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EXISTENCE OF EQUILIBRIA IN PRIVATE-VALUE AUCTIONS

SRIHARI GOVINDAN AND ROBERT WILSON

This paper introduces a new method to establish existence of an equilibrium of an auction.

Here it is applied to equilibria in behavioral strategies for a first-price sealed-bid auction of a

single item for which bidders have privately known values drawn from a joint distribution.1

The only restriction is that this distribution has a density that is positive and continuous on

a hypercube.

The method circumvents discontinuities due to tie-breaking rules. First one establishes

existence of equilibria for a modified auction in which every bidder offering the highest

bid wins a copy of the item. For this modified auction there is a well-defined fixed-point

problem for which equilibria are solutions. Then one establishes that equilibria obtained as

limit points of equilibria of payoff perturbations of the modified auction have no atoms in

the distributions of bids.2 Because the probability of tied bids is zero, these equilibria of the

modified auction are equilibria of the original auction, regardless of the tie-breaking rule.

For the proof here, it suffices to consider perturbations of the modified auction in which

a bidder anticipates that his submitted bid will be slightly distorted by noise before it is

received by the auctioneer.

1. The Auction Game

We consider an N -player game G that represents a first-price sealed-bid auction for a

single item. Each bidder n = 1, . . . , N learns privately his value vn for the item and then

submits a bid bn. He wins the auction if his bid is highest, or when tied for highest, if he is

selected by a tie-breaking rule. If he wins the auction then he is awarded the item and his

payoff is vn − bn. Otherwise his payoff is zero.

The joint probability distribution F of all bidders’ values is supposed to be common

knowledge among the bidders. Our basic assumption is the following.

Assumption: [Distribution of Values]

Date: 8 February 2010.
This work was funded in part by a grant from the National Science Foundation of the United States.
1In [2] we apply this method to auctions with interdependent values. Here we address the special case of

private values because proofs are simpler.
2That is, essential equilibria [1] of the modified auction have atomless bid distributions.
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(1) The set of possible profiles of values is V =
∏

n Vn, where for each bidder n the set

of possible values is the same interval Vn = [v∗, v∗], where v∗ < v∗.

(2) The distribution function F has a density f that is positive and continuous on V .3

For each bidder n and his value vn, let Fn(⋅∣vn) be the conditional distribution over the values

of n’s opponents, and let fn(⋅∣vn) be its density function. The assumption about the density

f guarantees that for each n, v−n and vn, the two families of functions fn(v−n∣⋅) and fn(⋅∣vn)
are equicontinuous in the parameters v−n and vn respectively.

We assume that the feasible set of bids is the interval B = [v∗, v∗], the same as the

interval of each bidder’s possible values. To avoid confusion, we use Vn to denote the Borel

measurable subsets of Vn and we use B to denote the corresponding collection when referring

to B. Let ¸ be the Lebesgue measure on [v∗, v∗].

2. Behavioral Strategies and Beliefs

A behavioral strategy for bidder n is a transition-probability function ¾n(⋅∣⋅) : B× Vn →
[0, 1] such that: for each value vn, ¾n(⋅∣vn) is a probability measure on bids in B; and for

each event A ∈ B, ¾n(A∣⋅) is a measurable function of n’s value vn.
4 Let Σn be the set of

behavioral strategies of bidder n equipped with the topology of weak convergence, viz., a

sequence ¾k
n in Σn converges to ¾n iff for every continuous function ´ : B → ℝ and each

event Wn ∈ Vn,
5

∫

Wn

∫

B

´(b) d¾k
n(b∣vn) dvn →

∫

Wn

∫

B

´(b) d¾n(b∣vn) dvn .

With this topology, Σn is a compact (metrizable) space.6 Let Σ =
∏

nΣn be the space of all

behavioral strategy profiles with the product topology.

The next definition deals with the belief of a bidder about the distribution of the highest

bid among his opponents. Like a behavioral strategy, a belief is generally a transition function

Hn(⋅∣⋅) : B × Vn → [0, 1]. The intended interpretation is that Hn(⋅∣vn) is the conditional

distribution function of the highest bid among n’s opponents, given that n’s value is vn.

