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Abstract

We consider the problem of a monopolist who must sell her inventory before some
deadline, facing n buyers with independent private values. The monopolist posts prices
but has no commitment power. The seller faces a basic trade-off between imperfect
price discrimination and maintaining an effective reserve price. When there is only one
unit and only a few buyers, the seller essentially posts unacceptable prices up to the
very end, at which point prices collapse in a series of jumps to a “reserve price” that
exceeds marginal cost. When there are many buyers, the seller abandons this reserve
price in order to more effectively screen buyers. Her optimal policy then replicates a
Dutch auction, with prices decreasing continuously over time.

∗We thank Bruno Biais, Stephan Lauermann, Jeroen Swinkels, Rakesh Vohra, the editor
and referees for useful comments, and thank the National Science Foundation for financial
support.



Managing Strategic Buyers
August 31, 2010

Contents

1 Introduction 1
1.1 Revenue Management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Literature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 The Model 5
2.1 The Environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 The Buyers’ Game . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 The Seller’s Problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3 Main Results 11
3.1 The Seller’s Trade-Off . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
3.2 Static Monopoly . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
3.3 Dutch Auction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
3.4 Comparing the Two Bounds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 Uniformly Distributed Buyer Valuations 17
4.1 Equilibrium Strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
4.2 Equilibrium Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.3 Pricing Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

4.3.1 Noncommitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.3.2 Commitment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

5 Discussion 24

A Appendix: Proofs 27
A.1 Proof of Lemma 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.2 Proof of Proposition 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.3 Proof of Proposition 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
A.4 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

A.4.1 The Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
A.4.2 Existence of a Fixed Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
A.4.3 Discrete Approximation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
A.4.4 Characterization of the Fixed Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
A.4.5 Proof of Proposition 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

A.5 Proof of Proposition 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
A.6 Proof of Proposition 5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

B Appendix: Not for Publication 48
B.1 Details, Proof of Lemma 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
B.2 Proof of Propositions 6 and 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

B.2.1 Proof of Proposition 7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
B.2.2 Proof of Proposition 6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

B.3 Multiple Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
B.4 Committing to Lower Prices . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63



Managing Strategic Buyers

1 Introduction

1.1 Revenue Management

The revenue management literature addresses the pricing of goods sharing three essential
characteristics: (i) there is a fixed quantity of resource for sale, (ii) the resource is perishable
(i.e., there is a time after which it is valueless), and (iii) consumers have heterogeneous
valuations. Revenue management is practiced in a variety of industries, including airlines,
apparel, entertainment, freight, hotels, pipelines and rental cars.

In the standard revenue management model, each buyer must be served immediately
upon arrival or forever lost, and the only relevant price from a buyer’s point of view is
the current one. In contrast, this paper examines revenue management with buyers who
strategically choose their time of purchase, continually deciding whether to buy today or
wait in hope of buying at a lower price tomorrow.

We consider a monopolist facing a fixed, known number of strategic buyers with unit
demand but privately-known valuations. There is a fixed terminal date at which the good
is consumed, and after which any remaining unsold unit has no value. In the intervening
period, the seller can set a price in each of a finite number of instants, which buyers may either
accept and hence end the game, or reject and push the game to the next price revision. We
focus attention on the limiting case in which the delay between successive offers is arbitrarily
small. The seller cannot make commitments, in the sense that the prices she posts must be
sequentially rational.

Our main results are the following. First, the seller’s lack of commitment restricts her
ability to implement her favorite mechanism. More precisely, we show that the seller faces a
basic trade-off between a reserve price and price discrimination. If she insists on a positive
reserve price, she must give up on her ability to finely price discriminate among buyers.

It should come as no surprise to the reader familiar with the Coase conjecture that lack
of commitment can be very costly to the seller. However, we show that the deadline endows
the seller with considerable commitment power. While she cannot get both a reserve price
and finely price discriminate, she can achieve the revenue from either strategy.

First, the seller can be assured of a payoff at least as high as the static monopoly profit.
In particular, a seller with two opportunities to set prices can secure a payoff at least as large
as a seller with only one opportunity, simply by charging an initial price so high that every
buyer rejects, and then duplicating the behavior that secures the lowest equilibrium payoff
of a seller who can set only one price. Iterating this argument gives the result. This makes it
clear that, despite some similarities, the revenue management problem differs fundamentally
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from that of a durable-goods monopolist.1

Second, we show that the seller can also secure the revenue from a Dutch auction without
a reserve price (which might be greater or lower than the monopoly profit), under a mild
regularity condition on the distribution of buyers’ types.2 This initially sounds obvious,
since the seller can seemingly replicate a Dutch auction by simply decreasing the price in
sufficiently fine increments. However, the seller setting her current price cannot commit to
(and indeed often will not) run a Dutch auction in subsequent periods, and some of the
possible future alternatives may be better not only for the seller, but also for high valuation
buyers (i.e., the incentives of the seller and of a buyer with a given valuation need not be
opposed). But then high-valuation buyers will not be willing to pay as much today as they
would in a Dutch auction, potentially scuttling the seller’s ability to secure the Dutch auction
revenue. To obtain the result, we must accordingly show that regardless of what equilibrium
continuation behavior is expected, the seller’s current price attracts at least all those buyers’
valuations who would accept this price in a Dutch auction.

This analysis suggests that the seller uses one of two pricing strategies. First, the seller
can achieve a sequence of prices culminating in a positive “reserve” price, but then can only
imprecisely discriminate among buyers. In the extreme, this strategy effectively leads to the
static monopoly price. Alternatively, the seller can achieve sharper price discrimination, but
only at the cost of subsequent price reductions that erode the reserve price. In the extreme,
this strategy leads to the payoff of a Dutch auction with no reserve price. The relative
performance of these two strategies is clear in the two limiting cases of a single buyer and a
large number of buyers. In the case of one buyer, the best the seller can do is to charge the
static monopoly price in the last period. With many buyers, running a Dutch auction with
no reserve price outperforms charging the static monopoly price.

Further results for general distributions are difficult to obtain. First, the game exhibits
a double nonstationarity—equilibrium continuation play and continuation payoffs depend
on both the specification of residual demand and on the time remaining. In addition, for
a fixed sequence of prices, the buyers’ acceptance decisions emerge as an equilibrium in a
game played by the buyers. This game exhibits strategic complementarities—the more likely
other buyers are to wait, the more tempting it is to wait—and hence, in some cases, there

1Talluri and van Ryzin [28, p. 365], for example, argue that customers of seemingly perishable revenue-
managed goods are unlikely to buy more than one unit during the life cycle of the product, making the
product effectively infinitely lived. In addition, customers for such goods are exhausted over time, and cus-
tomers are aware that the monopolist finds it difficult to commit to her price, giving a revenue-management
problem many durable-goods features. A good example of revenue-management price dynamics reminiscent
of durable-goods problems is provided by the cruise-line industry (see Talluri and van Ryzin [28, pp. 560–
561] or Coleman, Meyer and Scheffman [16]), in which significant, last-minute discounts are common and
customers often wait in order to purchase at deep discounts. Similarly, last-minute deals are sold, often
through a variety of intermediaries, by theaters and firms in the travel industry.

2We assume the multiplicative inverse of the distribution of valuations is convex, a weaker assumption
than the commonly-invoked condition of log-concavity.
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are multiple possibilities for equilibrium buyer behavior. As we show, for some valuation
distributions, there are then multiple equilibria in the overall game.

To make further progress, we then specialize to the case of uniformly-distributed buyer
valuations. We prove that the equilibrium is unique and characterize equilibrium strategies.

First, this allows us to delineate the seller’s revenue more precisely. When the number
of buyers exceeds a critical threshold, the seller relinquishes altogether her ability to keep
prices high and lets the price drop to zero. Our second bound is then tight: her revenue is
equal to the Dutch auction. Recall that our first bound is tight with one buyer, in which
case the seller effectively bunches together all buyers’ valuations above the static monopoly
price. For an intermediate number of buyers, she is able to secure a revenue that exceeds
both bounds, by optimally trading off a larger number of bunches with a lower, but positive
reserve price that strictly decreases with the number of buyers.

More importantly, specializing the distribution to the uniform case allows us to describe
the actual price path that the seller employs. When there are few buyers, so that the seller
opts for a positive reserve price, the price drops in the twinkling of an eye, as in the Coase
conjecture, but not to the lowest valuation, and only very near the deadline, instead of the
very beginning. Because she takes into account her inability to commit, the monopolist ends
up charging prices that are higher, until near the very end, than those she would set if she
could commit. The seller essentially sits on the choke price until then, and sales occur in
the last instants, at which point the price drops in a rapid sequence of discrete price cuts.

When there are enough buyers, so that her revenue is equal to the Dutch auction revenue,
the price drops to the lowest valuation, but not in the twinkling of an eye. Indeed, the price
then decreases continuously over time, at a level that is always below what it would be if
the seller could commit.

