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EXISTENCE OF EQUILIBRIA IN AUCTIONS

WITH INTERDEPENDENT VALUES

SRIHARI GOVINDAN AND ROBERT WILSON

1. Introduction

This paper studies a sealed-bid first-price auction of a single item. It introduces a new

method to prove existence of a mixed-strategy equilibrium.1 An indirect construction yields

an equilibrium with nonatomic distributions of bids, thereby circumventing discontinuities

due to tie-breaking rules.

First one establishes existence of equilibria for an auxiliary game with a novel specification

of how bidders select optimal bids when ties are possible. For this auxiliary game there is a

well-defined fixed-point problem for which equilibria are the solutions. Moreover, there exist

essential sets of fixed points for which every small perturbation of the problem has a nearby

fixed point. The second step considers such perturbations derived by perturbing payoffs in

the auxiliary game. One then establishes that limit points of equilibria for these perturbed

games are equilibria of the auxiliary game that have no atoms in the distributions of players’

bids. The probability of tied bids is therefore zero, which implies that these limit equilibria

are equilibria of the original auction regardless of the tie-breaking rule. For the proof here

it suffices to consider perturbations in which each player anticipates that his submitted bid

will be slightly distorted by noise before it is received by the auctioneer.

This method is applied to establish existence of equilibria in behavioral strategies when

bidders’ values are interdependent.2 That is, each bidder n observes a private signal sn,

submits a bid bn(sn), and then obtains a payoff that is nonzero only if his bid wins, in which

case his payoff is vn(s1, s2, . . .) − bn(sn), where his realized value vn depends on the signals

s1, s2, . . . observed by all bidders. Interdependent values occur, for example, when bidders’

signals are informative about an unobserved common-value component. The existence the-

orem, Theorem 4.1 below, assumes that (a) the joint distribution of signals has a positive
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and continuous density on a hypercube, (b) players’ value functions are continuous and non-

decreasing over the same domain and range, and (c) a family of conditional expectations of

a player’s value are strictly increasing in his signal (see Assumption 6 below).

For simplicity the proof in Section 4 addresses explicitly only the case of two bidders who

are symmetric ex ante and establishes existence of a symmetric equilibrium. The extension

to auctions with N asymmetric bidders will be provided in a revised version.

2. The Auction Game

We consider an N -player game G that represents a first-price sealed-bid auction for a single

item. In the extensive form of the game, first Nature specifies a profile s = (s1, s2, . . . , sN)

of signals, one for each player n = 1, 2, . . . , N , according to a distribution F . Then each

player n observes his own signal sn and chooses a bid bn(sn). Finally, player n’s payoff is

vn(s) − bn(sn) if he wins the item and zero otherwise. He wins if his bid is strictly higher

than others’ bids, or when tied with others’ bids, if he is selected by a tie-breaking rule.

We impose the following assumptions on the distribution of signals.

Assumption: [Distribution of Signals]

(1) The set of possible signal profiles is a product set S =
∏

n Sn. Each player’s set of

possible signals is the same real closed interval, say Sn = [0, 1].

(2) The distribution F of signal profiles has a density f that is positive and continuous

on S.3

For each n, let Sn be the Borel measurable subsets of Sn and let λn be the Lebesgue measure

on Sn.

When considering player n, his opponents are denoted m. For each player n and his signal

sn, let Fn(·|sn) be the conditional distribution of the signals sm of n’s opponents, and let

fn(·|sn) be its density function. Assumption (2) ensures that player n’s conditional densities

fn(·|sn) : Sm → R indexed by his signal sn ∈ Sn are an equicontinuous family.

We impose the following assumptions on players’ value functions.

Assumption: [Distributions of Values]

(3) The set of possible profiles of realized values is a product set V =
∏

n Vn. Each

player’s set of possible values is the same real closed interval, say Vn = [v∗, v
∗], where

v∗ < v∗.

(4) The joint valuation function v : S → V is continuous.

3This assumption can be weakened considerably: the distribution F need only be absolutely continuous
with respect to the product of its marginal distributions.
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(5) For each player n his value function vn : S → Vn is nondecreasing in his opponents’

signals sm.

(6) For each player n and each measurable function βm : Sm → [0, 1] that is nonzero on

a set of m’s signals with positive measure, the conditional expectation of n’s value

given the realizations of βm and n’s signal sn, namely4

∫

Sm
vn(sn, sm)βm(sm)fn(sm|sn) dsm
∫

Sm
βm(sm)fn(sm|sn) dsm

,

is strictly increasing in n’s signal sn.

Assumption (6) is stronger than requiring that player n’s value vn is strictly increasing in

his signal sn. It requires that a higher signal implies a higher expected value even if player n

conditions on an informative event about his opponents’ signals for which β is the likelihood

function, as for example when n evaluates his expected payoff conditional on the event that

his bid exceeds opponents’ bids.

Lastly, the present exposition requires that players are symmetric ex ante.

Assumption: [Symmetry of Players]

(6) The distribution function F and the joint valuation function v are symmetric with

respect to players.

In view of Assumption (3) it suffices to assume that for each player the feasible set of bids

is the interval B = [v∗, v
∗], the same as the interval of the player’s possible values. Denote

the Borel measurable subsets of B by B.

Because the game has perfect recall, we specify a player’s strategy in behavioral form

as mixtures over bids conditional on his signals. A behavioral strategy for player n is a

transition probability function σn(·|·) : B× Sn → [0, 1] such that for each signal sn, σn(·|sn)

is a probability measure on B; and for each event A ∈ B, σn(A|·) is a measurable function

on Sn.
5 Let Σn be the set of behavioral strategies of player n.

Endow behavioral strategies with the topology of weak convergence; i.e. a sequence σk
n of

strategies in Σn converges to σn iff for every continuous function η : B → R and each event

On ∈ Sn,
∫

On

∫

B

η(b) dσk
n(b|sn) dsn →

∫

On

∫

B

η(b) dσn(b|sn) dsn .

4Here and later the integral is computed using the Lebesgue measure on Sm.
5Strictly speaking a behavioral strategy is an equivalence class of transition probability functions, where

σn is equivalent to σ′

n if σn(·|sn) = σ′

n(·|sn) λn-a.e. on Sn.
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With this topology, Σn is a compact (metrizable) space.6 Instead of the Lebesgue measure

λn on Sn, if one uses the measure Fm(·|sm) for some signal sm ∈ Sm of player m 6= n then it

represents player m’s interim belief after receiving his signal sm. By Assumption (2) on F ,

for all m and sm the induced topology on Σn is the same.