Thus Hn(A∣vn) is the probability that the highest bid among n’s opponents is in A. In the

sequel, however, it suffices to focus on events of the form A = [v∗, b] or A = [v∗, b). Thus,

3This assumption can be weakened considerably: the distribution F need only be absolutely continuous
w.r.t. the product of its marginal distributions.

4Strictly speaking a behavioral strategy is an equivalence class of functions, where ¾n is equivalent to ¾′
n

if ¾n(⋅∣vn) = ¾′
n(⋅∣vn) ¸-a.e. on Vn.

5Here and elsewhere the outer integral is computed with respect to the Lebesgue measure.
6This definition is weaker than requiring (a.e. on Vn) pointwise weak convergence of the sequence of

distributions ¾k
n(⋅∣vn). An equivalent definition requires that the displayed integral be u.s.c. (resp. l.s.c.) for

each ´ that is u.s.c. (resp. l.s.c.).
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for each bid b ∈ B and n’s belief Hn, we write Hn(b∣vn) and Hn(b
−∣vn) for Hn([v∗, b]∣vn)

and Hn([v∗, b)∣vn) respectively. Recall that a cumulative distribution function is necessarily

upper semi-continuous, so as a function on B, Hn(⋅∣vn) has this property for each value vn.

Let ℋn be the set of beliefs of bidder n equipped with the topology of weak convergence,

and let ℋ =
∏

nℋn be the space of all belief profiles with the product topology.

We now describe the belief map ¯ : Σ → ℋ that assigns to each strategy profile ¾ a belief

profile ¯(¾) = H, defined as follows. For each bidder n, his value vn ∈ Vn and each subset

A ∈ B of bids of the form A = [v∗, b] or [v∗, b) for some bid b ∈ B,

Hn(A∣vn) =
∫

V−n

(
∏

m∕=n

¾m(A∣vm))f(v−n∣vn) dv−n ,

where m indexes the bidders other than n. Assumption 1 implies the following properties of

beliefs.

Lemma 2.1. For each strategy profile ¾ ∈ Σ, if ¯(¾) = H then for each bidder n:

(1) For each bid b, Hn(b∣vn) is continuous in vn.

(2) Hn(b∣vn) is upper semi-continuous in (b, vn).

(3) b is point of continuity of Hn for some vn iff it is a point of continuity for all vn.

Proof. Since f is positive and continuous, the conditional density f(v−n∣vn) is continuous in
vn. Hence Hn(b∣vn) is continuous in vn. Suppose now that (bkn, v

k
n) is a sequence converging

to (bn, vn). For each c > bn, b
k
n < c for all large k. Therefore Hn(b

k
n∣vkn) ⩽ Hn(c∣vkn) for all

large k. This implies that lim supk Hn(b
k
n∣vkn) ⩽ limk Hn(c∣vkn) = Hn(c∣vn), where the equality

follows from point (1) of this lemma. Because c is an arbitrary bid higher than bn, (2) follows

from the right-continuity of distributions. Finally, (3) is a consequence of the assumption

that the density function is positive. □

The space H of belief profiles consistent with some strategy profile is the range of ¯, i.e.

H = ¯(Σ). H is a subspace of
∏

n ¯n(Σ) with the product of the weak topologies on each

factor. The following lemma establishes the continuity of ¯ and hence the compactness of

H.

Lemma 2.2. The belief map ¯ is continuous. In particular, if ¾k is a sequence of strategy

profiles in Σ converging to ¾ then for each bidder n and value vn ∈ Vn the distribution

¯n(¾
k)(⋅∣vn) converges weakly to ¯n(¾)(⋅∣vn).

Proof. Let Hk
n = ¯n(¾

k) and Hn = ¯n(¾). Since the indicator functions on the sets [0, b]

and [0, b) are u.s.c. and l.s.c. on the set B of bids, convergence of the sequence of strategy
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profiles implies that for each vn and each point b of continuity of the conditional distribution

function Hn(⋅∣vn):
Hn(b

−∣vn) = Hn(b∣vn) ⩾ lim sup
k

Hk
n(b∣vn) ⩾ lim inf

k
Hk

n(b
−∣vn) ⩾ Hn(b

−∣vn) .