1.2 The Literature

There are four related bodies of work. First, as we have noted, a large revenue management
literature has examined the case of a seller who faces sequentially-arriving buyers. (See Tal-
luri and van Ryzin [28] for an introduction, as well as (for example) Bitran and Mondschein
[8] and Gallego and van Ryzin [19], and see Gershkov and Moldovanu [20] for an extension
to heterogeneous objects.) The standard assumption in this literature is that the buyers
are myopic, i.e., they base their decision on a comparison of the prevailing price with their
valuation. The seller then faces an option pricing problem, as she must continually compare
the value of selling to the current buyer against the option of waiting for a future buyer.
However, no intertemporal links appear in the buyers’ calculations. In contrast, our buy-
ers remain until the good is sold and are fully strategic, constantly trading off buying the
good today or waiting for a chance to buy later at a lower price. As Besanko and Winston
[7] argue, mistakenly treating forward-looking customers as myopic may have an important
impact on revenue. Comparatively few papers discuss the case of a monopolist with scarce

3



supply and no commitment power selling to forward-looking customers. Given the technical
difficulties, Aviv and Pazgal [4] and Jerath, Netessine, and Veeraraghavan [22] do so in a
model with two periods.

Second, our paper is most closely related to Chen [13] and Bulow and Klemperer [11].
Chen [13] considers a model that is equivalent to ours, though hers is cast in terms of a
single buyer bidding to purchase from multiple sellers (rather than a single seller bidding
to sell to multiple buyers). This allows us to rely on Chen for an existence-for-equilibrium
result.3 Chen’s primary characterization result is that an equilibrium must be one of two
types: either the price remains bounded away from the lowest valuation, in which case there
is imperfect price discrimination, or prices fall to the lowest valuation, in which case prices
finely discriminate among customers. This mirrors our primary general result. We proceed
to sharpen this result by specializing to the uniform distribution, while Chen considers an
extension of the model in which the agents discount at different rates and there are limits on
the frequency with which prices can be posted. Technically, the primary difference is that
Chen does not consider the possibility of multiple equilibria. We postpone until Section 5 a
discussion of how our work is related to Bulow and Klemperer [11].

Third, much of the richness and the difficulty in the problem facing our seller arises out
of her inability to commit to future prices. McAfee and Vincent [24] and Skreta [27] ex-
amine a seller who conducts a sequence of auctions and a sequence of optimal mechanisms,
respectively, without the ability to make commitments The most important difference be-
tween our analysis and that of McAfee and Vincent [24] or Skreta [27] is that the latter
papers allow their sellers to commit to a mechanism within each period. In the limit as
the discount factor gets large, the sequential-mechanisms problem becomes trivial in our
setting—the seller should simply wait until the last period and implement an optimal mech-
anism. In addition, direct mechanisms make it difficult to tell just what commitment power
is allowed the seller. We typically interpret direct mechanisms not as literal descriptions of
the interaction between seller and buyers, but as a way of analyzing an underlying indirect
mechanism. Depending on the nature of the latter, allowing the seller to commit to a direct
mechanism in each period may invest her with enormous commitment powers. As a result,
we consider it important to take an indirect-mechanism approach that is specific about the
actions available to the seller in each period.

Finally, we have noted that the revenue management problem with strategic buyers
shares some features of durable-goods monopoly problems (e.g., Ausubel and Deneckere [3]
and Gul, Sonnenschein and Wilson [21]). The durable-good setting differs from ours in its
infinite horizon and in the fact that there are as many goods as buyers. The scarcity of the
good in our setting changes the issues surrounding price discrimination, with the impetus
for buying early at a high price now arising out of the fear that another agent will snatch

3Notice that Chen’s existence result does not require her assumption of increasing virtual valuations,
which we do not impose.
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the good in the meantime, rather than discounting.4 Like a durable-goods monopolist, our
seller would still be better off if able to commit, though cases can arise in which our seller’s
difficulty is that she would prefer that future prices be lower (and hence future demand brisk,
heightening the urgency or purchasing now), but cannot commit to lowering them.

2 The Model

2.1 The Environment

We consider a dynamic game between a single seller, with one unit for sale, and n buyers.
The good is purchased and consumed at a fixed future date that we normalize to 1, and is
valueless thereafter. The seller has the interval [0, 1] of time in which to make an agreement
with a buyer on the purchase of the good. The buyer and seller discount at the same rate r,
and there is then no loss of generality in normalizing this interest rate to be zero.5

The seller can post a price at each time {Δ, 2Δ, . . . , 1} (restricting attention throughout
to values of Δ that divide 1 without remainder). We can thus think of the seller as facing
a finite horizon of length TΔ = 1

Δ
. Since our arguments will typically involve reasoning

backwards from the final period and the number of periods will vary with Δ, we find it
convenient to let t = 1, . . . , TΔ index the number of remaining periods, so that TΔ is the first
and 1 the last period. At each period t, the seller posts a price pt ∈ R. After observing the
price, buyers simultaneously and independently accept or reject. If the price is accepted by
at least one buyer, the game ends with a transaction at this posted price between the seller
and a buyer randomly selected from among the accepting buyers. If the offer is rejected, the
game moves on to the next period.6

4Kahn [23] introduces an element of scarcity within a period by examining a durable-goods monopolist
with increasing costs, showing that this allows the seller to escape the zero-profit conclusion of the Coase
conjecture. Similarly, a sufficiently small capacity constraint (a stylized form of increased costs) introduces
scarcity within a period and allows positive profits. McAfee and Wiseman [25] show that capacity constraints
have this effect even if the seller can choose to increase the capacity constraint in any period at a nominal
cost. Bagnoli, Salant and Swierzbinski [6] and von der Fehr and Kühn [17] clarify the circumstances under
which a Coasian firm can effectively commit, while Cho [14] examines an alternative source of commitment,
arising out of the assumption that the good deteriorates while held by the seller.

5Since the buyer purchases and consumes the good at time 1, it is only a normalization to take all prices
to be time-1 prices and eliminate discounting from the model. We might alternatively consider a model in
which the buyer consumes at time 1 but pays immediately upon concluding an agreement. The commonality
of the discount factor ensures that the equilibrium is unchanged, with a time-τ price p equivalent for both
agents to a time-1 price of pe−r(1−τ). It then simplifies the notation to present the analysis in terms of time-1
prices, while recognizing that a (nonlinear) transformation of time is required to convert the price paths of
Section 4.3 to paths in “real time.”

6Formally, an outcome of the game is a vector (v, t, pt, i), i = 1, . . . , n, or (v, 0, ∅); with the interpretation
that the realized profile of valuations is v = (v1, . . . , vn) and the price pt is accepted in period t by buyer i
if the outcome is (v, t, pt, i), and that no buyer ever accepts in case (v, 0, ∅).
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Each buyer has a private valuation (or type) v, that is independently and identically
drawn from some distribution F with support [0, 1], once and for all. A buyer of valuation
v who receives the object at price p garners payoff v − p. The seller has a zero reservation
value, with her payoff (or revenue) being the price at which she sells the good.7

A nontrivial history ht ∈ H t is a history after which the game is not effectively over, i.e.
a sequence (pTΔ

, . . . , pt+1) of prices that were posted by the seller and rejected by all buyers
(we set HTΔ = ∅). A behavior strategy for the seller is a finite sequence {σt

S}TΔ
t=1, where σt

S

is a probability transition from H t into R, mapping the history of prices ht into a probability
distribution over prices. A behavior strategy for buyer i is a finite sequence {σt

i}TΔ
t=1, where

σt
i is a probability transition from [0, 1] × H t × R into {0, 1}, mapping buyer i’s type, the

history of prices, and the current price into a probability of acceptance.8

The seller has no commitment power—each price must be sequentially rational, given the
history of previous play and anticipations of optimal continuation play. “Real world” sellers
may often work hard at making price commitments, perhaps by offering a guarantee that
they will refund the difference should a consumer subsequently discover a lower price. Such
devices appear most likely to allow commitments to constant price paths. Such commitments
are worthless in the current setting, in the sense that a seller without commitment can
always (if there are at least two buyers) do better than committing to constant prices.
The full-commitment solution, which we calculate as a benchmark, involves a descending
sequence of prices that may sometimes lie above and sometimes below the corresponding
no-commitment sequence. Commitments of this complexity may be sufficiently demanding
in some circumstances as to make the no-commitment solution interesting.

We will focus our attention on perfect Bayesian equilibria in which buyers use symmetric
strategies: σt

i = σt
j , all i, j, t.9 That is, a buyer’s strategy depends on his valuation, not

on his identity. Existence of such an equilibrium follows from standard arguments. See, in
particular, Chen [13, Proposition 1]. Clearly, the specification of prices that are rejected
by all buyers in an equilibrium is to a large extent arbitrary. Therefore, statements about
uniqueness are understood to be made up to the specification of such unacceptable prices, and
(similarly) up to the specification of behavior on the part of measure-zero sets of indifferent
buyers.

7Formally, the seller’s von Neumann-Morgenstern utility function takes the value pt if the outcome is
(v, t, pt, i), and zero otherwise. Buyer i’s utility is vi − pt if the outcome is (v, t, pt, i) and zero otherwise.
We define the seller’s and buyers’ expected utilities over lotteries of outcomes in the standard fashion.