Remark: It is convenient here to work with behavioral strategies rather than distributional

strategies. Note however that given a behavioral strategy σn of player n and a signal sm of

player m 6= n there is for player m a well-defined conditional belief that is the distributional

strategy ςn(σn, sm) defined on Sn ×B by

ςn(σn, sm)(On × C) =

∫

On

σn(C|sn)fm(sn|sm) dsn ,

where On ×C is the event that n’s signal sn ∈ On ∈ Sn and n’s bid is in C ∈ B. The family

of distribution functions ςn is continuous on Σn × Sm; in particular, the expectation w.r.t.

ςn(σn, sm) of any real-valued continuous (or u.s.c. or l.s.c) function on Sn × B is continuous

(or u.s.c. or l.s.c., respectively) w.r.t. (σn, sm). •

Say that a bid b ∈ B is a point of continuity of n’s strategy σn if σn({ b }|sn) is zero λn-a.e.

on Sn, i.e. for almost no signal does n bid b with positive probability. The set of bids that

are not points of continuity of σn is countable. Moreover, if σk
n is a sequence of strategies

converging to σn and b is a point of continuity of σn then, since the indicator function for

b is u.s.c.,
∫

Sn
σk
n({b}|sn) dsn converges to zero. Therefore there exists a subsequence such

that σk
n({ b }|·) converges λn-a.e. on Sn to zero.

For the auction game G the expected payoff to a player n when his signal is sn, he bids

bn, and m uses strategy σm ∈ Σm is

πn(sn, bn, σm) =

∫

Sm

[vn(sn, sm)− b][σm([v∗, bn)|sm) +
1

N
σm({ bn }|sm)]fn(sm|sn) dsm .

Consistent with the assumed symmetry of the players, the coefficient 1
N

assumes that the

tie-breaking rule gives the players equal chances of winning in the event of a tie at the bid

bn, but actually the tie-breaking rule has no role in the sequel.

Hereafter we assume there are only two players, i.e. N = 2. When referring to player n,

his opponent is player m.

6This definition is weaker than requiring (a.e. on Sn) pointwise weak convergence of the sequence of
distributions σk

n(·|sn). An equivalent definition requires that the displayed integral be u.s.c. (resp. l.s.c.) for
each function η that is u.s.c. (resp. l.s.c.).
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3. The Auxiliary Game

This section specifies an auxiliary game G∗ that is exactly the same as the auction game

G specified in Section 2 except for a change in the way a player responds to the possibility

of tied bids.

Before specifying the game G∗, first define for each player n the following alternative payoff

functions. For each (sn, bn, σm) ∈ Sn × B × Σm,

π̂n(sn, bn, σm) =

∫

Sm

[vn(sn, sm)− bn]σm([v∗, bn)|sm)fn(sm|sn) dsm ,

π̄+
n (sn, bn, σm) =

∫

Sm

[vn(sn, sm)− bn]
+σm({ bn }|sm)fn(sm|sn) dsm ,

π̄−
n (sn, bn, σm) =

∫

Sm

[vn(sn, sm)− bn]
−σm({ bn }|sm)fn(sm|sn) dsm .

Note that π̂n(sn, bn, σm) envisions winning if n’s bid bn strictly exceeds m’s bid, whereas

π̄+
n (sn, bn, σm) and π̄−

n (sn, bn, σm) envision only the event that n’s bid bn is tied with m’s bid.

The latter two differ according to whether n receives the positive or negative part of the

payoff vn(sn, sm)− bn, corresponding to the best and worst scenarios.

Now define π+
n = π̂n + π̄+

n and π−
n = π̂n + π̄−

n . Then π+
n and π−

n represent the best and

worst payoffs from ties. Note that if m’s strategy σm does not generate any atoms in the

distribution of m’s bids then π̄+
n = π̄−

n = 0 and therefore both π+
n and π−

n agree with n’s

payoff function πn in the auction game G. The following lemma establishes the continuity

properties of the best and worst payoff functions π+
n and π−

n .

Lemma 3.1. The payoff functions π+
n and π−

n : Sn × B × Σm → R are upper and lower

semi-continuous, respectively.

Proof. Let (skn, b
k
n, σ

k
m) be a sequence converging to (sn, bn, σm). Let S

0
m be the set of signals

s0m of m such that vn(sn, s
0
m) = bn. S0

m is a closed interval [s0m, s
0
m] since n’s value vn is

continuous and nondecreasing in sm. Fix ε > 0. Take the ε interval around S0
m and choose

0 < δ 6 ε such that for k large enough, bkn belongs to the interval bn±δ and vn(s
k
n, sm)−bn+δ

is negative if sm 6 s0m − ε and positive if sm > s0m + ε. Then

π+
n (s

k
n, b

k
n, σ

k
m) 6

∫

sm<s0
m
−ε
[vn(s

k
n, sm)− bn + δ]σk

m([v∗, bn − δ)|sm)fn(sm|s
k
n) dsm

+
∫

sm>s0m+ε
[vn(s

k
n, sm)− bn + δ]σk

m([v∗, bn + δ]|sm)fn(sm|s
k
n) dsm

+
∫

s0m±ε
[vn(s

k
n, sm)− bn + δ)]+σk

m([v∗, bn + δ]|sm)fn(sm|s
k
n) dsm .

Going to the limit, one sees that lim supk π
+
n (s

k
n, b

k
n, σ

k
m) on the left side is no more than

the right side of the above inequality with (skn, b
k
n, σ

k
m) replaced by its limit. Now choose a
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sequence of ε’s and thus δ’s decreasing to zero. Then one obtains π+
n (sn, bn, σm) as the limit

of the right-hand side, which proves that π+
n is upper semi-continuous. The proof of the

lower semi-continuity of π−
n is similar. �

Now define the auxiliary game G∗ as follows. Given m’s strategy σm, say that n’s bid bn is

an optimal reply when his signal is sn if π+
n (sn, bn, σm) > π−

n (sn, c, σm) for every bid c ∈ B.

That is, the best payoff from bn must be as good as the worst payoff from any other bid.

For each (sn, σm) let φn(sn, σm) be the set of player n’s optimal replies to σm when n’s

signal is sn.

Lemma 3.2. The correspondence φn : Vn × Σm ։ B is upper semi-continuous and has

nonempty and compact images.