Thus, for each n and vn the sequence Hk
n(⋅∣vn) converges weakly to Hn(⋅∣vn). Therefore

limk H
k
n = Hn. □

This lemma implies that convergence in H for the specified topology is the same as re-

quiring that for each n and vn the corresponding sequence of distributions converges.

The next lemma establishes two other key properties of the belief map ¯.

Lemma 2.3. For each bidder n, ¯n(¾)(bn∣vn) is an upper semi-continuous function of

(¾, vn, bn). If bn is a point of continuity of ¯n(¾) then the function is continuous at (¾, vn, bn).

Proof. Let (¾k, vkn, b
k
n) be a sequence converging to (¾, vn, bn). Let Hk = ¯(¾k) and let H

be the limit. Fix any small " > 0. There exists c > bn that is a point of continuity of

Hn(⋅∣vn) and such that Hn(c∣vn) ⩽ Hn(b∣vn) + "/2. Since c is a point of continuity of Hn

there exists K large enough such that for all k ⩾ K, Hk
n(c∣vn) is within "/4 of Hn(cn∣vn).

Since f is continuous and positive, the conditional densities fn(⋅∣wn) are an equicontinuous

family parameterized by wn ∈ Vn. Therefore, for large k, H
k
n(c∣vkn) is within "/4 of Hk

n(c∣vn).
Hence Hk

n(c∣vkn) ⩽ Hn(b∣vn) + ". Since bkn converges to bn, bkn ⩽ c for large k. Thus,

Hk
n(b

k
n∣vkn) ⩽ Hn(c∣vkn) ⩽ Hn(b∣vn) + " for large k. Since " is arbitrary, this establishes the

upper semi-continuity property. If ¯n(¾) is continuous at bn then one can apply the same

argument as above by choosing c < bn that is a point of continuity to obtain for each " that

for large k, Hk
n(b

k
n∣vkn) ⩾ Hn(bn∣vn)− ". □

3. A Fixed-Point Map on the Space of Behavioral Strategies

For each bidder n define a payoff function ¼n : Vn ×B × Σ → ℝ by

¼n(vn, bn, ¾) = [vn − bn]¯n(¾)(bn∣vn) .
If the belief ¯n(¾)(⋅∣vn) has no mass points then the probability of tied bids is zero and

therefore ¼n is indeed n’s payoff function in the auction game G. More generally, ¼n is

generated by an allocation rule that stipulates that all among the highest bidders receive

copies of the item. In other words, to surely win an item a bidder needs only to match the

highest bid among his opponents, not necessarily to exceed it. We assume initially that this

is indeed the allocation rule, which thus defines a related game G∗. Later we demonstrate

that there is an equilibrium of G∗ in which there are no mass points in the distribution of
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opponents’ highest bids and thus this equilibrium of G∗ is also an equilibrium of the auction

game G.

In the modified game G∗, bidder n’s optimal replies to a profile ¾ of bidders’ strategies

are obtained by solving the following maximization problem, conditional on his value vn:

max
bn∈B(vn)

¼n(vn, bn, ¾) ,

where B(vn) is the set of bids bn ⩽ vn. Let Án : Vn × Σ ↠ B be the correspondence that

maps each (vn, ¾) to the set Án(vn, ¾) = argmaxbn∈B(vn) ¼n(vn, bn, ¾) of n’s optimal replies

when his value is vn.

Lemma 3.1. The correspondence Án is upper semi-continuous and has nonempty compact

images.