8That is, for each ht ∈ Ht, σt
S(ht) is a probability distribution over R, and the probability σt

S(·)[A]
assigned to any Borel set A ⊂ R is a measurable function of ht, and similarly for σt

i .
9Because the only off-path histories are triggered by the uninformed party, generalizing Fudenberg and

Tirole’s [18, Definition 8.2] definition to our infinite game raises no particular difficulty.
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2.2 The Buyers’ Game

Because a buyer with a zero value rejects all positive prices, nontrivial histories are on the
equilibrium path. Therefore, each individual buyer faces a “non-strategic” stopping problem,
choosing the point (if any) along a sequence of prices at which to accept and end the game,
taking as given the behavior of other buyers. Higher-valuation buyers are more anxious to
purchase than lower-valuation buyers. As a result, a buyer’s optimal stopping time is non-
increasing in his valuation (as long as there are at least two buyers). Buyers with higher
valuations accept earlier, and the buyers who accept in a given period t are those (if any)
whose valuations exceed a critical threshold vt. Section A.1 uses a familiar single-crossing
argument to prove:

Lemma 1. Let n ≥ 2. Fix an equilibrium, and suppose period t has been reached without
a price having been accepted. Then the seller’s posterior belief is that the buyers’ valuations
are identically and independently drawn from the distribution F (v)/F (vt+1), with support
[0, vt+1], for some vt+1 ∈ (0, 1].

Let us fix a (for expositional reasons, pure) strategy for the seller, and consider the
resulting game between buyers. Given the sequence of equilibrium prices, each period t is
characterized by a critical (or marginal) buyer’s valuation vt, with higher-valuation buyers
accepting and lower-valuation buyers rejecting. Relative to these thresholds, a buyer with
valuation v accepts the price pt that maximizes

F (vt+1)
n−1

n−1∑
j=0

1

j + 1

(
n − 1

j

)(
1 − F (vt)

F (vt+1)

)j (
F (vt)

F (vt+1)

)n−1−j

(v − pt)

= F (vt+1)
n−11 − [F (vt)/F (vt+1)]

n

1 − F (vt)/F (vt+1)

v − pt

n
. (1)

The term F (vt+1)
n−1 is the probability that there is no higher-valuation buyer who will

consign buyer v to a zero payoff by accepting a higher price. The term 1/(j + 1) in the
summation is the probability that the buyer is awarded the good if j other buyers accept
the posted price. The binomial expression is the probability that j such buyers accept this
price, and v−pt is the resulting payoff. Higher prices are relatively more valuable to higher-
valuation buyers (the single-crossing condition), and it is then a relatively straightforward
calculation that if buyer vt prefers price pt to all subsequent prices, then so do all higher-
valuation buyers, giving the result.

If the critical thresholds vt are interior (meaning that some buyers do accept in each
period), then buyer vt must be indifferent between accepting pt and waiting until the following
period (in a continuation game with t − 1 periods to go and buyers’ valuations known to
be no larger than vt). If buyer vt accepts, his payoff (conditional on period t having been
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reached) is

n−1∑
j=0

1

j + 1

(
n − 1

j

)(
1 − F (vt)

F (vt+1)

)j (
F (vt)

F (vt+1)

)n−1−j

(vt − pt) =
1 − [F (vt)/F (vt+1)]

n

1 − F (vt)/F (vt+1)

vt − pt

n
.

(2)
This matches the payoff given in (1), except that we are now conditioning on having reached
period t. By waiting one more period instead, buyer vt gets(

F (vt)

F (vt+1)

)n−1
1 − [F (vt−1)/F (vt)]

n

1 − F (vt−1)/F (vt)

vt − pt−1

n
. (3)

The interpretation of this expression is analogous to that of (2), with prices and thresholds
being indexed by period t− 1 rather than t. The new term [F (vt)/F (vt+1)]

n−1 is the proba-
bility that no other buyer accepts the good at price pt, and captures the fact that the payoff
from waiting until period t− 1 is zero if some other buyer accepts the seller’s offer in period
t.

In a symmetric equilibrium, if prices pt and pt−1 are such that buyer vt is indifferent
between purchasing with t or t − 1 periods to go, the expressions in (2) and (3) must be
equal, that is,

F (vt+1)
n − F (vt)

n

F (vt+1) − F (vt)
(vt − pt) =

F (vt)
n − F (vt−1)

n

F (vt) − F (vt−1)
(vt − pt−1) . (4)

We now see the first indication that there might be multiple solution to the game between
buyers. When there is more than one buyer,10 equation (4) provides a second-order difference
equation for the sequence {vt}, whose boundary conditions are that vTΔ

= 1, and v1 = p1: in
the first period, the seller has not yet learned anything about the buyers’ values, and in the
last period, a buyer accepts if and only his value exceeds the outstanding price. Boundary
value problems for difference equations often have multiple solutions, and indeed may have
no solution (see, for example, Agarwal [1]).

More generally, for a given pure strategy of a seller, the outcome of the game between
buyers can be summarized by a set of thresholds vt with the property that the period t that
maximizes (1) for buyer v must be such that v ∈ [vt, vt+1). This is an equilibrium problem,
which not only may have multiple interior solutions in which (4) is satisfied in each period,
but also admit corner solutions featuring some periods in which all buyers optimally reject.

This possibility of multiple solutions for a given sequence of prices is no surprise given
the strategic complementarity in the buyers’ problem. A buyer’s incentive to wait increases
in the probability that he assigns to other buyers waiting as well. His incentive to accept in
a given period is highest if he expects all other buyers to accept immediately.

10It is clear that, with a single buyer, the indifference condition can only hold if pt = pt−1. Unless prices
are constant, a single buyer will purchase in the period in which the price is lowest.
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2.3 The Seller’s Problem

The seller chooses a sequence of prices, leading to payoff

πTΔ
=

TΔ∑
t=1

(F (vt+1)
n − F (vt)

n)pt, (5)

where F (vt+1)
n − F (vt)

n is the probability that the highest valuation among the buyers lies
in the interval [vt, vt+1), and hence that the object is sold at price pt.

The obvious first step in analyzing the seller’s problem is to write her period-t payoff
recursively as

πt(vt+1) =

(
1 −

(
F (vt)

F (vt+1)

)n)
pt +

(
F (vt)

F (vt+1)

)n

πt−1(vt), (6)

where we set π0 = 0. The payoff πt(vt+1) is the payoff of the seller, given that t periods
remain and conditional on the buyers’ values being drawn from [0, vt+1]. This payoff is given
by the current price pt multiplied by the probability of acceptance, plus the continuation
payoff πt−1(vt) multiplied by the probability of rejection. This recursive formulation has
the advantage of focussing attention on the seller’s sequential rationality constraints, which
appear in the requirement that the seller’s strategy maximize πt(vt+1), conditional on reach-
ing period t with valuations on [0, vt+1], for every possible t and vt+1 consistent with some
history.

Suppose that, for every valuation vt, there is a unique equilibrium in the continuation
game featuring t − 1 remaining periods and buyer valuations drawn from [0, vt], and that
this equilibrium is interior, in the sense that the threshold buyer vt in every period is just
indifferent between accepting the current-period price and waiting. Then the seller’s period-t
problem is to choose pt to maximize (6), subject to the incentive constraint (4) (which fixes
vt), with πt−1(vt), vt−1 and pt−1 (the latter two appearing in (4)) fixed by the equilibrium
of the continuation game. Moreover, in this case, we can characterize equilibrium behavior
by solving backwards, first finding the equilibrium of the game with one period to go (as a
function of v2), then using this to maximize (6) subject to (4) for t = 2, and so on.

In general, because multiple sequences of thresholds {vt} might be consistent with the
sequence of equilibrium prices, we cannot be sure that there is a unique equilibrium in the
continuation game, given t − 1 periods to go and valuations drawn from [0, vt]. The seller’s
period t problem is then to choose pt to maximize (6), subject either to (4) (or an inequality
version of (4) in the case of a corner solution where no buyers accept the current price), with
πt−1(vt), vt−1 and pt−1 that are consistent with one of the (possibly many) equilibria of the
continuation game. Moreover, which equilibrium appears in the continuation game depends
arbitrarily upon the price the seller sets in period t, and indeed upon the entire history of
prices set by the seller up to then.

9



Among the buyers, the only possible out-of-equilibrium move is an acceptance, which
ends the game, and the possibility that multiple thresholds may be consistent with a given
price sequence arise out of payoff complementarities. For the seller, most prices will be
out-of-equilibrium prices. The ability to attach different continuation equilibria to various
out-of-equilibrium prices expands the prospects for multiplicity.

A simple example shows that multiple equilibria, yielding different revenues, are a real
phenomenon.

v1
2 163

64

1
2

1

F (v)

Figure 1. Distribution of valuations in Example 1.