Proof. For each signal sn of player n and strategy σm of m, the function π+
n is upper semi-

continuous in n’s bid b and hence attains a maximum over B. Any maximizer of π+
n is

trivially an optimal reply and hence φn has nonempty images. The other two properties

follow from the fact that π+
n is u.s.c. while π−

n is l.s.c. �

Let Φn : Σm ։ Σn be the correspondence that assigns to each strategy σm of m the set of

n’s strategies σn such for each signal sn ∈ Sn the support of σn(·|sn) is a nonempty subset of

φn(sn, σm). Then Φn is an upper semi-continuous correspondence with nonempty, compact,

and convex images. And so too is the optimal-reply correspondence Φ∗ : Σ ։ Σ obtained

as the product of Φn and Φm. The Fan-Glicksberg fixed-point theorem therefore implies

that Φ∗ has a fixed point. Hence the auxiliary game G∗ has an equilibrium. The symmetry

of the players implies further that there is a symmetric fixed point and thus a symmetric

equilibrium of G∗.

An equilibrium of G∗ is not necessarily an equilibrium of the auction game G. However,

those equilibria of G∗ with nonatomic distributions of bids are equilibria of G.

4. Existence of Equilibria for the Auction Game

This section establishes that a symmetric equilibrium exists for the auction game G,

regardless of the tie-breaking rule. This is done by showing that the auxiliary game G∗ has a

symmetric equilibrium with nonatomic bid distributions that is then a symmetric equilibrium

of the auction game G.

Theorem 4.1. The auction game G has a symmetric equilibrium. In particular, it has a

symmetric equilibrium with no atoms in the distribution of any player’s bids.
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The remainder of this section is devoted to the proof of this existence theorem. Through-

out, by a fixed point or an equilibrium we mean a symmetric one. One begins with the

observation that the optimal-reply correspondence Φ∗ defined above has essential sets of

fixed points, i.e. a set such that every sufficiently small perturbation of Φ∗ has a fixed point

arbitrarily close to the set. To exploit this property we construct a sequence of perturbed

auxiliary games Gk converging to G∗ that induce a sequence of perturbed correspondences

Φk converging to Φ∗. We then show that limit points of equilibria of the perturbed games,

obtained as fixed points of the perturbed correspondences, have nonatomic bid distributions.

Hence, these limits points are equilibria of both G∗ and the auction game G. The perturbed

games Gk are obtained simply by supposing that a player’s bid is distorted by noise before

it is received by the auctioneer.

The sequence of perturbed games Gk is constructed as follows. For each positive integer k,

the strategy sets in the game Gk are the same as in the auction game G and in the auxiliary

game G∗. However, when player n bids b the auctioneer perceives n’s bid as the sum of b

and a random variable uniformly distributed on the interval [−1/k, 1/k]. Thus, the payoff

functions are defined as follows. First, for each bid b ∈ B let µk
b be the uniform distribution

over the interval [b−1/k, b+1/k]. Next, for each strategy σk
m of player m, define a transition

probability distribution σ̃k
m from Sm to Bk ≡ [v∗−1/k, v∗+1/k] via its distribution function

σ̃k
m([v∗ − 1/k, b]|sm) =

∫

B

∫ b

v∗−1/k

dµk
c (b

′) dσk
m(c|sm) .

Then σ̃k
m([v∗ − 1/k, b]|sm) is the probability that the bid from m received by the auctioneer

is no more than b, given that bids are subject to noise. Finally, the payoff to player n when

his signal is sn, he bids bn ∈ B, and his opponent plays the strategy σm is

πk
n(sn, b, σm) =

∫

Bk

π+
n (sn, c, σ̃

k
m) dµ

k
b (c) ,

where the domain of π+
n (sn, c, σm) is extended now to include bids in Bk \B in the obvious

way.7

The payoff function πk
n is continuous. As in the previous section, therefore, the correspon-

dence φk
n that assigns to each (sn, σm) the set of bids that are optimal for n when his signal

is sn in reply to m’s strategy σm in game Gk is an u.s.c. correspondence with nonempty

and compact images. The induced optimal-reply correspondence Φk : Σ ։ Σ satisfies the

conditions for existence of a fixed point, which is then an equilibrium of Gk.

7In this definition, one could equivalently replace π+
n

with π−

n
or, indeed, any function that agrees with

π+
n at bids that are points of continuity of σm.
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Select a subsequence of k’s diverging to infinity for which a sequence σk of equilibria of the

perturbed games Gk converges to some strategy profile σ∗ ∈ Σ. Lemmas 4.4 and 4.5 below

establish first that σ∗ is an equilibrium of the auxiliary game G∗, and then that it is also an

equilibrium of the auction game G because the probability of tied bids is zero. Preceding

these are two preliminary lemmas that establish bounds on the equilibrium payoffs in Gk

and G∗, and continuity of players’ equilibrium payoff functions as functions of their signals.

In the course of these lemmas, convergent subsequences are selected to ensure regularity

properties.

Lemma 4.2. Let (skn, b
k
n) be a subsequence converging to (sn, bn). Then:

π+
n (sn, bn, σ

∗
m) > lim sup

k
πk
n(s

k
n, b

k
n, σ

k
m) > lim inf

k
πk
n(s

k
n, b

k
n, σ

k
m) > π−

n (sn, bn, σ
∗
m) .

Proof. Fix any small ε > 0. Since π+
n is upper semi-continuous and (skn, b

k
n, σ

k
m) converges

to (sn, bn, σ
∗
m), there exists K large enough such that for all k > K, π+

n (s
k
n, b

′
n, σ

k
m) <

π+
n (sn, bn, σ

∗
m) + ε for all b′n ∈ [bn − 1/K, bn + 1/K]. The payoff πk

n(s
k
n, b

k
n, σ

k
m) is obtained as

the average of values of π+
n (s

k
n, b

′
n, σ

k
m) for b′n in a smaller interval, so when k is very large

this implies that π+
n (sn, bn, σ

∗
m) + ε > lim supk π

k
n(s

k
n, b

k
n, σ

k
m). Since ε was arbitrary, this

establishes the first of the claimed inequalities. The proof for the inequality involving π−
n is

similar. �

For each k and each player n let θkn : Sn → R be the function that assigns to each signal

sn the corresponding equilibrium payoff of player n from the equilibrium σk of game Gk.

Lemma 4.3. The family of functions θkn is bounded and equicontinuous, and has a subse-

quence that converges to a continuous function θ∗n : Sn → R.

Proof. For each signal sn, player n’s equilibrium payoff is clearly in the interval [−1/k, v∗ −

v∗ + 1/k]. Therefore, the θkn’s are uniformly bounded. Equicontinuity follows from the

continuity of vn and the equicontinuity property for the conditional densities fn(·|sn). Since

the θkn’s are both bounded and equicontinuous, they are totally bounded; hence there is a

Cauchy subsequence that is convergent. �

Assume hereafter that for each n the sequence θkn is itself the Cauchy subsequence identified

in the above lemma. The next lemma establishes that σ∗ is an equilibrium of the auxiliary

game G∗.

