundedness of �1�;ij and �3;ik

and (23). It follows that E[�2NT2;1� ] = O
�
T�1=2 +N�1� and #̂NT2;1� = oP (1) : Then #̂NT2;1 =

#̂NT2;11 � #̂NT2;12 = oP (1) : Similarly, we can show that #̂NT2;2 = oP (1) :

Let #̂NT2;3� = N�1PN
i=1

PN
j=1 �1�;ij�4;i for � = 1; 2: Then we can show that #̂NT2;3� =

�NT2;3� + OP (N
�1=2) under ~H1(N�1=2); where �NT2;3� = N�1PN

i=1

PN
j 6=i �1�;ij�4;i: Note that

E [�NT2;3� ] = 0 and

E[�2NT2;3� ] = N�2
NX
i=1

NX
i0 6=i

NX
j 6=i;i0

E
�
�1�;ij�4;i�1�;i0j�4;i0

�
+N�2

NX
i=1

NX
j 6=i

E
h
�1�;ij�4;i�1�;ji�4;j +

�
�1�;ij�4;i

�2i
:

It is straightforward to show that the last term is O
�
T�1=2

�
under ~H1

�
N�1=2� : We can bound

the �rst term by

N�2
NX
i=1

NX
i0 6=i

NX
j 6=i;i0

�
E(�21�;ij�

2
1�;i0j)

�1=2 �
E(�24;i)E(�

2
4;i0)

�1=2
� CN sup

i;j

�
E
���1�;ij��	1=2E(�24;1) = O (N)O(T�1=4)O

�
T�1 +N�1� = o (1) :
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It follows that �NT2;3� = oP (1) and #̂NT2;3� = #̂NT2;31 � #̂NT2;32 = oP (1) : Similarly,

Ej#̂NT2;4j �
NX
i=1

E
����21;i � �22;i��4;i�� � N

n
E
�
�21;i � �22;i

�2o1=2 �
E
�
�24;i

�	1=2
= N O(T�1=2)O(T�1=2 +N�1=2) = o (1) :

Consequently #̂NT2;4 = oP (1) : Thus, #̂NT2 = oP (1) :

For (ii) ; decompose ~DNT � �DNT as follows:

~DNT � �DNT =
NX
i=1

h
F̂N;T;1( ~Y1;i)� �FN;T;1( ~Y1;i)� F̂N;T;2( ~Y2;i) + �FN;T;2( ~Y2;i)

i2
+2

NX
i=1

h
F̂N;T;1( ~Y1;i)� �FN;T;1( ~Y1;i)� F̂N;T;2( ~Y2;i) + �FN;T;2( ~Y2;i)

i
�
h
�FN;T;1( ~Y1;i)� �FN;T;2( ~Y2;i)

i
� ~#NT1 + 2~#NT2; say.

Note that ~#NT1 � 2
P2
�=1

PN
i=1

h
N�1PN

j=1[1f �YT;� ;j � ~Y�;ig � 1f ~Y�;j � ~Y�;ig]
i2

= 2
P2
�=1 #�

+OP
�
N�1� ; where #� = N�2PN

i=1

hPN
j 6=i[1f �YT;� ;j � ~Y�;ig � 1f ~Y�;j � ~Y�;ig]

i2
: Further,

#� = N�2
NX
i=1

NX
j 6=i

NX
k 6=i;j

[1f �YT;� ;j � ~Y�;ig � 1f ~Y�;j � ~Y�;ig][1f �YT;� ;k � ~Y�;ig � 1f ~Y�;k � ~Y�;ig]

+N�2
NX
i=1

NX
j 6=i
[1f �YT;� ;j � ~Y�;ig � 1f ~Y�;j � ~Y�;ig]2 = #�1 + #�2; say.

By the proof of Lemma 8.5(ii), we can show that E (#�1) = O (N=T ) = o (1) and E (#�2) =

O
�
T�1=2

�
= o (1). It follows that E j#� j = E (#�1) + E (#�2) = o (1) : So #� = oP (1) by the

Markov inequality, and ~#NT1 = oP (1) : Analogous to the determination of the probability order

of #̂NT2; we can show that ~#NT2 = oP (1) : Consequently, ~DNT � �DNT = oP (1) :
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Now, we show (iii) : Decompose �DNT as follows