Example 1. There are two buyers and two periods. Buyers’ valuations are independently
drawn from the distribution F , given by:

F (v) =

⎧⎪⎪⎨
⎪⎪⎩

0 if v < 1
2
,

1
2

if v = 1
2
,

1
2

+ 8
15

(
v − 1

2

)
if v ∈ (1

2
, 63

64

)
,

91
120

+ 232
15

(
v − 63

64

)
if v ∈ (63

64
, 1
)
.

See Figure 1. The monopoly price for this specification of demand is 1
2
, and the final price

p1 will also be 1
2
, no matter what price is chosen in the initial period.

Consider the price p = 3
4
. We have 1 − p = 1

2
(1 − p1). This ensures that if the initial

price is p and all buyers reject, then a type-1 buyer is just indifferent between accepting (for
payoff 1−p) and rejecting (for a final payoff of 1

2
(1−p1)). As a result, for any initial price 3

4

or larger, there is a corner-solution equilibrium for the buyers in which all buyers reject this
initial price.
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Now consider an arbitrary initial price p2. Condition (4), identifying the interior buyer
v2 who is just indifferent between accepting and rejecting, assuming that all types v ≥ v2

accept, is now
1 − F (v2)

2

1 − F (v2)
(v2 − p2) = F (v2)(v2 − p1).

Notice that v1 = p1, i.e., a buyer accepts the final price if and only if his valuation is at
least as large as the price. The seller’s payoff, given by (6), is (1 − F (v2))

2p2 + F (v2)
2p1.

Maximizing this payoff subject to this constraint, we find that the seller will choose11

p2 =
43

56
>

3

4
= p.

This establishes the existence of multiple equilibria. In one of these equilibria, the seller
sets price 43

56
in the initial period, with buyers accepting if and only if their valuations are

at least 31
32

. Should the initial price be rejected, the seller sets price 1
2

in the final period,
accepted by a buyer if and only if his valuation is at least 1

2
. In the alternative equilibrium,

any initial price exceeding 3
4

is rejected by every buyer. The seller sets the price 3
4

in the
initial period, accepted by buyers if and only if their valuations are at least 97

104
(< 31

32
),

followed by price 1
2

in the final period. The former equilibrium gives the seller a higher
revenue than the latter.

In Section 3, we work with bounds on equilibrium payoffs and behavior that must hold in
any equilibrium. Section 4 specializes to the case of a uniform distribution, for which we can
show that the continuation equilibrium is invariably unique, allowing an explicit calculation
of the equilibrium.

3 Main Results

3.1 The Seller’s Trade-Off

What would be the seller’s favorite outcome? In the commonly considered case of increasing
virtual valuations, the revenue-maximizing mechanism is straightforward, consisting of a
Dutch auction with a positive reserve price.12 This mechanism combines perfect separation

11One can rearrange the buyers’ indifference condition to obtain p2 = v2+F (v2)/2
1+F (v2) , and then express the

seller’s payoff as

(1 − F (v2))2p2 + F (v2)2p1 = (1 − F (v2))2
v2 + F (v2)/2

1 + F (v2)
+

F (v2)2

2
.

Differentiating, we find that the seller maximizes her revenue by choosing a value of p2 that makes indifferent
the buyer whose type v2 satisfies v2 − F (v2)v2 + F (v2)/2 = 0, which we can solve for v2 = 31

32 . We can then
calculate that p2 = 43/56.

12Recall that the virtual valuation of a buyer with value v is defined as v − (1 − F (v))/f(v).
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among those buyers to whom the good is sold with a positive terminal price that excludes
low-valuation buyers.

Unfortunately for the seller, this allocation is not an equilibrium outcome of the game.
If the terminal price is to be positive, then in any previous period k the seller must be
charging the same price to all buyers in a non-negligible interval of valuations. The idea is
that the final critical buyer’s valuation is determined by setting the monopoly price given the
posterior distribution, and hence can be nonzero only if it is smaller than the upper bound
on this distribution, and so smaller than the previous-period critical buyer’s valuation. A
similar argument allows us to work backward through the chain of critical buyers, at each
step finding a non-negligible interval of buyers charged the same price. Therefore, if the
seller insists on a positive reserve price, she must imprecisely discriminate in the prices she
induces the buyers to accept.

Formally, let vΔk be the valuation of the buyer who is just indifferent between accepting
and rejecting the period-k price (cf. Lemma 1), given period length Δ. Section A.2 proves:

Proposition 1. Suppose that F has no atoms. If limΔ→0 vΔ1 > 0, then for all k,

lim
Δ→0

vΔk+1 > lim
Δ→0

vΔk.

Therefore, the buyer cannot both finely price discriminate, and exclude low-valuation
buyers. Nevertheless, as we show next, the deadline endows the seller with considerable
commitment power. She can obtain the revenue from her favorite reserve price (without
further price discrimination), or alternatively the revenue from perfect price discrimination
(without a reserve price). In the process, we see both that commitments to a constant price
sequence would be of no value, and that our seller confronts a quite different situation than
that facing a durable-goods monopolist.

3.2 Static Monopoly

We first prove that the seller can guarantee herself the static monopoly profit. Let πΔ(n) and
πΔ(n) denote the seller’s lowest and highest equilibrium payoff of the game with n buyers
and period length Δ, respectively. Notice that π1(n) = π1(n) = π1(n) is the static monopoly
payoff with n buyers, being uniquely defined by

π1(n) = max
p∈[0,1]

p(1 − F (p)n). (7)

Proposition 2. The seller can guarantee the static monopoly payoff. More generally, the
opportunity to revise prices more quickly increases both the lower and upper bound on the
seller’s equilibrium payoff: If Δ < Δ′ and hence TΔ > TΔ′, then

πΔ(n) ≥ πΔ′(n), and πΔ(n) ≥ πΔ′(n),

12



and so
πΔ(n) ≥ π1(n).

Note that this result requires no distributional assumption. The basic idea behind it is
rather straightforward. For any equilibrium in a game with k − 1 remaining periods, there
is an equilibrium in the k-period game in which the seller sets an unacceptably high initial
price, and then play duplicates that of the k − 1-period equilibrium. Additional periods can
thus only increase the largest and smallest equilibrium payoff. Notice that since π1(n) is the
best that can be achieved by a seller committed to an optimal constant price scheme, such
commitments are not valuable.13

3.3 Dutch Auction

Next, we turn to fine price discrimination. Let πD(n) denote the expected revenue from a
Dutch auction with n bidders and a zero reserve price. This is the seller’s revenue in the
equilibrium considered by Bulow and Klemperer [11] in an infinite-horizon, continuous-time
game in which the seller has no commitment power.

Proposition 3. Suppose that 1/F is convex. As prices get revised frequently enough, the
seller can guarantee the revenue of an optimal auction with zero reserve price:

lim inf
Δ→0

πΔ(n) ≥ πD(n). (8)

The assumption that 1/F is convex is implied by log-concavity of F , an assumption that
is very often made in information economics, and satisfied by most familiar distributions.
See Bagnoli and Bergstrom [5]. It is a strictly weaker assumption: 1/F is convex for the
Cauchy distribution, one of the few familiar distributions that fails long-concavity.14 The
convexity of 1/F implies that 1/F is almost-everywhere differentiable, and hence that F
admits a density f . Furthermore, this density admits only downward jumps, and must be
bounded away from 0 except possibly at the upper end of the support (f(x) = 0 for some
x < 1 implies f = 0 on [x, 1]).

Proposition 3 sounds so plausible that it might come as a surprise that its proof requires
any assumption at all. After all, why can’t the seller just move her prices down the demand
curve? Indeed, it is straightforward to show that if the seller could commit to working

13In the case of the uniform distribution, examined in the next section, we can strengthen the weak
inequalities in Propositions 2 to strict ones, and establish (9) below for all Δ, rather than simply in the limit
as Δ → 0.

14Log-concavity of F means that ln F is concave, or alternatively, ln 1/F is convex, which is obviously
more stringent a requirement than 1/F being convex. Bagnoli and Bergstrom [5, Table 3] mention that the
Cauchy distribution fails log-concavity, and it is straightforward to verify that the second derivative of its
multiplicative inverse is positive.

13



through a succession of sufficiently close and equally spaced prices, then any optimal buyer
response would give her a payoff approaching (as Δ gets small and the price gaps shrink to
zero) that of a Dutch auction.15 To see where our intuition goes wrong from there, consider
the case of finite types v0 < v1 < · · · < vk < · · · < vK , and suppose we knew that, as
long as only buyers with valuations belonging to {v1, . . . , vk} (or a subset thereof) remained,
the seller could guarantee herself nearly the Dutch auction revenue. Could we extend this
conclusion to the case in which type vk+1 is the highest type in the support of the seller’s
beliefs?