Lemma 4.4. For a.e. signal sn of player n, every bid b in the support of σ∗
n(·|sn) is an

optimal reply to σ∗
m in the auxiliary game G∗.
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Proof. Let Xn be the set of (sn, b) ∈ Sn ×B such that π+
n (sn, b, σ

∗
m) > θ∗n(sn). By the upper

semi-continuity of π+
n and the continuity of θ∗n, Xn is a closed set. We claim that for each

(sn, b) /∈ Xn, there exists an open neighborhoodWn×C such that
∫

Wn
σ∗
n(C|sn) dsn = 0. This

suffices to prove the lemma since π−
n (sn, c, σ

∗
m) 6 θ∗n(sn) by Lemma 4.2. To prove this claim,

choose any open neighborhood Wn × C of (sn, b) such that its closure is contained in (Sn ×

B)\Xn. We assert that for all large k, πk
n(s

′
n, c, σ

k
m) < θkn(s

′
n) for all (s

′
n, c) ∈ Wn×C. Indeed,

otherwise there exists a sequence (skn, c
k
n) in Wn×C converging to some (s′n, cn) in the closure

of Wn × C and such that πk
n(s

k
n, c

k
n, σ

k
m) = θkn(s

′
n) for all k, and then limk π

k
n(s

k
n, c

k
n, σ

k
m) =

θ∗n(s
′
n). But that is impossible since, by Lemma 4.2, limk π

k
n(s

k
n, c

k
n, σ

k
m) 6 π+

n (s
′
n, cn, σ

∗
m),

while by construction, π+
n (s

′
n, cn, σ

∗
m) < θ∗n(s

′
n). Therefore, for all large k, πk

n(s
′
n, c, σ

k
m) <

θkn(s
′
n) for all (s

′
n, c) ∈ Wn×C as asserted. Since the bids in C are suboptimal against σk

m for

signals in Wn for all large k, it follows that
∫

Wn
σk
n(C|sn) dsn = 0 for all such k. By the lower

semi-continuity of the indicator function on the open set C,
∫

Wn
σ∗
n(C|sn) dsn = 0, which

proves the claim. �

We now prove the key lemma, which asserts that in the equilibrium σ∗ of G∗ each bidder’s

strategy induces a nonatomic distribution of his bids.

Lemma 4.5. Every bid b is a point of continuity of σ∗
m, i.e.

∫

Sm
σ∗
m({ b }|sm) dsm = 0.

Proof. Fix a bid b ∈ B. For each player m let Wm ⊂ Sm be the set of signals sm such

that σ∗
m({ b }|sm) > 0. Suppose to the contrary that

∫

Wm
σ∗
m({ b }|sm) dsm ≡ η > 0 for some

player m. Since we are considering a symmetric equilibrium, the same holds for his opponent

n as well. For each bid c, and for each j = k or ∗ define the bid distribution functions

Hj(c) =

∫

Sm

σj
m([v∗, c]|sm) dsm and Hj(c−) =

∫

Sm

σj
m([v∗, c)|sm) dsm .

In particular, H∗(b) = H∗(b−) + η. Also for each k define the expectation

H̄k(c) =

∫

Bk

Hk(c′) dµk
c (c

′) .

Based on the Lebesgue measure of signals, Hj is the distribution function of bids by player

m when he plays the strategy σj
m, and H̄k is the expectation of Hk when m’s received bids

are perturbed via the k-th uniform distribution. Clearly H̄k is a continuous function on Bk.

We now study the supposed atom of σ∗
m of size η at b by zooming in on small intervals

around it that shrink as k → ∞. On these intervals we study the equilibria σk of the

perturbed games Gk to establish that their limit, the equilibrium σ∗ of G∗, has no atoms

in the distribution of bids. The gist of the proof is to show that if k is large then player
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H∗(b−) + �k,0

H∗(b−) + �k,1

Atom of size � at bid b

H̄k

H∗

Bids
3/k 3/k

bk,0 bk,1

0 1Parameter t

b

Figure 1

n’s optimal replies avoid bidding b, instead preferring to bid more or less than b. For the

following construction it may be helpful to refer to the illustrative example in Figure 1.

Consider a sequence ηk in the interior of the unit square. Represent each ηk as the pair

(ηk,0, ηk,1). Let b̃k,0 be the highest bid c such that H̄k(c) = H∗(b−) + ηk,0, and similarly b̃k,1

is the lowest bid c such that H̄k(c) = H∗(b−) + ηk,1. Hereafter suppose that the sequence is

such that ηk converges to (0, η) and both b̃k,0 and b̃k,1 converge to b. Define bk,0 = b̃k,0 − 3/k

and bk,1 = b̃k,1 + 3/k, which also converge to b.

Define δk = bk,1 − bk,0 and εk = 1/(kδk). Then δk > 6/k and 0 < εk < 1/6. Now select a

subsequence such that εk converges to some limit point ε∗ in [0, 1/6]. Observe that ε∗ = 0 iff

k[bk,1−bk,0] diverges to infinity. Define the intervals T k = [2εk, 1−2εk] and T ∗ = [2ε∗, 1−2ε∗].

Next rescale bids in the interval [bk,0, bk,1], using instead the parameter t ∈ T ≡ [0, 1]. For

each k, define the linear function ζk : T → [bk,0, bk,1] via ζk(t) = bk,0+ δkt. In the following a

bid b̂ in the interval [bk,0, bk,1] is represented by the parameter t̂ for which b̂ = ζk(t̂) and we

refer to b̂ and t̂ interchangeably.

For a bid parameter t ∈ [εk, 1− εk], the bid ζk(t) is in the interval [bk,0 + 1/k, bk,1 − 1/k].

Recall that if the bid ζk(t) is chosen then the bid received by the auctioneer is ζk(t) plus

a noise term that is uniformly distributed on the interval [−1/k, 1/k]. Hence the uniform

distribution of received bids in the interval [ζk(t) − 1/k, ζk(t) + 1/k] induces via ζk a dis-

tribution νk
t over corresponding parameters t′ in T , where the distribution νk

t is uniform

over the interval [t − εk, t + εk]. If t ∈ [0, εk], then define νk
t to be the distribution that

places probability (2εk)
−1
(εk − t) on zero and assigns the rest of the probability uniformly

on (0, t + εk]. The distribution νk
t for t ∈ [1 − εk, 1] is similarly defined, by having a mass

point at 1. Hereafter, νk
t plays the role of the distribution of the received bid t′ conditional
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on the chosen bid t. For each t ∈ T , as k goes to infinity one obtains a well-defined limit

distribution ν∗
t that is uniform over the interval t± ε∗ if t ∈ I∗.