�DNT =
NX
i=1

h
�FN;T;1( ~Y1;i)� �FN;T;2( ~Y2;i)

i2
=

NX
i=1

nh
�FN;T;1( ~Y1;i)� ~F1( ~Y1;i)� �FN;T;2( ~Y2;i) + ~F2( ~Y2;i)

i
+
h
~F1( ~Y1;i)� ~F2( ~Y2;i)

io2
=

NX
i=1

h
~F1( ~Y1;i)� ~F2( ~Y2;i)

i2
+

NX
i=1

h
�FN;T;1( ~Y1;i)� ~F1( ~Y1;i)� �FN;T;2( ~Y2;i) + ~F2( ~Y2;i)

i2
+2

NX
i=1

h
�FN;T;1( ~Y1;i)� ~F1( ~Y1;i)� �FN;T;2( ~Y2;i) + ~F2( ~Y2;i)

i h
~F1( ~Y1;i)� ~F2( ~Y2;i)

i
� �DNT1 + �DNT2 + 2 �DNT3: (25)

By the weak law of large numbers, �DNT1
P! � under ~H1

�
N�1=2� : Let �i � ( ~Y1;i; ~Y2;i)

0 and

 
�
�i; �j

�
� 1f ~Y1;j � ~Y1;ig � ~F1( ~Y1;i)� 1f ~Y2;j � ~Y2;ig+ ~F2( ~Y2;i): Then

�DNT2 = N�2
NX
i=1

24 NX
j=1

 
�
�T;i; �T;j

�352

= N�2
NX
i=1

NX
j 6=i

NX
k 6=j;i

 
�
�T;i; �T;j

�
 
�
�T;i; �T;k

�
+N�2

NX
i=1

NX
j 6=i

 
�
�T;i; �T;j

�2
+2N�2

NX
i=1

NX
j 6=i

 
�
�T;i; �T;i

�
 
�
�T;i; �T;j

�
+N�2

NX
i=1

 
�
�T;i; �T;i

�2
� VNT + BNT + 2RNT1 +RNT2; say.

Let � 
�
�i; �j ; �k

�
� [ 

�
�i; �j

�
 (�i; �k) +  

�
�j ; �i

�
 
�
�j ; �k

�
+  (�k; �i) 

�
�k; �j

�
]=3: Then

VNT = 6N
�2

X
1�i<j<k�N

� 
�
�i; �j ; �k

�
=
(N � 1) (N � 2)

N
�VNT ;

where �VNT � 6
N(N�1)(N�2)

P
1�i<j<k�N

� 
�
�i; �j ; �k

�
: By the Hoe¤ding decomposition, �VNT =

3H
(2)
NT +H

(3)
NT ; where

H
(2)
NT �

2

N (N � 1)
X

1�i<j�N

� 2
�
�i; �j

�
; H

(3)
NT �

6

N (N � 1) (N � 2)
X

1�i<j<k�N

� 3
�
�i; �j ; �k

�
;

� 2
�
�i; �j

�
� 1

3

R
 (�; �i) 

�
�; �j

�
~F (d�) ; � 3

�
�i; �j ; �k

�
� � 

�
�i; �j ; �k

�
� � 2

�
�i; �j

�
� � 2 (�i; �k)

�� 2
�
�j ; �k

�
; and ~F denotes the CDF of �i: It is standard to show that H(3)

NT = OP
�
N�3=2� :
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Thus, VNT = f1 + o (1)gHNT +OP
�
N�1=2�, where

HNT �
2

N

X
1�i<j�N

Z
 (�; �i) 

�
�; �j

�
~F (d�)

is a second order degenerate U -statistic. By Ser�ing (1980, p.194) or Proposition 5.2 of Chen

and White (1998), HNT
d!
P1
j=1 �j(Z2j � 1) where fZjg is a sequence of IID N (0; 1) random

variables, and f�jg is the sequence of nonzero eigenvalues for
R
 (�; u) (�; v) ~F (d�) : Next,

RNT1 = N�2PN
i=1

PN
j 6=i  (�i; �i) 

�
�i; �j

�
= OP

�
T�1=2

�
; and RNT2 = N�2PN

i=1  (�i; �i)
2 =

OP
�
N�1T�1

�
= oP (1): Consequently �DNT2 � BNT

d!
P1
j=1 �j

�
Z2j � 1

�
:

Letting �
�
�i; �j

�
= [1f ~Y1;j � ~Y1;ig � ~F1( ~Y1;i) � 1f ~Y2;j � ~Y2;ig + ~F2( ~Y2;i)]�N;1;2( ~Y1;i; ~Y2;i); we

have

�DNT3 = N�3=2
NX
i=1

NX
j 6=i

�
�
�i; �j

�
+N�3=2

NX
i=1

� (�i; �i) :

It is easy to show that the second term is OP
�
N�1=2� : Let RN = N�3=2PN

i=1

PN
j 6=i �

�
�i; �j

�
:

Then E (RN ) = 0 and by the Hölder and cr inequalities,

E
�
R2N
�
= N�3

NX
i=1

NX
i0=1

NX
j 6=i;i0

E
�
�
�
�i; �j

�
�
�
�i0 ; �j

��
+O

�
N�1�

� N�2
NX
i=1

NX
j 6=i

E
h
�
�
�i; �j

�2i
+O

�
N�1�

� 2N�2
NX
i=1

NX
j 6=i

E

�h
1f ~Y1;j � ~Y1;ig � 1f ~Y2;j � ~Y2;ig

i2
�2N;1;2(

~Y1;i; ~Y2;i)

�

+2N�2
NX
i=1

NX
j 6=i

E

�h
~F1( ~Y1;i)� ~F2( ~Y2;i)

i2
�2N;1;2( ~Y1;i; ~Y2;i)

�
+O

�
N�1�

� 2RN1 + 2RN2 +O
�
N�1� ; say.

By the dominated convergence theorem (DCT),RN2 = o (1) as [ ~F1( ~Y1;i)� ~F2( ~Y2;i)]2�2N;1;2 ( ~Y1;i; ~Y2;i)!
0 a.s. under ~H1

�
N�1=2� : For RN1; we have

RN1 � E
h
j1f ~Y1;2 � ~Y1;1g � 1f ~Y2;2 � ~Y2;1gj�2N;1;2( ~Y1;1; ~Y2;1)

i
= E

h
j1f ~F1( ~Y1;2) � ~F1( ~Y1;1)g � 1f ~F2( ~Y2;2) � ~F2( ~Y2;1)gj�2N;1;2( ~Y1;1; ~Y2;1)

i
� E

h
1fj ~F1( ~Y1;2)� ~F1( ~Y1;1)j � j�N jg�2N;1;2( ~Y1;1; ~Y2;1)

i
! 0;

where �N = ~F1( ~Y1;2)� ~F2( ~Y2;2)� ~F1( ~Y1;1)+ ~F2( ~Y2;1) = N�1=2[�N;1;2( ~Y1;2; ~Y2;2)+ �N;1;2( ~Y1;1; ~Y2;1)];

the third line follows from the fact that j1fz � 0g � 1fz � agj � 1fjzj � jajg; and the last line
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follows from the DCT. Consequently, RN = oP (1) by the Chebyshev inequality and �DNT3 =

oP (1) : We complete the proof of (iii) by noting that B̂NT � BNT = oP (1) under ~H1
�
N�1=2�

follows easily. �

Proof of Theorems 4.3

Again, we focus on the case T = 2: Using the notation in the proof of Theorem 4.2, it is

easy to show that N�1(D̂NT � ~DNT ) = oP (1) and N�1( ~DNT � �DNT ) = oP (1) under ~H1 (1) :

Further, N�1 �DNT = N�1 �DNT1 + oP (1) = N�1PN
i=1

h
~F1( ~Y1;i)� ~F2( ~Y2;i)

i2
+ oP (1) = � +

oP (1) ; and N�1B̂NT = OP
�
N�1� : Consequently, N�1JNT = N�1(D̂NT � B̂NT ) = N�1 �DNT +

N�1
�
D̂NT � ~DNT

�
+N�1( ~DNT � �DNT )�N�1B̂NT = �+ oP (1) ; and the conclusion follows. �

9 Data Appendix

This appendix contains two tables. One is for the list of the 50 S&P500 �rms used in Section

6.1, and the other contains the summary statistics for the 70 city-retailers over 156 weeks used in