Consider the highest price pk+1 that the seller can post, yet attract the buyer with
valuation vk+1. This price is determined by the utility that such a buyer would secure if
he were to deviate and reject it. The difficulty is that we do not know that the seller
will actually use the Dutch auction once this price is rejected (and she rationally assigns
probability 0 to any buyer having the valuation vk+1 or higher). We have assumed that she
can secure the Dutch auction revenue in the continuation, but this does not imply that she
will implement the Dutch auction. For example, she might prefer a price sequence that leads
to some positive reserve price (as is the case with few buyers and a uniform distribution,
see Section 4). Such an alternative strategy might yield a higher utility than the Dutch
auction to the buyer whose valuation is vk+1. In particular, it is easy to construct examples
of distributions for which there is an allocation that is preferred both by the seller, and the
buyer with valuation vk+1, to the Dutch auction. In this case, the price the seller must post
to ensure that the buyer whose valuation is vk+1 is willing to accept might be strictly lower
than the corresponding price in the Dutch auction, and as a result, her revenue is strictly
smaller than in the Dutch auction.

The key step in proving Proposition 3 is then to find conditions under which the seller
and currently highest-valuation buyer have opposing interests, in the sense that mechanisms
the seller might consider as an alternative to the Dutch auction are worse for the highest-
valuation buyer, hence allowing the seller to trade with the buyer at a price at least as high
as that of the Dutch auction. This requires some restriction on F .

Let us say that a feasible, incentive compatible allocation can be obtained via a price
sequence if, for any interval of buyer types receiving the good with equal probability (except
for a bottom interval of types who may receive the good with probability zero), the proba-
bility that the good is allocated to a buyer in this interval equals the probability that the
highest buyer valuation lies in that interval.16 The structure of our problem restricts the

15This follows from Athey [2, Theorem 6, proof]: incentive compatibility implies that equilibrium strategies
are increasing in types, so that any sequence of such equilibrium strategies, indexed by the mesh of the price
grid, must have a convergent subsequence, and its limit must be an equilibrium of the standard Dutch
auction. But the latter admits a unique equilibrium.

16If there is a (maximal) interval of types [v, v′), v < v′, which obtain the good with probability q, then
it must be that nq(F (v′)− F (v)) = F (v′)n − F (v)n. Not every feasible, incentive-compatible allocation can
be obtained via a price sequence. As a simple example, let there be two buyers with valuations uniformly
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seller to such mechanisms. Section A.4.3 proves:17

Lemma 2. Suppose 1/F is convex. Then any feasible, incentive-compatible allocation that
can be obtained via a price sequence and that provides the seller a revenue at least as large as
that of the Dutch auction gives the highest-valuation buyer a strictly lower payoff than does
the Dutch auction.

Of course, with a continuum of types, it is not possible to define the continuation as simply as
with finitely many types, and the finite (though arbitrarily large) number of periods available
to the seller also creates some difficulties. As a result, the proof of Proposition 3 is neither
easy nor short. The interested reader is referred to Section A.4.

The lower bound that Proposition 2 derives has an important corollary: in the case of
increasing virtual valuations, the seller’s revenue must increase with the number of buyers.
Bulow and Klemperer [12] show that, if the virtual valuation is increasing in v, a standard
assumption in mechanism design, the payoff from a zero-reserve-price English auction with
n + 1 bidders exceeds the payoff from an optimal mechanism with n bidders. Because the
former is a lower bound on the lowest equilibrium payoff πΔ(n+1) for Δ small enough if 1/F
is convex, and the latter by definition an upper bound on the (highest) equilibrium payoff
πΔ(n), the following corollary obtains.

Corollary 1. Suppose that 1/F is convex, and that the virtual valuation is increasing. Then
more buyers are better for the seller, i. e., for every n,

lim inf
Δ→0

πΔ(n + 1) ≥ lim sup
Δ→0

πΔ(n). (9)

3.4 Comparing the Two Bounds

Propositions 2 and 3 provide two lower bounds on the seller’s payoffs. Which of these bounds
is the sharper one depends on the distribution and the number of buyers. Can the seller
actually do better than either in the dynamic game? As we shall see in Section 4, sometimes,
although as Proposition 1 indicates, the seller cannot have the best of both worlds. Either
the seller insists on a reserve price, or she insists on finely discriminating among different
valuations. In the first case, she must give up such discrimination, treating buyers with
widely different valuations identically, while in the second case she must give up on the
reserve price, letting prices drift all the way down to zero. How this trade-off is best resolved
depends on the number of buyers. Consider the following two extreme cases.

distributed on [0, 1]. Let q(v) be the probability that a buyer receives the good, conditional on being of
valuation v. Then there exists a feasible and incentive compatible allocation with q(v) = v for v ≤ 1

2 and
q(v) = 1

2 otherwise, but no price sequence achieves such an allocation.
17If F is concave (a special case of 1/F convex), then we can prove a stronger and much more convenient

result, namely that the Dutch auction is the favorite allocation of the buyer whose valuation is highest, among
all feasible and incentive-compatible allocations, but concavity of F is an uncomfortably strong assumption.
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One Buyer: With one buyer, it follows from Samuelson [26] that among all mechanisms,
the optimal ones are equivalent to having the seller make a take-it-or-leave-it offer to the
buyer. As the seller can always do so by posting a price of 1 in every period but the last,
every equilibrium must then yield this maximal payoff to the seller. The seller then obtains
the static monopoly payoff (which exceeds the zero revenue of a Dutch auction). In every
equilibrium, all prices but that posted in the last period must be unacceptable to all buyers,
and the price in the last period must be the monopoly price.

A Large Number of Buyers: When the number of buyers is very large, the payoff from
a Dutch auction without reserve price exceeds the monopoly payoff. To see this, we invoke
some arguments based on extreme value theory (Blumrosen and Holenstein [9, Theorems 4
and 5]). The extent to which the Dutch auction falls short of complete surplus extraction is
given by the difference between the first and the second order statistic of the buyers’ value.
This difference is roughly 2/[nf(1)], and hence the Dutch auction revenue is

1 − 2

n

1

f(1)
+ O

(
1

n2

)
, (10)

where |O(1/n2)| ≤ M/n2 for some M > 0. Under monopoly pricing, the seller must make
sure that her price approaches 1 (as the number of buyers grows) sufficiently slowly so as to
ensure that with high probability, at least one buyer has a valuation exceeding the price. This
probability increases exponentially fast as the price is lowered, and hence a given probability
can be achieved with a price that is within a distance of only the order ln n/n from 1. This
in turn allows us to write the monopoly payoff as

1 − lnn

n

1

f(1)
+ O

(
1

n2

)
. (11)

Comparing (10) and (11), it is immediate that the Dutch auction revenue is larger than the
monopoly revenue when there are sufficiently many buyers.

Many questions remain. As mentioned above, we have not shown whether these lower
bounds on revenue can be tight. What prices would the seller use, and what would the
resulting allocation be? While our informal discussion suggests that the seller might achieve
these bounds by the obvious corresponding pricing strategy, this has not been established
so far. While the proofs of the earlier propositions involve specific price sequences, these
were exhibited to show what the seller could do, not what she actually does. Even if the
seller were to obtain precisely the revenue of a Dutch auction without reserve, this would not
still imply that she does so by duplicating the prices of such an auction, as there are many
allocations that achieve such a revenue.18 Even less is known about the price path, that

18However, because we know that she secures the Dutch auction revenue, we know that she must replicate
the Dutch auction if she lets the price drop to zero, at least when virtual valuations are increasing.
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is, about when different prices are charged. Even if the seller were to replicate the Dutch
auction revenue by using a very fine grid of prices, she might wait until the last instants to
do so, or instead go through all these prices at the very beginning of the game.

The following section provides answers to these questions in the special case of the uniform
distribution.

4 Uniformly Distributed Buyer Valuations

This section assumes throughout that the distribution is uniform: F ∼ U [0, 1]. In this case,
we show that the equilibrium is unique and exhibits convenient homogeneity properties.
Subsection 4.1 provides an explicit, if technical, description of this equilibrium. Subsection
4.2 sharpens our earlier results on revenue and describes the equilibrium price range, while
Subsection 4.3 solves for the equilibrium price path.

4.1 Equilibrium Strategies

We hereafter assume that there are at least two buyers. With the uniform distribution, the
buyers’ indifference condition given by (4) simplifies considerably, as it becomes

vn
t+1 − vn

t

vt+1 − vt
(vt − pt) =

vn
t − vn

t−1

vt − vt−1
(vt − pt−1) (12)

=
vn

t − vn
t−1

vt − vt−1
(vt − vt−1) +

vn
t − vn

t−1

vt − vt−1
(vt−1 − pt−1)

= (vn
t − vn

t−1) + · · ·+ (vn
2 − vn

1 ) = vn
t − vn

1 , (13)

where the third equality obtains by repeated substitution. Note that this can be re-written
as

pt

vt+1

=
vt

vt+1

− 1 − vt/vt+1

1 − (vt/vt+1)n

((
vt

vt+1

)n

−
(

v1

vt+1

)n)
, (14)

giving us the basic incentive constraint for the seller’s problem. This in turn suggests some
characteristics of the equilibrium, namely that the ratios v1/v2, . . . , vt/vt+1 are fixed by
optimality considerations and the price pt is a linear function of vt+1.