The following definitions employ this rescaling.

For each k, from m’s strategy σk
m construct the induced transition function τkm : T ×Sm →

[0, 1] via its conditional distribution function

τkm([0, t]|sm) = σk
m([ζ

k(0), ζk(t)]|sm) ,

which is the conditional probability given his signal sm that m’s bid parameter is in the

interval [0, t]. Also let τ̄km(·|sm) = (τkm(T |sm))
−1
τkm(·|sm) be the normalized probability when

τ̄km(T |sm) > 0, and otherwise let it be zero. Then τ̄km is a probability transition function on

Sm, with the measure on Sm that assigns to each S ′
m, the probability τkm(T |S

′
m)/τ

k
m(T |Sm).

Select a further subsequence of the k’s such that m’s induced bid distribution τkm and the

normalized version τ̄km converge to limits τ ∗m and τ̄ ∗m respectively.

Observe that
∫

Sm
τkm([2ε

k, 1 − 3εk]|sm) dsm > ηk,1 − ηk,0, and since ηk,1 − ηk,0 converges

to η, also
∫

Sm
τ ∗m([2ε

∗, 1 − 3ε∗]|sm) dsm > η. This follows from the fact that for each k,

Hk(b̃k,0 − 1/k) 6 H∗(b−) + ηk,0 (since otherwise H̄k(b̃k,0) > H∗(b−) + ηk,0) and Hk(b̃k,1) >

H∗(b−) + ηk,1.

For each j = k or ∗, each parameter t̃ ∈ [εj, 1 − εj], and each signal sm ∈ Sm, define

the conditional probability that m’s received bid parameter is in the interval [0, t̃] by its

conditional distribution function:

τ̃ jm([0, t̃]|sm) =

∫

[0,1]

∫ t̃

0

dνt(t
′) dτ jm(t|sm) .

Also define for each bid parameter t ∈ T j = [2εj , 1 − 2εj] and m’s signal sm ∈ Sm the

conditional expectation of τ̃ jm with respect to the induced noise distribution νj
t of player n:

τ̂ jm(t|sm) =

∫

[0,1]

τ̃ jm([0, t
′]|sm) dν

j
t (t

′) .

Note that τ̃ jm([0, t]|sm) and τ̂ jm(t|sm) are weakly increasing in t for each signal sm, since

τ jm([0, t]|sm) has that property and νj
t is a family of distributions for which higher t implies

first-order stochastic dominance.

Observe that from player n’s perspective, in the perturbed game Gk, if he chooses t and

thus the bid ζk(t) then his probability of winning when m’s signal is sm and chooses a bid

parameter in T is τ̂km(t|sm). (Because of the noise, the probability is zero that both players’

received bid parameters are any t′ ∈ T .)
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Finally, for each k and each pair (sn, sm) of the players’ signals, denote by pkn(sn, sm) the

probability that n wins when he chooses a bid in T k = [2εk, 1− 2εk] given his signal sn and

m chooses a bid parameter in T given his signal sm. That is,

pkn(sn, sm) =

∫

T k

τ̂km(t|sm) dτ
k
n(t|sn) .

Then
∏

n

τkn([2ε
k, 1− 2εk]|sn) 6

∑

n

pkn(sn, sm) 6
∏

n

τkn(T |sn) .

Define p̄kn(sn, sm) ≡ (pkn(sn, sm) + pkm(sm, sn))
−1
pkn(sn, sm).

Analogously, for each pair of measurable subsets (S̃n, S̃m) of the players’ signals, define

the probability

pkn(S̃n, S̃m) =

∫

S̃n×S̃m

pkn(sn, sm) dsn dsm ,

and p̄kn(S̃n, S̃m) ≡ (pkn(S̃n, S̃m) + pkm(S̃m, S̃n))
−1
pkn(S̃n, S̃m).

The remainder of the proof is broken into five steps. Step 1 shows that the limit of the

parameterized version accurately represents a player’s limit strategy σ∗
n.

Step 1. We claim that when viewed as sequences in L∞(Sn, λn), the space of bounded

λn-measurable functions on Sn, in the weak*-topology: (a) τkn(T |·) converges to σ∗
n({ b }|·),

and (b) σk
n([v∗, b

k,0)|·) converges to σ∗
n([v∗, b)|·). To prove this, given a measurable subset

S̃n of Sn, let η(S̃n) be
∫

S̃n
σ∗
n({ b }|sn) dsn and let η−(S̃n) =

∫

S̃n
σ∗
n([v∗, b)|sn) dsn. For each

ε > 0, choose bids b, b that are points of continuity of σ∗
n such that b < b < b and such that

∫

S̃n

σ∗
n([v∗, b]|sn) dsn > η−(S̃n)− ε and

∫

S̃n

σ∗
n([v∗b]|sn) dsn 6 η−(S̃n) + η(S̃n) + ε .

For all large k, b < bk,0 and bk,1 < b. Therefore,

lim sup
k

∫

S̃n

τkn (T |sn) dsn 6 η(S̃n) + 2ε and lim inf
k

σk
n([v∗, b

k,0)|sn) dsn > η−(S̃n)− ε .

Since ε was arbitrary,

lim sup
k

∫

S̃n

τkn (T |sn) dsn 6 η(S̃n) and lim inf
k

σk
n([v∗, b

k,0)|sn) dsn > η−(S̃n) .

For an arbitrary ε′ > 0 and all large k,
∫

Sn

τkn([2ε
k, 1− 3εk]|sn) dsn > η − ε′/2 ,
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while
∫

Sn\S̃n

τkn (T |sn) dsn 6

∫

Sn\S̃n

τ ∗n(T |sn) dsn + ε′/2 .

Therefore,
∫

S̃n
τkn([ε

k, 1− εk]|sn) dsn > η(S̃n)− ε′. Thus,

lim
k

∫

S̃m

τkn([ε
k, 1− εk]|sn) dsn =

∫

S̃m

σ∗
n({ b }|sn) dsn .

Finally, for the ε chosen at the beginning of this step, for large k
∫

S̃n

[σk
n([v∗, b

k,0)|sn) + τkn(T |sn)] dsn 6 η−(S̃n) + η(S̃n) + ε .