Proof. Let Hn = ¯n(¾) be n’s belief. By Lemma 2.1, the payoffs are u.s.c. in the bid b for

each value vn and strategy profile ¾, provided that bids satisfy the individual rationality

condition b ⩽ vn as above. Therefore, Án(vn, ¾) is nonempty and compact for each vn and

¾. Suppose (vkn, ¾
k) is a sequence converging to (vn, ¾) and bkn is a corresponding sequence of

optimal replies converging to the bid bn. Observe that ¼n(¾, vn, b) ⩾ lim supk ¼n(¾
k, vkn, b

k
n),

again using b ∈ B(vn). To show that bn is an optimal reply, pick a bid c that is a point

of continuity Hn. By Lemma 2.3, Hk
n(c∣vkn) converges to Hn(c∣vn). Therefore, the payoffs

¼n(¾
k, vkn, c) converge to ¼n(¾, vn, c). Since each bkn is an optimal reply, bn is as good a reply

as c. The result follows for an arbitrary bid c since there exists a sequence cl converging to

c such that ¼n(¾, vn, c
l) converges to ¼n(¾, vn, c). □

For each bidder n define the optimal-reply correspondence Φn : Σ ↠ Σn by specifying for

each strategy profile ¾ that Φn(¾) is the set of n’s behavioral strategies ¾n ∈ Σn such that

for each value vn ∈ Vn the support of ¾n(⋅∣vn) is optimal, i.e. is contained in Án(vn, ¾).

Lemma 3.2. The correspondence Φn is upper semi-continuous with images that are non-

empty, compact, and convex.

Proof. Since Án(⋅, ¾) is an upper semi-continuous correspondence, it admits a measurable se-

lection, which is then a pure strategy that belongs to Φn(¾). Therefore, Φn(¾) is a nonempty

set. Also it is clearly compact and convex. Upper semi-continuity follows from the upper

semi-continuity of Án. □

Now define the joint optimal-reply correspondence Φ∗ : Σ ↠ Σ to be the product of the

maps Φn. The Fan-Glicksberg extension of the Kakutani fixed-point theorem assures the

existence of a fixed point of Φ∗. Clearly, each fixed point of Φ∗ is an equilibrium of the
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game G∗. Observe, however, that Φ∗ has a trivial fixed point in which every bidder bids v∗
regardless of his value. Nevertheless, if Φ∗ has another fixed point for which the strategies

of the bidders have no mass points in the distributions of their bids then it is an equilibrium

of the auction game G.

Theorem 3.3. Suppose ¾∗ is a fixed point of Φ∗ such that for each bidder n and each bid

b ∈ B, ¾∗
n({ b }∣⋅) is zero ¸-a.e. on Vn. Then ¾∗ is an equilibrium of the auction game G.

Proof. Let H∗ = ¯(¾∗). The supposition implies that for each bidder n and value vn the

conditional distribution H∗
n(⋅∣vn) of the highest bid among n’s opponents has no mass points.

The probability that any bid bn by n is the same as the highest bid among his opponents is

therefore zero. Hence, regardless of the tie-breaking rule in the auction game G, bidder n’s

conditional payoff function [vn − bn]H
∗
n(bn∣vn) is the same as the conditional payoff function

¼n(vn, bn, ¾
∗) in the modified game G∗, and his optimal replies are the same. In the auction

game G the behavioral strategy ¾∗
n(⋅∣vn) is therefore an optimal reply by n conditional on

each of his values vn. Thus ¾
∗ is an equilibrium of the auction game G. □

4. A Basic Existence Result for Behavioral Strategies

In this section we construct a sequence of well-behaved perturbations of the modified game

G∗ that induce perturbations of the optimal-reply correspondence Φ∗. We then show that

limit points of equilibria of these perturbed games are equilibria of G∗ with no atoms in the

distributions of players’ bids. Hence these limit points are equilibria of the auction game G.

Interpret a conditional belief Hn(⋅∣vn) for bidder n as a function defined for bids outside

B in the obvious way: H(b∣vn) is zero for b < v∗ and one for b > v∗. Given Hn(⋅∣vn), for each
positive integer k and each bid b define H̄k

n(b∣vn) to be the expectation of Hn(⋅∣vn) using the

uniform distribution of bids on the interval [b− 1/k, b+ 1/k], i.e.7

H̄k
n(b∣vn) = [2/k]

∫ b+1/k

b−1/k

Hn(c∣vn) dc .