The seller’s payoff with t periods to go, given by (6), simplifies to

πt(vt+1) =
vn

t+1 − vn
t

vn
t+1

pt +
vn

t

vn
t+1

πt−1(vt). (15)

Using (14) to incorporate the incentive constraint, the seller’s problem is to maximize

πt(vt+1)

vt+1

=
vt

vt+1

(
1 −

(
vt

vt+1

)n−1
)

+

(
v1

vt+1

)n(
1 − vt

vt+1

)
+

(
vt

vt+1

)n+1
πt−1(vt)

vt

. (16)
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This again suggests an equilibrium solution in which the payoff πt(vt+1) is linear in vt+1.
Section A.5 shows that there exists a unique equilibrium. In this equilibrium, the seller’s

price and revenue in each period t are a linear function of the period t + 1 threshold vt+1.
The argument proceeds by induction. It is straightforward, given the uniform distribution,
to calculate that this is the case in the last period. We then work backward, showing that
in each period, the buyers’ indifference condition given by (14) has a unique solution (for a
given price set by the seller, and given the results obtained for subsequent periods), and that
the seller’s problem given by (16) has only interior solutions, in the sense that some buyers
accept the price in each period. The remaining task is to show that there is a unique interior
solution, at which point the argument becomes somewhat technical. We let qt = vt+1/v1, and
then note that (after some manipulation) the sequence of values qt, describing the ratios of
the values of indifferent buyers, must be an increasing solution to the second-order difference
equation

qn
t+1 −

nqn
t − 1

qt

qt+1 + n(qn−1
t qt−1 − 1) − qn

t−1 = 0, (17)

with the boundary conditions

q0 = 1, q1 = (n + 1)
1
n .

Section A.5 shows this sequence exists and is unique. This gives:

Proposition 4. Suppose the seller’s period-t posterior belief has support [0, vt+1] after some
nontrivial history. (If t = TΔ, take vTΔ+1 = 1.) Then there is a unique perfect Bayesian
equilibrium in the resulting continuation game. In particular, the seller sets the period-t price

pt =

[
1 − qt − qt−1

qn
t − qn

t−1

(
qn−1
t−1 − q−1

t−1

)] qt

qt−1
vt+1, (18)

and given an arbitrary price p̂t, each buyer i with valuation vi ≥ v(p̂t, vt+1, t) accepts the
price and each buyer i with vi < v(p̂t, vt+1, t) rejects it, where v(p̂t, vt+1, t) is the unique value
v solving

1 − p̂t

v
=

vt+1 − v

vn
t+1 − vn

vn−1
t+1

(
1 − q−n

t+1

)
. (19)

The path of equilibrium behavior is straightforward to trace, even if the statement of
the strategies is somewhat formidable. A sufficient statistic for continuation play in each
period t is the upper bound vt+1 on the buyers’ valuations. Given this bound, the seller can
calculate the optimal price pt according to (18), and this price will be accepted by buyers in
the interval [vt, vt+1), where the cutoffs vt evolve (in equilibrium) according to

vt =
qt

qt−1
vt+1. (20)
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Should a deviation to an out-of-equilibrium price on the part of the seller push us off the
equilibrium path in period t, we will depart from this progression of marginal buyer val-
uations, with next period’s value of vt now defined by (19) rather than (20). Once we
have obtained this new value, however, we face a continuation game with a unique perfect
Bayesian equilibrium, defined by (18)–(19). Buyer deviations have no effect on continuation
strategies.

4.2 Equilibrium Prices

We now describe the range of equilibrium prices used by the seller, in the limit in which
prices can be revised arbitrarily quickly. Let pΔt denote the equilibrium price set by the
seller when there are t periods to go (including the current one), given period length Δ.
Given pΔt, let vΔt ∈ [0, 1] denote the valuation of the buyer who is indifferent between
accepting and rejecting in period t, characterized in Proposition 3. (Set vΔt = 1 if every
buyer rejects, and vΔt = 0 if every buyer accepts.)

Proposition 5. Fix a period length Δ and a number of buyers n ≥ 2. The sequences
{pΔt, vΔt}TΔ

t=1 of equilibrium prices and types take values in (0, 1) and are strictly increasing
in t (i.e., decreasing over time). Further:

(5.1) For n < 6, limΔ→0 vΔ1 > 0 and limΔ→0 πΔ(n) > πD(n).

(5.2) For n ≥ 6, limΔ→0 vΔ1 = 0 and limΔ→0 πΔ(n) = πD(n).

(5.3) limΔ→0 vΔ1 is decreasing in n.

Sequential rationality forces the seller to set a series of prices that decline over time, in
each period skimming off an upper interval of high-valuation buyers. As Δ shrinks and price-
revision opportunities come more frequently, the seller sets a higher and higher initial price
pΔTΔ

, using her frequent price revisions to skim off smaller intervals in each period and hence
more effectively price discriminate among the buyers. If pΔTΔ

increases sufficiently rapidly
as Δ shrinks, the higher starting price and smaller skimming intervals will counteract the
more frequent price revisions and the terminal price pΔ1 will never fall to zero—the seller
commits to a reserve price. If pΔTΔ

increases more slowly as Δ shrinks, the more frequent
price revisions will more than make up for the higher initial price and smaller intervals, and
pΔ1 will approach zero—no commitment.

The larger is the number of buyers, the lower does the seller allow the ultimate price
to drop (Proposition 5.3). Because the final and only serious price that she posts with one
buyer matches the optimal reserve price under commitment, and the latter is independent
of the number of buyers, it follows that the seller always lets the price eventually drop below
what it would be if she could commit. However, one can construct examples of distributions
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in which this is not the case (that is, in which the seller would like to commit to a lower
price; see Appendix B.4 for such an example).

With five or fewer buyers (the specific number is obviously an artefact of the uniform
distribution of buyer values), the finite horizon allows the seller to commit to a positive
reserve price, no matter how long the horizon. As long as there are multiple buyers, the
resulting revenue is larger than either of our bounds. It then follows from Proposition 1 that
only a very few prices have a nonnegligible probability of being accepted. Indeed, the set of
prices that she charges has only one accumulation point, the choke price.

Instead, if there are more than six buyers, then the seller’s final price approaches zero
(Proposition 5.2). As the proof in Section A.6 makes clear, the closure of the set of prices
that are charged at some point or another includes all prices from zero to the choke price,
so that the outcome of the game mimics the outcome of the Dutch auction. In this case,
the seller’s lack of commitment power poses no difficulties in discriminating between buyers,
but she abandons all hope of maintaining a reserve price. Incidentally, this implies that the
revenue lower bound provided by the Dutch auction is actually achieved.

4.3 Pricing Dynamics

The previous subsection has described which prices the seller sets. We are interested here
in characterizing when the seller charges these prices. That is, we study the limiting path of
prices and indifferent types as the period length Δ goes to zero. We maintain the assumption
that F is uniform throughout.

4.3.1 Noncommitment

We begin with our standard assumption that the seller cannot commit to future prices.
Recall that vΔt denotes the indifferent buyer’s valuation in the unique equilibrium of the
game, with t instants to go. Given any period length Δ and given the sequence of indifferent
types {vΔTΔ

, . . . , vΔ1} maximizing the payoff of a seller with commitment, define the step
function

vΔ (x) = vΔt for all x ∈
[
t − 1

TΔ
,

t

TΔ

)
, vΔ (1) = 1,

where, in keeping with our use of t to identify the number of remaining pricing opportunities,
we think of x as the time remaining before hitting the terminal horizon. Our next proposition
establishes that the (continuous extension of the) limit

v(x) = lim
Δ→0

vΔ(x) (21)

exists, and identifies this limit. This gives us the path of valuations of the indifferent buyers,
as a function of time. Similarly, the proposition identifies the corresponding limit p(x) of
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the analogously defined price function pΔ(x), with p(x) identifying the path of equilibrium
prices as a function of time. Clearly, with only one buyer, only the last posted price matters,
and we accordingly assume n ≥ 2.

Proposition 6.
[6.1] For 2 ≤ n < 6, the functions v and p both converge to v(x) = 1 and p(x) = 1 on

[0, 1).
[6.2] For n ≥ 6, the limiting function v describing the path of indifferent buyers induced

by a seller who cannot commit to prices is well-defined, and equal to

v (x) = x
3

n+1 , (22)

while the corresponding price function is given by

p (x) =
n − 1

n
x

3
n+1 . (23)

The seller’s trade-off between reserve price and price discrimination thus reappears in the
seller’s use of time. When n < 6 (and as Δ gets very small), all of the pricing action occurs
in the very last instants of the horizon. The seller sets prices very close to the choke price,
with very little chance of an acceptance, until the last instants, at which point the price p
and the marginal buyer v cascade in chunks to nonzero terminal values. For any ε > 0, the
probability that a trade occurs before time 1 − ε goes to zero as Δ gets small.