Hence, using the fact that τkn converges to τ ∗n ,

lim sup
k

∫

σk
n([v∗, b

k,0)|sn) dsn 6 η−(S̃n) + ε .

Therefore, since ε was arbitrary,

lim sup
k

∫

σk
n([v∗, b

k,0)|sn) dsn 6 η−(S̃n) .

As seen above, lim infk σ
k
n([v∗, b

k,0)|sn) dsn > η−(S̃n), so this completes Step 1. •

Recall thatWn ⊂ Sn is the set of n’s signals sn such that σ∗
n({ b }|sn) > 0 and by hypothesis

Wn has positive measure η. From Step 1 it follows that τ ∗n(T |sn) = 0 for a.e. sn ∈ Sn \Wn,

while τ ∗n([2ε
∗, 1 − 3ε∗]|sn) = σ∗

n({ b }|sn) for a.e. sn ∈ Wn. Also, by selecting a convergent

subsequence, pkn converges to a function p∗n and p̄kn converges to p̄∗n, with the property that

for each pair (S̃n, S̃m),

∏

n

∫

S̃n

τ ∗n([2ε
∗, 1− 3ε∗]|sn) dsn =

∑

n

p∗n(S̃n, S̃m).

To prepare for the next steps, for each k, signal sn, and a probability distribution µ over

T k, define

ρkn(sn, µ) =

∫

[0,1]

∫

Sm

[vn(sn, sm)− b]τ̂km(t|sm)fn(sm|sn) dsm dµ(t) ,

which is approximately the portion of n’s expected payoff from bidding close to b when his

signal is sn and his bid is matched against bids of his opponent that are also close to b.

When n chooses the strategy τ̄kn (·|sn), then this payoff is:

ρkn(sn, τ̄
k
n(·|sn)) =

(

τkn(T |sn)
)−1

∫

Sm

[vn(sn, sm)− b]pkn(sn, sm)fn(sm|sn) dsm.
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Similarly, for a a distribution µ over T , define

ρ∗n(sn, µ) = sup
(skn,µ

k)→(s,µ)

lim sup
k

ρkn(s
k
n, µ

k).

Because of the equicontinuity of f and the continuity of v, we could take the sequence skn in

the above definition to be the constant sequence of sn.

Finally, let

ξ∗n(sn) =

∫

Sm

[v(sn, sm)− b]σ∗
m([v∗, b)|sm)fn(sm|sn) dsm,

which is n’s expected payoff based on m’s limit strategy σ∗
m from bidding b and winning only

if m bids less.

Define ϑ∗
n(sn) = θ∗n(sn) − ξ∗n(sn). Thus ϑ∗

n(sn) is the amount by which the equilibrium

payoff θ∗n(sn) exceeds the payoff from bidding b and winning only if m’s bid is strictly less.

Hence ϑ∗
n(sn) is n’s incremental payoff from winning with the bid b when matched with the

same bid b by m. Steps 2 and 3 show that the incremental payoff ϑ∗
n(sn) bounds the limit

ρ∗n(sn, µ) of his payoff from bids close to b when his signal is sn and his bid is matched against

m’s bids close to b, and show that in fact these two payoffs are equal and positive if t is in

the support of his limit strategy τ ∗n(·|sn) for those signals sn ∈ Wn for which n bids b with

positive probability in the equilibrium σ∗.

Step 2. We claim that ϑ∗
n(sn) > ρ∗n(sn, µ) for each signal sn and µ. More specifically,

if (skn, µ
k) is a sequence converging to (sn, µ

k), then lim sup ρkn(s
k
n, µ

k) 6 ϑ∗
n(sn); and this

inequality holds as an equality if, letting ζk(µk) be the distribution over bids induced by µk

via ζk, πk
n(s

k
n, ζ

k(µk)) = θkn(sn)—which is true, for e.g., if skn is generic and the support of

µk is contained in the support of τkn(·|s
k
n). To prove this claim, consider a sequence (skn, µ

k
n)

converging to (sn, µn). Analogous to the definition of ξ∗n above, define

ξkn(s
k
n) =

∫

Sm

[vn(s
k
n, sm)− b]σk

m([v∗, b
k,0)|sm)fn(sm|s

k
n) dsm .

Since σk
m([v∗, b

k,0)|sm) converges to σ∗
m([v∗, b)|sm), ξ

k
n(s

k
n) converges to ξ∗n(sn).

The difference πk
n(s

k
n, ζ

k(µk), σk
m)− ξkn(s

k
n)− ρkn(s

k
n, µ

k) is
∫

T k

∫

Sm

∫

[0,1]

[b− ζk(t′)][σk
m([v∗, b

k,0)|sm) + τ̃km([0, t
′)|sm)]fn(sm|s

k
n) dνt(t

′) dsm dµ(t).

As k goes to infinity, ζk(t′) converges to b for all t′ ∈ [0, 1] and hence this difference converges

to zero. Therefore, for each sn and t, since πk
n(s

k
n, ζ

k(µk), b) 6 θkn(s
k
n), it follows that ξ

∗
n(sn)+

lim supk ρ
k
n(s

k
n, µ

k) 6 θ∗n(sn) = ξ∗n(sn) + ϑ∗
n(sn) and this inequality holds with equality under

the given conditions as well. •
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Step 3. For a.e. sn ∈ Wn:

0 < ϑ∗
n(sn) =

(

τ ∗n(T |sn)
)−1

(
∫

Sm

[vn(sn, sm)− b]p∗n(sn, sm)f(sm|sn) dsm

)

.

As in the previous step, it is easy to see that for each W ′
n,

lim
k

∫

W ′

n

τkn(T |sn)[π
k
n(sn, ζ

k(τ̄kn(T |sn)), σ
k
m)− ξkn(sn)− ρkn(sn, τ̄

k
n(·|sn))] dsn = 0

where ζk(τ̄kn(T |sn)) is the distribution over bids induced by τ̄kn . Since the strategies in

ζk(τ̄kn(T |sn)) are optimal for each sn, π
k
n(sn, ζ

k(τ̄kn([0, 1]|sn), σ
k
m)) = θkn(sn). Also, the equicon-

tinuity of θkn and ξkn imply that the left-hand side of the above equation equals:

∫

W ′

n

(

τ ∗n(T |sn)[θ
∗
n(sn)− ξ∗n(sn)]−

∫

Sm

[vn(sn, sm)− b]p∗n(sn, sm)

)

fn(sm|sn) dsn.

As θ∗n(sn) = ξ∗n(sn) + ϑ∗
n(sn), and W ′

n is an arbitrary subset of Wn, the claimed equality

follows.