For each k define a perturbed payoff function ¼k
n : Vn × B × Σ as follows. If Hn = ¯n(¾)

then

¼k
n(vn, bn, ¾) = [vn − bn]H̄

k
n(bn∣vn) .

Denote the game with this perturbed payoff function by Gk.

As in the previous section, one can now define an optimal reply correspondence Ák
n : Vn ×

Σ → B by letting Ák
n(vn, ¾) be the set of maximizers of ¼k

n(vn, bn, ¾). Also let Φk
n be the set

7The arguments go through if one uses an atomless distribution whose density is symmetric around the
mean b, like the normal distribution, or an asymmetric one that is not skewed to the right.



EQUILIBRIA OF AUCTIONS 7

of behavioral strategies that mix over these optimal replies. The previous characterizations

of Án and Φn apply to Ák
n and Φk

n as well. Hence the joint optimal-reply correspondence

Φk : Σ ↠ Σ has a fixed point ¾k that is an equilibrium of Gk and induces beliefs Hk = ¯(¾k).

As before, H̄k
n(b∣vn) is the expectation of Hk

n(⋅∣vn) with respect to the uniform distribution

on [b− 1/k, b+ 1/k].

For an increasing subsequence of k’s, the equilibrium strategy profiles ¾k and beliefs Hk

converge to limit points, say to ¾∗ and H∗. Obviously, H∗ = ¯(¾∗). We now prove existence

of an equilibrium of the auction game G by showing that ¾∗ satisfies the supposition in

Theorem 3.3.

Theorem 4.1. [Existence Theorem] The strategy profile ¾∗ is an equilibrium of the auction

game G, with H∗ describing bidders’ beliefs.

Proof. The proof begins with four lemmas that verify that ¾∗ an equilibrium of the game

G∗, i.e. it is an optimal reply to itself when the payoff function is ¼. A fifth lemma verifies

that there are no atoms in H∗, which establishes that ¾∗ is an equilibrium of the auction

game G.

For each k and bidder n, let µkn : Vn → ℝ be the function that assigns to each value vn

his equilibrium payoff for the equilibrium ¾k of the game Gk. The equicontinuity property

of the conditional densities fn(⋅∣vn) implies the first lemma.

Lemma 4.2. The family of functions µkn is equicontinuous.

Lemma 4.3. For any bidder n, suppose (vkn, b
k) converges to (vn, b). Then

H∗
n(bn∣vn) ⩾ lim sup

k
H̄k

n(b
k
n∣vkn) ⩾ lim inf

k
H̄k

n(b
k
n∣vkn) ⩾ H∗

n(b
−∣vn) .

Proof. Given any " > 0, fix two bids b1 < b < b2 that are points of continuity of H∗
n such that

H∗
n(b1∣vn) > H∗

n(b
−∣vn)− "/2 and H∗

n(b2∣vn) < H∗
n(b∣vn)+ "/2. Since the Hk

n’s are converging

to H∗
n, and b1 and b2 are points of continuity of H∗

n, for all large k, H
k
n(b1∣vkn) > H∗

n(b
−∣vn)−"

and Hk
n(b2∣vkn) < H∗

n(b∣vn) + ". Thus for all such k and b1 < b′ < b2 then H∗
n(b

−∣vn) − " <

Hk
n(b

′∣vkn) < H∗
n(b∣vkn) + ". For large k, [bkn − 1/k, bkn + 1/k] ⊂ [b1, b2] so H̄k

n(b
k
n∣vkn) is in the

interval (H∗
n(b

−∣vn)− ",H∗
n(b∣vn) + "). Since " was arbitrary, the lemma follows. □

Let µ∗n(vn) be the maximum payoff to bidder n when his value is vn and his belief is H∗
n.

Lemma 4.4. For each bidder n, µkn converges pointwise to µ∗n. Therefore, a subsequence of

µkn converges uniformly to µ∗n.
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Proof. Suppose µkn(vn) does not converge to µ∗n(vn) for some value vn. Then replacing the

sequence with some convergent subsequence, limk µ
k
n(vn) exists and is different from µ∗n(vn).