In contrast, for larger values of n, marginal valuations and prices both decline continu-
ously as time passes (v and p both increase in x). While the seller achieves the Dutch-auction
revenue in this case, the seller does not adopt the obvious approximation of the Dutch auc-
tion, namely a sequence of equally-spaced price intervals. Instead, v(x) and p(x) are both
concave, indicating that the seller reduces price slowly and moves though buyer valuations
in the early stages, setting ever-larger price reductions and slicing off ever-larger chunks of
buyers as the endpoint approaches.

Combining (22)–(23), we find that when n ≥ 6, a buyer of valuation v purchases the
object (if a competitor does not snatch it first) at price19

p(v) =
n − 1

n
v.

19As a check on this result, we can then calculate that the seller’s revenue when facing n buyers is∫ 1

0

p(v)nvn−1dv =
∫ 1

0

(n − 1)vndv =
n − 1
n + 1

= πD(n),

in keeping with Proposition 5.2. In this calculation, p(v) is the price paid by a buyer of type v and nvn−1

is the density of the highest bidder’s valuation, obtained by noting there are n candidates for the highest
bidder and for each valuation v the probability that it is higher than the other valuations is vn−1.
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The price is thus a linear function of the buyer’s valuation, with a slope that is increasing
in the number of buyers. Hence, as the number of buyers increases, the seller gains from
the fact that the likelihood of a high-valuation buyer increases, and also from the fact that
increased competition among buyers pushes each buyer to pay a price closer to his valuation.

4.3.2 Commitment

We can gain some insight into the seller’s pricing incentives by examining the case in which
the seller can commit to her entire sequence of prices. We define the limiting functions v(x)
and p(x) exactly as before, but with {vΔTΔ

, . . . , vΔ1} now being the sequence of indifferent
buyers in the (unique) equilibrium of the game with commitment.

At first glance, the commitment case is trivial.20 Because virtual valuations are increasing
in the case of a uniform distribution, a Dutch auction with reserve price 1

2
is optimal, and

commitment gives the seller the ability to come arbitrarily close (as Δ → 0) to this outcome.
But how does the seller do this? What sequence of prices does the seller set in order to
come close to the optimal-auction payoff? As it turns out, a seller who can commit does not
spread prices equally apart, and the optimal distribution of prices that results asymptotically
translates into a specific price path. The counterpart of Proposition 6 is

Proposition 7. Let n ≥ 2. The limiting function v (cf. (21)) describing the path of
indifferent buyers induced by a seller who can commit to prices is well-defined, and equal to

v (x) =
1

2

((
2

n+1
3 − 1

)
x + 1

) 3
n+1

, (24)

while the corresponding price function is given by

p (x) =
(n − 1)v(x)n + 2−n

nv(x)n−1
. (25)

The seller fully takes advantage of the entire time horizon, and decreases prices p(x) (and
thus, the indifferent type v(x)) continuously over time as the terminal point approaches (x
decreases). As expected, v(1) = 1 and v(0) = 1/2, so that the seller begins (at x = 1) slicing
off the highest-type buyers, moving downward to a valuation of 1/2 (at x = 0). The function
v is concave in x (it is affine in x for n = 2), so that the seller runs through buyers more
rapidly as time goes on, and is increasing in n. Prices are also increasing in n, and of course
increasing in x—prices decline over time—but they are not concave in x. Rather, they are
convex for x low enough, and concave for high enough values of x (this higher interval being
empty if and only if n ≤ 3). Prices decrease relatively rapidly at the beginning and end of
the interval, progressing somewhat more slowly in the middle.

20One might worry about equilibrium multiplicity of the game between buyers, but with the uniform
distribution, the equilibrium is again unique.
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Figure 2 illustrates these results. While Proposition 6 calculates the type of the marginal
buyer and the price as a function of the time remaining, we make Figure 2 more intuitive by
translating these into functions that give marginal valuations and prices as a function of the
time that has elapsed. Notice that the function v initially picks out marginal buyers whose
types are arbitrarily close to 1, while the prices that make these buyers indifferent are quite
a bit lower.
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Time Time
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Figure 2. Limiting (as Δ → 0) critical valuations v and prices p, as a function of the
time that has elapsed.

There is some arbitrariness in the price path under noncommitment and few buyers.
The price over the interval [0, 1) must be high enough that there are no sales, and many
price paths will have this effect. We have also taken the liberty to associate a collection of
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indifferent valuations and terminal prices with time 1, even though this is impossible in a
continuous-time model, as a reminder that as Δ gets small, the seller packs an arbitrarily
large number of nontrivial prices and indifferent buyer valuations into a vanishingly small
final instant of time.

When there are few buyers, the seller would like to preserve a positive reserve price.
In the absence of commitment, the great obstacle to doing so is the future temptation to
slash prices. The seller attenuates these future price reductions by initially reducing prices
more slowly than would be the case without commitment. When there are many buyers, the
seller abandons the reserve price. The continual pressure to reduce prices thus leads to price
reductions that are more rapid than would be the case under commitment.

5 Discussion

Unknown number of buyers. We have assumed that our seller knows how many buyers
she faces. What if this is not the case? The obvious alternative is to consider a model
in which the number of sellers is determined by a Poisson process. If values are drawn
uniformly from the unit interval, the resulting model is quite tractable.21 In this case, the
seller’s unique equilibrium strategy always entails a positive terminal price. As the price falls
without a purchase in our model, the seller draws the inference that all of the buyers happen
to have low valuations, while remaining convinced of the number of buyers. The importance
of price discrimination remains unaltered, and (when there are sufficiently many buyers) the
seller’s decision to sacrifice the reserve price in the interests of price discrimination remains
unaltered.

As the price falls without a purchase in a model with a Poisson-distributed number of
buyers, the seller draws the inference not only that the buyers have low valuations, but also
that there are simply not many buyers there. Eventually, the seller becomes very pessimistic
about the number of buyers, and a reasoning analogous to the one applying to the case of
a low, but known number of buyers implies here as well that the equilibrium continuation
path of play entails a positive terminal price.

Multiple Units. Suppose the seller has more than one unit for sale, with buyers’ valuations
drawn from the unit interval according to the uniform distribution. Letting k be the number
of units, we assume n ≥ k + 5, which suffices to ensure that the seller’s price eventually
declines to zero. Let pkn(v) be the price paid by a buyer of valuation v, in the limiting case
of arbitrarily short time periods, when there are k objects and n buyers. Let πkn be the
seller’s payoff when selling k objects to n buyers. Arguments analogous to those of the case

21The Poisson process allows especially convenient calculations, as the problem takes on a recursive struc-
ture much like that induced by the uniform distribution of valuations in our fixed-number-of-buyers model.
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k = 1 give22

pkn(v) =
n − k

n
v, (26)

πkn = k
n − k

n + 1
. (27)

A buyer of valuation v thus pays more for the object when facing more competitors, but pays
less when there are more objects for sale. The seller’s revenue is increasing in the number
of buyers, and is increasing in the number of objects as long as there are at least twice as
many buyers as objects. If the seller has too many objects for sale, she would be better off
destroying some of them before offering the remainder for sale to the buyers.

Suppose now that the seller begins with k objects and n buyers, and consider the limiting
case of vanishingly small period lengths Δ. The price drops until some buyer of type v buys
the first object at price n−k

n
v. At this point, the price jumps upward to (n−1)−(k−1)

n−1
v = n−k

n−1
v,

as the seller now continues with the equilibrium strategy given one less object and one less
buyer, with the remaining buyers’ valuations distributed on [0, v]. The price continues to fall
until another buyer of type v′ purchases at n−k

n−1
v′, at which point the price jumps to n−k

n−2
v′.

This continues until a single object is left, to be eventually sold to a buyer of type v′′ at
price n−k

n−(k−1)
v′′.

Figure 3 illustrates these dynamics. The seller begins with two objects and lets the price
fall, decreasing the indifferent buyer type, until the first purchase occurs. The price now
jumps upward as the seller switches to the appropriate single-object price path, while the
identity of the indifferent buyer continues to decline from the valuation of the buyer who
purchased.