To prove the positivity of θ∗n a.e. on Wn, we first show that it is non-negative. Suppose,

to the contrary, that ϑ∗
n(sn) is negative for some sn. Then ξ∗n(sn) > θ∗n(sn). Obviously now

b > v∗, since otherwise ξ∗n(sn) = 0 and thus θ∗n(sn) would be negative, which is impossible.

Observe then that ξ∗n(sn) is the limit of π∗
n(sn, b

l, σ∗
m) for a sequence bl of bids approaching b

from the left that are points of continuity of σ∗
m. Therefore, one can choose b′ < b such that

b′ is a point of continuity of σ∗
m and π∗

n(sn, b
′, σ∗

m) > θ∗n(sn), which is impossible for generic

sn. Thus, ϑ
∗
n(sn) is non-negative a.e.

Now fix a subsetW ′
n ofWn with positive measure. Then p∗n(W

′
n, Sm) > 0 since by symmetry

p∗n(W
′
n,W

′
n) = 1/2. Also for each sn ∈ W ′

n, ϑ
∗
n(sn) > 0. Therefore,

∫

W ′

n

∫

Sm
vn(sn, sm)p

∗
n(sn, sm)fn(sm|sn) dsm dsn

∫

W ′

n

∫

Sm
p∗n(sn, sm)fn(sm|sn) dsm dsn

> b .

By Assumption (6) therefore, for each sn that is greater than the essential supremum of W ′
n:

∫

W ′

n

∫

Sm
vn(sn, sm)p

∗
n(s

′
n, sm)fn(sm|sn) dsm ds′n

∫

W ′

n

∫

Sm
p∗n(s

′
n, sm)fn(sm|sn) dsm ds′n

> b .

Therefore, limk ρ
k
n(sn, τ̄

k
n(·|W

′
n)) > 0, i.e. by mimicking the strategy of W ′

n, in the limit sn

obtains a positive payoff. By Step 2, this implies that ϑ∗
n(sn) > 0 such an sn. Since W ′

n

was an arbitrary set of Wn with positive measure, we have that for all sn greater than the

essential infimum of Wn, ϑ
∗
n(sn) > 0. •
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Step 4. We claim that for a.e. sn ∈ Wn, p̄
∗
n(sn, ·) is weakly decreasing almost everywhere

on Wm. To prove this claim, for a subset W̃n of Wn with positive measure and x ∈ [0, 1], let

s̄m(x, W̃n) be the essential supremum of the set of m’s signals sm such that p̄∗n(W̃n, sm) > x.

If the claim is not true then there exists a set W̃n of positive measure and x ∈ (0, 1] such that

there is a positive measure of signals sm in [0, s̄m(x, W̃n)] ∩Wm for which p̄∗n(W̃n, sm) < x.

Choose two closed and disjoint subsets W 0
m and W 1

m of [0, s̄m(x, W̃n)] ∩Wm such that both

sets have positive measure and: (i) for each s0m ∈ W 0
m, s

1
m ∈ W 1

m, one has s0m < s1m; (ii)

p̄∗n(W̃n,W
0
m) < x and p̄∗n(W̃n,W

1
m) > x. Therefore, p̄∗m(W

0
m, W̃n)− p̄∗m(W

1
m, W̃n) > 0.

Since for each i = 0, 1, p̄km(W
i
m, W̃n) converges to p̄∗m(W

i
m, W̃n), we have that for a subse-

quence there exists for all k a pair (sk,im , tk,i) converging to some (s∞,i
m , t∞,0) such that: (i)

sk,im ∈ W i
m for all k; (ii) tk,i is in the support of τkm(·|s

k,i
m ) for all k; (iii) letting τ̂ ∗,in (t∞,i|·) be

the limit of τ̂k,in (t|·),
∫

W̃n
τ̂∞,0
n (t∞,0|sn)− τ̂∞,1

n (t∞,1|sn) dsn > 0. Obviously tk,0 > tk,1 for all k

and hence
∫

Sn
τ̂∞,0
n (t∞,0|sn)− τ̂∞,1

n (t∞,1|sn) dsn > 0 as well.

Letting s∞,i
m be the limit of sk,im , we have from the previous step that ρ∗m(s

∞,i
m , t∞,i

m ) =
∫

Sn
[vm(s

∞,i
m , sn)− b]τ̂∞n (t∞,i

m |sn)fm(sn|s
∞,i
m ) dsn = ϑm(s

∞,i
m ). This implies, for i = 1, that

∫

Sn
vm(s

∞,1
m , sn)β(sn)fm(sn|s

∞,1
m ) dsn

∫

Sn
β(sn)fm(sn|s

∞,1
m ) dsn

6 b

where β(sn) = τ̂∞n (t∞,0|sn) − τ̂∞n (t∞,1|sn). By Assumption (6), the same expression using

s∞,0
m in place of s∞,1

m would be a strict inequality since s∞,0
m < s∞,1

m . Thus, limk ρ
k
m(s

k,0
m , tk,1)

is strictly greater than limk ρ
k
m(s

k,0
m , tk,0), which is the desired contradiction. •

It is easy to show using the previous step that the support of τ ∗n is a singleton for a.e.

sn ∈ Wn and that this function is then weakly increasing, a fact not used below.

We come now to the final step. For those signals sn ∈ Wn for which n bids b in the

equilibrium σ∗ of G∗, Step 5 shows that the amount ϑ∗
n(sn) by which the equilibrium payoff

θ∗n(sn) exceeds the payoff ξ∗n(sn) from bidding b and winning only if m’s bid is strictly less,

cannot be so large as to imply always winning when m also bids b, and that therefore player

n prefers to bid slightly more than b. Thus Step 5 obtains a contradiction to the conclusion

of Lemma 4.4 that σ∗ is an equilibrium of G∗, and thereby a contradiction to the initial

hypothesis that m’s strategy σ∗
m induces an atom at the bid b.

Step 5. Fix a generic signal sn ∈ Wn. By Steps 2 and 3, ϑ∗
n(sn) and p∗n(sn,Wm) are both

positive. The incremental payoff is

ϑ∗
n(sn) =

∫

Wm

[vn(sn, sm)− b]τ ∗m(T |sm)p̄
∗
n(sn, sm)fn(sm|sn) dsm .
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Wm(x) = {sm ∣ p̄∗n(sn, sm) ≥ x}

x

Wm

p̄∗n(sn, sm)

sm
0

1

Figure 2

For each x ∈ [0, 1], define the set Wm(x) ≡ { sm ∈ Wm | p̄∗n(sn, sm) > x }. Figure 2 illustrates

a possible form of p̄∗n(sn, sm) and Wm(x) for the case that Wm is an interval.