Take a subsequence of bids bkn for vn that achieves µkn(vn) and, if necessary by going to

a further subsequence, that converges to some bn. By the previous lemma, H∗
n(bn∣vn) ⩾

lim supk H̄
k
n(b

k
n∣vn). Therefore, limk µ

k
n(vn) ⩽ [vn − bn]H

∗
n(bn∣vn) ⩽ µ∗n(vn). This implies that

limk µ
k
n(vn) < µ∗n(vn). Hence, there exists a bid c that is a point of continuity of H∗

n(⋅∣vn)
and such that limk µ

k
n(vn) < [vn − c]H∗

n(c∣vn). Applying the previous lemma to c, one gets

limk H̄
k
n(c∣vn) = H∗

n(c∣vn). For large k, therefore, c is a better bid than bkn against ¾k, which

is a contradiction.

To prove the second statement, observe that the sequence µkn is bounded. Since it is

equicontinuous, it is totally bounded. Hence, it admits a Cauchy subsequence. Such a

subsequence must necessarily converge to µ∗n from the first statement of the lemma. □

Hereafter assume that the selected subsequence is such that µkn converges uniformly to µ∗n.

Lemma 4.5. For each bidder n and almost all values vn ∈ Vn, ¼n(vn, b, ¾
∗) = µ∗n(vn) for

every bid b in the support of ¾∗
n(⋅∣vn).

Proof. Fix a bidder n and let Xn be the set of (vn, b) such that b ⩽ vn and ¼n(vn, b, ¾
∗) =

µ∗n(vn), i.e. Xn is the graph of the optimal-reply correspondence of n in reply to the strategy

profile ¾∗. By the upper semi-continuity of the optimal-reply correspondence, Xn is a closed

subset of Vn × B. We claim that for each (vn, b) /∈ X there exists an open neighborhood

Wn × C such that
∫
Wn

¾∗
n(C∣wn)dwn = 0, which then proves the lemma. To prove this

claim, we can choose an open measurable neighborhood Wn × C of (vn, b) such that its

closure is contained in (Vn × B) ∖X. Observe that for all large k, ¼k
n(wn, c, ¾

k) < µkn for all

(wn, c) ∈ Wn × C. Indeed, otherwise there exists a sequence (wk
n, c

k
n) converging to some

(wn, cn) in the closure of Wn × C and such that ¼k
n(w

k
n, c

k
n, ¾

k) = µkn. Using Lemma 4.3 and

the convergence of µkn, one obtains

(wn − c)H∗
n(c∣wn) ≥ lim sup

k
(wk

n − ckn)H̄
k
n(c

k
n∣wk

n) = lim
k

µkn(w
k
n) = µn(wn),

which contradicts the definition of Wn ×C. Since the bids in C are suboptimal for values in

Wn in reply to ¾k for all large k, one obtains
∫
Wn

¾k
n(C∣wn) dwn = 0 for all such k, and then by

the lower semi-continuity of the indicator function on the open set C,
∫
Wn

¾∗
n(C∣wn) dwn = 0,

which proves the claim. □

Lemma 4.5 concludes the first part of the proof of the theorem. For the payoff function

¼, each player n’s strategy ¾∗
n is an optimal reply to ¾∗ and therefore ¾∗ is an equilibrium of
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the modified game G∗. The second part proves that no bidder’s strategy induces an atom in

the distribution of his bids.

Lemma 4.6. For each bidder n and bid b, ¾∗
n({b}∣vn) = 0 for almost every value vn ∈ Vn.

Proof. Suppose to the contrary that ¾∗
n({b}∣vn) > 0 for some bidder n, bid b, and a.e. value

vn in a subset Wn ⊂ Vn with positive Lebesgue measure. Then from (3) of Lemma 2.1

it follows that H∗
m({ b }∣vm) > 0 for all m ∕= n and vm ∈ Vm. By Lemma 4.5, moreover,

µ∗n(vn) = [v− b]H∗
n(b∣vn) for all vn outside a set of measure zero in Wn. The proof begins by

verifying three claims.