Section 6.2.
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Table A.1: List of the 50 S&P500 �rms used in the sample
Ticker symbol Company GICS Sector
ABT Abbott Laboratories Health Care
AGN Allergan Inc Health Care
AMZN Amazon Corp Consumer Discretionary
AN AutoNation Inc Consumer Discretionary
BBY Best Buy Co. Inc Consumer Discretionary
CAM Cameron International Corp Energy
CBE Cooper Industries Ltd Industrials
CINF Cincinnati Financial Financials
CLX Clorox Co. Consumer Staples
CSCO Cisco Systems Information Technology
EMC EMC Corp Information Technology
FLS Flowserve Corporation Industrials
FMC FMC Corporation Materials
GENZ Genzyme Corp. Health Care
GWW Grainger (W.W.) Inc Industrials
HCP HCP Inc Financials
HD Home Depot Consumer Discretionary
HP Helmerich & Payne Energy
HSY The Hershey Company Consumer Staples
IBM International Bus. Machines Information Technology
INTU Intuit Inc. Information Technology
IVZ Invesco Ltd Financials
JCI Johnson Controls Consumer Discretionary
JPM JPMorgan Chase & Co Financials
KLAC KLA-Tencor Corp Information Technology
LTD Limited Brands Inc Consumer Discretionary
MCD McDonald�s Corp Consumer Discretionary
MHP McGraw-Hill Consumer Discretionary
MO Altria Group Inc Consumer Staples
MOLX Molex Inc Information Technology
MTB M&T Bank Corp Financials
MYL Mylan Inc Health Care
NBL Noble Energy Inc Energy
NWL Newell Rubbermaid Co. Consumer Discretionary
ODP O¢ ce Depot Consumer Discretionary
PSA Public Storage Financials
SII Smith International Energy
SRE Sempra Energy Utilities
STJ St Jude Medical Health Care
STT State Street Corp Financials
SYY Sysco Corp Consumer Staples
TGT Target Corp. Consumer Discretionary
THC Tenet Healthcare Corp. Health Care
VLO Valero Energy Energy
VNO Vornado Realty Trust Financials
WDC Western Digital Information Technology
WMB Williams Cos. Energy
WPI Watson Pharmaceuticals Health Care
X United States Steel Corp. Materials
YHOO Yahoo Inc Information Technology
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Table A.2: Summary Statistics for 70 City-Retailers, 156 Weeks
Mean Median StDev Obs

G MILLS CHEERIOS BOX 15OZ Mkt share 0.026 0.018 0.024 10920
Price 3.466 3.416 0.707 10920
Promo 0.107 0.000 0.158 10920

KELLOGG FROSTED FLAKES BOX 20OZ Mkt share 0.020 0.012 0.025 10920
Price 2.854 2.744 0.747 10920
Promo 0.110 0.012 0.149 10920

POST HONEY BUNCHES OF OATS REG BOX 16OZ Mkt share 0.015 0.010 0.015 10920
Price 2.956 2.892 0.695 10920
Promo 0.098 0.000 0.144 10920

QUAKER LIFE REGULAR BOX 21OZ Mkt share 0.012 0.009 0.010 10920
Price 2.839 2.804 0.585 10920
Promo 0.036 0.000 0.099 10920

STR BDS RAISIN BRAN BOX 20OZ Mkt share 0.013 0.010 0.010 10920
Price 1.798 1.802 0.383 10920
Promo 0.033 0.000 0.086 10920

Wage 832.5 812.5 125.4 456

REFERENCES

ALTONJI, J. G. and R. L. MATZKIN (2005): �Cross Section and Panel Data Estimators for

Nonseparable Models with Endogenous Regressors,�Econometrica, 73, 1053-1102.

BARTLE, R. (1966): The Elements of Integration. New York: Wiley.

BENKARD, C. L. and S. BERRY (2006): �On the Nonparametric Identi�cation of Nonlinear

Simultaneous Equations Models: Comment on Brown (1983) and Roehrig (1988),�Econo-

metrica, 74, 1429-1440.

BERRY, S., J. LEVINSOHN, and A. PAKES (1995): �Automobile Prices in Market Equilib-

rium,�Econometrica, 63, 841-890.

BERRY, S. and P. HAILE (2010): �Identi�cation in Di¤erentiated Products Markets Using

Market Level Data,�Cowles Foundation Discussion Papers 1744, Yale University.

BOENTE, G. and R. FRAIMAN (1991): �Strong Uniform Convergence Rates for Some Ro-

bust Equivariant Nonparametric Regression Estimates for Mixing Processes,�International

Statistical Review, 59, 355-372.

CAI, Z. (2002): �Regression Quantile for Time Series,�Econometric Theory, 18, 169-192.

50



CHEN, X. and H. WHITE (1998): �Central Limit Theorem and Functional Central Limit Theo-

rems for Hilbert-Valued Dependent Heterogeneous Arrays with Applications,�Econometric

Theory, 14, 260-284.

CHESHER, A. (2003): �Identi�cation in Nonseparable Models,�Econometrica, 71, 1405-1441.

CORBAE, D., M. B. STINCHCOMBE, and J. ZEMAN (2009): An Introduction to Mathematical

Analysis for Economic Theory and Econometrics. Princeton University Press.

DAWID, A. D. (1979): �Conditional Independence in Statistical Theory,�Journal of the Royal

Statistical Society, Series B, 41, 1-31.

DETTE, H., N., NEUMEYER, and K. F. PILZ (2006): �A Simple Nonparametric Estimator of

a Strictly Monotone Regression Function,�Bernoulli, 12, 469-490.