By Step 3, Wm(x) is monotonically nonincreasing in x. One can therefore express ϑ∗
n(sn)

as the double integral

ϑ∗
n(sn) =

∫

Wm

∫

[0,1]

[vn(sn, sm)− b]1Wm(x)(sm)τ
∗
m(T |sm)fn(sm|sn) dx dsm,

where 1Wm(x)(·) is the indicator function for Wm(x). For each x and signal sn, define

un(x, sn) =

∫

Wm(x)

[vn(sn, sm)− b]τ ∗m(T |sm)fn(sm|sn) dsm .

Then reversing the order of integration above yields the alternative formula

ϑ∗
n(sn) =

∫

[0,1]

un(x, sn) dx .

If un(x, sn) > 0 for some x then for all x1 6 x 6 x2, un(x1, sn) > un(x2, sn), with the

inequality being strict if Wm(x1) \ Wm(x2) has positive measure. To prove this, let sm(x)

be the essential supremum of Wm(x). Since un(x, sn) > 0, Wm(x) has positive measure

and sm(x) is well-defined. Also, vn(sn, sm(x)) > b, since otherwise by Assumption (5),

vn(sn, sm) 6 b for all sm ∈ Wm(x) and then un(x, sn) 6 0. Fix x1 < x 6 x2 and for

each i = 1, 2, let sm(xi) be the essential supremum of Wm(xi). By the monotonicity of

Wm(·), sm(x1) > sm(x2), where the inequality is strict if Wm(x1) \ Wm(x2) has positive

measure. Observe that for each sm(x) 6 sm 6 sm(x1), vn(sn, sm) > b, and thus un(x1, sn) is

strictly positive. If un(x2, sn) is non-positive then one is done. Otherwise, if un(x2, sn) > 0,

then vn(sn, sm(x2)) > b and thus, again by Assumption (5), for all sm(x2) 6 sm 6 sm(x1),

vn(sn, sm) > b. Thus, un(x1, sn) > un(x2, sn).
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Since ϑ∗
n(sn) is greater than zero, un(x, sn) > 0 for some x. Therefore, the preceding

paragraph implies that un(x, sn) 6 un(0, sn) for all x, and hence

ϑ∗
n(sn) 6

∫

Wm

[vn(sn, sm)− b]τ ∗m(T |sm)fn(sm|sn) dsm .

Observe that this inequality must be strict for a.e. sn ∈ Wn. Otherwise, when n’s signal

is sn he wins with probability one against every signal sm ∈ Wm of player m, which in an

equilibrium is not possible outside a set of measure zero in Wn.

To finish the proof, we show that when the above inequality is strict player n with signal sn

prefers some bid b′ > b for all large k. Indeed, first observe that b < v∗, since otherwise, the

payoff θ∗n(sn) 6 0 (the maximum value is v∗ and if it equals the bid b, then player n cannot

make a profit in any event). Then, observe that the total payoff ξ∗n(sn) +
∫

Wm
[vn(sn, sm) −

b]τ ∗m([0, 1]|sm)fn(sm|sn) dsm is the right-hand limit of π+
n (sn, b, σ

∗
m). So, if the inequality is

strict then one can choose b′ > b that is a point of continuity and such that π+
n (sn, b

′, σ∗
m) >

ξ∗n(sn) + ϑ∗
n(sn). But that is impossible since by definition ξ∗n(sn) + ϑ∗

n(sn) = θ∗n(sn) and

therefore π+
n (sn, b

′, σ∗
m) > θ∗n(sn), contradicting the initial supposition that θ∗n(sn) is n’s

equilibrium payoff when his signal is sn. •

The contradiction obtained in Step 5 implies the falsity of the initial hypothesis that

player m’s strategy induces an atom at the bid b, and thereby concludes the proof of Lemma

4.5. �

In sum, Lemma 4.4 establishes that a limit point σ∗ of the equilibria σk of the auxiliary

games Gk is an equilibrium of G∗, and Lemma 4.5 establishes that σ∗ does not induce atoms

in the distribution of any player’s bids. Hence the probability of tied bids is zero and therefore

σ∗ is also an equilibrium of the auction game G, regardless of the tie-breaking rule. This

verifies Theorem 4.1.

Remark. Assumptions (5) and (6) are invoked only in Steps 2, 3, and 4 of Lemma 4.5.

Without these assumptions, the proof shows how to generate an endogenous tie-breaking

rule, as in [3]. For each bid b at which there is an atom, of which there is a countable

number, the limiting probabilities p∗n(sn, sm) and p∗m(sm, sn) give the relative odds of sn or

sm winning if both bid b and then report their signals truthfully. In the event of a tie at

such a bid b, the incentive to truthfully report one’s signal is obtained from the fact that

the limit payoff ϑ∗
n(sn) maximizes ρ∗n(sn, t) and that misreporting one’s signal, say s̃n ∈ Wn

instead of sn, obtains limk ρ
k
n(sn, t̃

k) as the payoff, where t̃k is a sequence converging to a t̃

in the support of τ ∗n(·|s̃n), and for which t̃k is in the support of τkn(·|s̃
k
n) for a sequence of s̃kn

converging to s̃n.
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5. Concluding Remarks

In auction theory, most existence theorems focus on equilibria in pure strategies that

are strictly increasing in bidders’ signals. Like Theorem 4.1 here, monotone pure-strategy

equilibria obviate discontinuities due to tie-breaking rules because they induce nonatomic

distributions of bids. However, these theorems rely on unrealistically strong assumptions

about the joint distribution of signals, such as affiliation.8 In contrast, the theorem here

establishes existence of an equilibrium in mixed strategies using weak assumptions about

the distribution of bidders’ signals and their value functions.9 In general we see advantages

to distinguishing between those assumptions sufficient for existence of equilibria, and those

that ensure pure strategies and monotonicity.

The proof of Theorem 4.1 brings additional advantages. One is that the auxiliary game

induces a well-defined fixed-point problem in the space of behavioral strategies, a feature

absent from previous work. This problem necessarily has essential sets of fixed points, those

for which every perturbation of the problem has a nearby fixed point. As shown by the proof

in Section 4, limit points of these nearby fixed points are equilibria of both the auxiliary

game and the auction game. Because essential fixed points are those for which the Leray-

Schauder index is nonzero, there is the further possibility of distinguishing between those

with positive and negative indices, since it is known that in finite games those with positive

and negative indices are dynamically stable and unstable, respectively, under monotone

adjustment processes.
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