Claim 1. We claim that for each bidder m, µ∗m(vm) > 0 iff vm > v∗. To prove this observe

that for each value vm his feasible set of bids in G∗ is the set B(vm) of bids v∗ ⩽ b ⩽ vm,

hence µ∗m(v∗) = 0. If vm > v∗ then he gets a positive payoff if he bids slightly less than vm

since opponents do not bid more than their values, which might all be less than vm. ∙
Claim 2. We claim that there exists ±0 > 0 such that ¾∗

m((b − ±0, b)∣⋅) = 0 a.e. for all

bidders m ∕= n. This claim is vacuous if b = v∗. Therefore suppose b > v∗ and suppose there

does not exist such a ±0. Then there exists a sequence of ±i’s converging to zero such that

¾∗
m((b − ±i, b)∣⋅) is positive on a set of positive measure in Vm for some bidder m ∕= n. By

going to a subsequence, we can assume that this m is constant along the sequence. Now

for each i there exists vim and some bi ∈ (b − ±i, b) in the support ¾∗
m(⋅∣vim) and such that

µ∗m(v
i
m) = ¼m(v

i
m, b

i, ¾∗) = [vim − bi]H∗
m(b

i∣vim). Take a subsequence of vim’s converging to

some vm to get that µ∗m(vm) = limi µ
∗
m(v

i
m) = [vm − b]H∗

m(b
−∣vm) < [vm − b]H∗

m(b∣vm), which
contradicts the fact that µ∗m(vm) is the maximum payoff for vm against ¾∗. ∙
Claim 3. We claim that there exists some bidder m ∕= n such that ¾∗

m(b∣vm) > 0 for a subset

of values vm in Vm with positive measure. To prove this claim, assume to the contrary that

bidder n is the only one bidding b with positive probability. Then b is a point of continuity

of H∗
n(⋅∣vn) for all vn. As seen in Claim 2, none of n’s opponents bids in the interval (b−±0, b)

under ¾∗. Therefore, H∗
n(b

′∣vn) is constant for b′ in the interval (b − ±0, b] for each vn. This

implies that for each vn ⩾ b, ¼n(vn, b− ±0, ¾
∗) > ¼n(vn, b, ¾

∗), while values vn < b do not bid

b anyway. Therefore, the bid b does not attain µ∗n(vn) for any value vn. By Lemma 4.5, this

implies that Wn has measure zero, which is the desired contradiction. ∙
For each player n letWn be the set of n’s values for which n bids b with positive probability.

Let N∗ be the subset of bidders n for whom Wn has positive measure. By Claim 3 there are

at least two bidders in N∗. We can assume that the ±0 in Claim 2 is such that no bidder

bids in the interval (b− ±0, b) under ¾
∗.
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Let " < (1/12)minn,vn H
∗
n({ b }∣vn). For each bidder n ∈ N∗ choose a closed interval V "

n

of the form [v, v∗] such that: (i) Wn ∩ V "
n has a positive measure; (ii) for each bidder m and

value vm ∈ Vm, Fm(∪n∈N∗∖{m }Vn ∖ V "
n ∣vm) < ".8

Let ® be the infimum over n ∈ N∗, v ∈ V "
n ∩Wn of (v− b). Observe that ® > 0 by the fact

that µ∗n is strictly positive on V "
n and the bid b is an optimal reply for values in Wn. Choose

a bid b0 such that b0 is a point of continuity of beliefs, b − ±0 < b0 < b, and b − b0 < 3"®.

Since no bidder bids in the interval (b− ±0, b), H
∗
n(b0∣vn) = H∗

n(b
−∣vn) for all n and vn.

For each bidder n the function yn : [0, 1] → ℝ given by yn(±
′) =

∫
Vn∖Wn

¾∗
n([b0, b+±′]∣vn) dvn

is a decreasing function with yn(0) = 0 since no value vn of n bids in [b0, b) with positive

probability under ¾∗
n and values not in Wn bid b with zero probability. Therefore, there

exists ±1 > 0 such that for every bidder m,
∫

Vn∖Wn

¾∗
n([b, b+ ±1]∣vn))fm(vn∣vm) dvn < "/2N .