DUDLEY, R. M. (2002): Real Analysis and Probability. Cambridge University Press.

EVDOKIMOV, K. (2009): �Identi�cation and Estimation of a Nonparametric Panel Data Model

with Unobserved Heterogeneity,�Working Paper, Dept. of Economics, Yale University.

FAMA, E. F. and K. T. FRENCH (1993): �Common Risk Factors in the Returns on Stocks and

Bonds,�Journal of Financial Economics, 33, 3�56.

FERSON, W. E. and C. R. HARVEY (1991): �The Variation of Economic Risk Premiums,�

Journal of Political Economy, 99, 285�315.

FERSON, W. E. and C. R. HARVEY (1993): �The Risk and Predictability of International

Equity Returns,�Review of Financial Studies, 6, 527�566.

GHYSELS, E. (1998): �On Stable Factor Structures in the Pricing of Risk: Do Time-Varying

Betas Help or Hurt?�The Journal of Finance, 53, 549-573T

HALL, P. (1984): �Central Limit Theorem for Integrated Square Error Properties of Multivariate

Nonparametric Density Estimators,�Journal of Multivariate Analysis, 14, 1-16.

HANSEN, B. E. (2008): �Uniform convergence rates for kernel estimation with dependent data,�

Econometric Theory, 24, 726-748.

HARVEY, C. R. (1989): �Time-varying Conditional Covariances in Tests of Asset Pricing Mod-

els,�Journal of Financial Economics, 24, 289�317.

HOCHBERG, Y. (1988): �A Sharper Bonferroni Procedure for Multiple Tests of Hypotheses,�

Biometrika, 75, 800-802.

51



HODERLEIN, S. (2005): �Nonparametric Demand Systems, Instrumental Variables and a Het-

erogeneous Population,�Working Paper, Dept. of Economics, Brown University.

HODERLEIN, S. and E. MAMMEN (2007): �Identi�cation of Marginal E¤ects in Nonseparable

Models without Monotonicity,�Econometrica, 75, 1513-1518.

HODERLEIN, S., L. SU, and H. WHITE (2010): �Testing Monotonicity in Unobservables with

Panel Data using Control Variables�, Working Paper, Dept. of Economics, UCSD.

HODERLEIN, S. and H. WHITE. (2009): �Nonparametric Identi�cation in Nonseparable Panel

Data Models with Generalized Fixed E¤ects,�Working Paper, Dept. of Economics, Brown

University.

IMBENS, G. W. and W. K. NEWEY (2009): �Identi�cation and Estimation of Triangular

Simultaneous Equations Models without Additivity,�Econometrica,77, 1481-1512.

JAGANNATHAN, R. and Z. WANG (1996), �The Conditional CAPM and the Cross-section of

Expected Returns,�Journal of Finance, 51, 3-53.

KOMUNJER, I. and A. SANTOS (2010): �Semiparametric Estimation of Nonseparable Models:

a Minimum Distance from Independence Approach,�forthcoming in Econometrics Journal.

MASRY, E. (1996): �Multivariate Local Polynomial Regression for Time series: Uniform Strong

Consistency Rates,�Journal of Time Series Analysis 17, 571-599.

MATZKIN, R. L. (2003): �Nonparametric Estimation of Nonadditive Random Functions,�

Econometrica, 71, 1339-1375.

MATZKIN, R. L. (2007): �Heterogeneous Choice,�in Advances in Economics and Econometrics,

Theory and Applications, Ninth World Congress of the Econometric Society, edited by R.

Blundell, W. Newey, and T. Persson, Cambridge University Press.

MEGERDICHIAN, A.(2009): �Identi�cation of Price E¤ects in Discrete Choice Models of De-

mand for Di¤erentiated Products,�UC San Diego, PhD Dissertation Chapter.

ROEHRIG, C. S. (1988): �Conditions for Identi�cation in Nonparametric and Parametric Mod-

els,�Econometrica, 56, 433-447.

SERFLING, R. J. (1980): Approximation Theorems of Mathematical Statistics. New York: John

Wiley & Sons.

52



STIGLER, G. and G. BECKER (1977): �De Gustibus Non Est Disputandum,�American Eco-

nomic Review, 67, 76�90.

STINCHCOMBE, M. B. (2010): Personal communication.

WHITE, H. (2001): Asymptotic Theory for Econometricians. San Diego: Academic Press.

YU, K. and M. C. JONES (1998): �Local Linear Quantile Regression,� Journal of American

Statistical Association, 93, 228-237.

53