Choose the bid b1 < b + ±1 such that it is a point of continuity of the belief distribution

for all bidders and H∗
n(b1∣vn) ⩽ H∗

n(b∣vn) + " for all bidders n and values vn. For large

k, since b0 and b1 are points of continuity of the belief distributions, for each m and vm,

H̄k
m(b0∣vm) ⩽ H∗

m(b0∣vm)+" = H∗
m(b

−∣")+" and H̄k
m(b1∣vm) ⩾ H∗

m(b1∣vm)−" ⩾ H∗
m(b∣vm)−".

By the continuity and monotonicity of H̄k
m, there exists a unique bid ckm(vm) in (b0, b1) such

that H̄k
m(c

k(vm)∣vm) = H∗
m(b

−∣vm) + .5Hk
m({ b }∣vm) + 3".

Let ck be the infimum over m and vm of ckm(vm). Obviously b0 < ck < b1. We claim that

for each bidder m ∈ N∗, for no value in Wm ∩ V "
m would m bid in the interval (b0, c

k] for

large k. Indeed, for any bid c in that interval, H̄k
m(c∣vm) ⩽ H∗

m(b
−∣vm) + .5Hk

m({ b }∣vm) + 3"

and hence

¼k
m(c, vm, ¾

k) ⩽ [v−b0]H̄
k
m(c∣vm) ⩽ [v−b+(b−b0)][H

∗
m(b∣vm)−3"] ⩽ µ∗n(vm)−3"®+(b−b0) .

By definition (b − b0) < 3"®. Therefore the bid c is not an optimal reply to ¾k. Hence no

bidder m bids in the interval (b0, c
k] when k is large.

Consider a bidder n for whom there exists a value vn such that ck = ckn(vn). For large k,

Hk
n(b0∣vn) < Hn(b

−∣vn) + " and Hk
n(b1∣vn) < H∗

n(b1∣vn) + " < H∗
n(b∣vn) + 2". The probability

that for some bidder m ∕= n with value in Vm ∖ Wm bids in the interval [b0, b1] is smaller

than "/2 for large k, since this holds at the limit strategy ¾∗. By the above argument, for

each m ∕= n in N∗, the values in Wm with bids in the range (b, ck) are in Vm ∖ V "
m and the

probability of such an event is smaller than "/2 by construction. This implies that for large

8This is the first point in the proof where the assumption that F is nonatomic is invoked. Without this
assumption, in particular if there is an atom at b = v∗, there could be a tie with positive probability.
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k, Hk
n(c∣vn) is no more than H∗

n(b
−∣vn) + 2" on (b0, c

k), and no more than H∗
n(b∣vn) + 2" on

[ck, b1). But the expectation Hk
n(c

k∣vn) is strictly smaller than H∗
n(b

−∣vn) + .5H∗
n(b∣vn) + 3",

which contradicts the definition of ckn(vn). Thus the initial supposition is falsified and Lemma

4.6 is proved. □

In sum, Lemma 4.5 shows that ¾∗ is an equilibrium of G∗, and Lemma 4.6 shows that it

does not induce an atom in the distribution of any player’s bids. Together with Theorem

3.3, these prove that ¾∗ is also an equilibrium of the auction game G, which completes the

proof of Theorem 4.1. □

5. Concluding Remark

A valuable corollary of the existence theorem is that it identifies some equilibria of the

auction game with atomless bid distributions as essential solutions of a well-defined fixed-

point problem — a characterization that has been absent from previous work on this topic.

A possible advantage is that stronger results might be obtained by invoking index theory.

The Leray-Schauder index for fixed points of a map on a Banach space seems especially

useful because it is obtained from the index of fixed points of nearby finite-dimensional

perturbations of the map. In particular, essential fixed points are approximated by essential

fixed points of finite-dimensional perturbations.

In later work we intend to examine whether the method in this paper can be applied to

establish that an auction game has an essential equilibrium in pure strategies.
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