22The derivations are much more complicated with multiple objects and do not yield closed-form solutions
for the functions v(x) and p(x). Section B.3 sketches the arguments. To provide some insight into these
functions, one can verify both that πkn is the expected value of a k + 1-st price auction with n bidders, and
that πkn and pkn satisfy the recursion

πkn =
∫ 1

0

nvn−1[pkn(v) + vπk−1,n−1]dv,

where vπk−1,n−1 is the continuation value of selling k − 1 objects to n− 1 buyers with valuations uniformly
distributed on [0, v].
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Figure 3: Prices and marginal valuations for n = 7 (with a sale at time t = .6)

The price jumps in this progression are reminiscent of the frenzies in Bulow and Klemperer
[11]. Each sale in their model raises the possibility of a frenzy, in which additional buyers
purchase at the price of the most recent sale, or even a price increase, in the event that
more buyers than there are remaining objects attempt to purchase at the most recent sale
price. The revenue earned by our seller (for sufficiently large n) matches that of Bulow and
Klemperer’s. Bulow and Klemperer work directly in continuous time and impose conditions
on the path of prices set by the seller, including that price must decline continuously to
zero in the absence of a sale, that a sale must be followed by repeated opportunities for
additional buyers to purchase at the sale price, and that the price must jump upward if
these opportunities for additional purchases lead to excess demand for the good. The result
is one of the many continuous-time price paths that maximize the seller’s revenue. Our
analysis begins in discrete time and places no restrictions beyond sequential rationality on
the seller’s prices, in the process selecting one of the optimal continuous-time price paths as
the limit of the optimal pricing scheme with very short, discrete pricing periods.
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A Appendix: Proofs

A.1 Proof of Lemma 1

Fix a candidate equilibrium. Suppose that a buyer with valuation v finds it optimal to accept
price p in some period t. Then it must be the case that

n−1∑
k=0

q(k)
1

1 + k
(v − p) ≥ q(0)

∑
p�∈P

ρ(p�)(v − p�),

where q(k) is the probability that k other buyers accept the price p, P is the finite set of prices
the seller will set in the remaining t−1 periods under the candidate equilibrium, and ρ(p�) is
the probability the buyer will purchase the good at such a price. Notice that ρ(p�) combines
the buyer’s subsequent decisions of when to say yes to a price, as well as the probability that
other buyers will accept either p� or an earlier price. We have

∑
p�∈P ρ(p�) ≤ 1, and hence

the derivative in v of the left side of this inequality is at least as large as that of the right.
If q(0) < 1 or ρ(p�) attaches nonunitary probability to prices equal to p, the derivative of
the left side is strictly larger than that of the right, and hence all buyers with valuations
v′ > v find it strictly optimal to also accept the offer, giving the result. If q(0) = 1 and ρ(p�)
attaches probability 1 to prices equal to p, then all buyers are indifferent between accepting
and rejecting the current price. In this case, there is no loss of generality in taking the
accepting set of buyers to be an upper interval of buyer types.

A.2 Proof of Proposition 1

Suppose vΔ1 > 0. Then vΔ2 must be such that

vΔ1 = arg max v(1 − (F2(v))n),

where F2 is the posterior cumulative distribution over the buyers’ types, given that these
types are contained in the interval vΔ2. If F2 has a strictly positive density, then this ensures
that vΔ2 > vΔ1 and, along with limΔ→0 vΔ1 > 0, that limΔ→0 vΔ2 > limΔ→0 vΔ1. An induction
argument then establishes the corresponding inequality for every k.

A.3 Proof of Proposition 2

If Δ = 1, the seller literally gets only one chance to set a price, and is a static monopoly,
ensuring that she earns at least π1(n). We now proceed by induction. Fix a period length Δ′

and corresponding TΔ′, and let period-length Δ permit one additional pricing period. One
possibility open to the seller under period length Δ is to set an unacceptable offer in the first
period, in which case play will continue with some equilibrium of the resulting continuation
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game, which must also be an equilibrium in the game with period length Δ′. Setting an
unacceptable price in the first period thus ensures a payoff of at least πΔ′(n), and hence
any equilibrium with period length Δ must bring at least this payoff (or πΔ(n) ≥ πΔ′(n)).
Similarly, considering strategies in which the seller makes a unacceptable offer in the first
period followed by an equilibrium giving payoff πΔ′(n) gives πΔ(n) ≥ πΔ′(n).

A.4 Proof of Proposition 3

The proof of Proposition 3 is broken into several steps. Our first objective is to show that,
if 1/F is convex, then the seller can achieve no allocation that the highest type would prefer
to the Dutch auction, and that yields a higher revenue to the seller.23 Proving this will
take the next four subsections. Section A.4.1 defines a sequence of maximization programs,
indexed by the revenue that the seller can guarantee. Starting with the assumption that the
seller can guarantee nothing, we derive what utility the buyer would achieve from his favorite
allocation, and therefore, what the highest price would be that he would not be able to resist
accepting. These prices provide a basis for a new lower bound on the seller’s revenue, as she
can choose to “move down” the demand curve by using a fine grid of those prices (note that
these prices would be accepted by the buyer independently of his expectations about the
continuation). If it is common knowledge among buyers that, with enough periods to go, the
seller can guarantee a revenue close to this lower bound, we can use this program again, to
re-compute the highest utility that a given buyer’s type can hope for, across all allocations
raising that much revenue. We then again derive the price that he cannot resist accepting,
etc. Section A.4.2 shows that the sequence of programs converges to a fixed point. To study
this fixed point, Section A.4.3 discretizes the problem and shows that the revenue from the
fixed point in the discrete problem, under an assumption that corresponds to 1/F convex
in the discrete set-up, is at least as large as the Dutch auction revenue. Section A.4.4 uses
limiting arguments to establish the same result for the continuous program that we have
started with.

Finally, we apply this result to the dynamic game in Section A.4.5.

A.4.1 The Program

Let us say that a function qv : [0, 1] → [0, F (v)n−1] is admissible if it lies in the closure of the
set of functions with the properties that

qv is non − decreasing and right − continuous, (28)

23We do not know whether this is true for all feasible, incentive-compatible allocations, or only for those
satisfying our admissibility requirement (see Section A.4.1 below).
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and there exists a strictly increasing sequence of valuations 0 = v0, v1, . . . , vM = 1 such that
for every i ∈ {1, . . . , M − 1}, qv − F (v)n−1 is non-increasing on (vi, vi+1) and∫ vi+1

vi

(qv(s) − F n−1(s))dF (s) = 0, (29)

with the last two properties also holding on [0, v1) if qv is not identically zero on this interval.
We will think of qv as an allocation contemplated by buyer v. Condition (28) is an

obvious feasibility condition. Condition (29) is a strengthening of Border’s [10, Proposition
3.1] condition guaranteeing the implementability of a reduced-form auction. If, for every
interval [vi, vi+1) with i ≥ 1, we required either qv to be constant or qv − F (v)n−1 to be
identically zero on this interval (with the same conditions holding on [0, v1) if q is not zero
on this interval), then we would have an obvious necessary condition for qv to be obtained via
a sequence of prices. More precisely, (29) would then correspond to a deterministic sequence
of prices, which implies that, except for some lower interval of types whose probability of
obtaining the unit is zero, it must be that the probability that the good is allocated to a
player with a type in a higher interval is equal to the probability that the highest bidder’s
valuation lies in this interval.24 In particular, if there is a (maximal) interval of types [s, s′),
s < s′, which obtain the good with probability q, then it must be that (recall that 1/F is
assumed to be convex, and hence F has no upward jumps)

nq(F (s′) − F (s)) = F (s′)n − F (s)n.

We find it convenient to require that qv is admissible, a condition that is weaker than being
implementable by a price sequence but still stronger than Border’s condition, because it sim-
plifies a subsequent continuity argument (Claim 4 below). Given the sequence v0, v1, . . . , vM ,
we refer to an interval [vi, vi+1) as a bunch. If qv = 0 on [0, v1), we say that the buyers in
this interval are rationed.

Consider the following maximization program, parameterized by v ∈ [0, 1] and H :
[0, 1] → R:

Uv(v|H) = max
qv

∫ v

0

qv(t)dt

over functions qv : [0, 1] → [0, F (v)n−1], subject to the constraints that

qv admissible (30)

24Note that, in the dynamic game, the seller might randomize over sequence of prices. However, she is
only willing to do so if all raise the same revenue, so that each sequence in the support of her mixed strategy
satisfies (28)–(31), and so the maximum U(v|H) must be achieved by such a deterministic sequence.
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and

J(v) :=

∫ v

0

(
sqv(s) −

∫ s

0

qv(t)dt

)
dF (s)

=

∫ v

0

(sqv(s) − Uv(s)) dF (s),

≥ H(v), (31)

where we write Uv(s) for the payoff of type s ≤ v, i.e.

Uv(s) =

∫ s

0

qv(t)dt.

Condition (31) states that the chosen allocation must raise an (unconditional) revenue at
least equal to H . The objective U(v|H) is then the (unconditional) payoff of a bidder with
type v. The interpretation of this program is clear: this is the highest payoff a buyer of type
v can conceivably expect from a price sequence that raises a revenue (per buyer) of at least
H(v). Let also HD, UD, qD denote the Dutch auction revenue, utility, and allocation.

Fix H0 ≤ HD, and define inductively Uk = U(·|Hk), and Hk+1 via, for all v,

Hk+1(v|Hk) :=

∫ v

0

(sF (s)n−1 − min{Uk
s (s), UD(s)})dF (s).

The interpretation of Hk+1 is that it is the (unconditional) revenue (per buyer) from a
descending price auction accruing from the types in [0, c], in which type s accepts as soon
as the price reaches the level s−min{Uk

s (s), UD(s)}. The minimum ensures that the Dutch
revenue HD is a fixed point of the map defined by the recursion. Given Hk, we shall refer
to any maximizing function qv as qk

v (note that it may not be unique).

A.4.2 Existence of a Fixed Point

Note that, for H ≤ HD, the feasible set of the program is non-empty, because qD is feasible.
We proceed with a few obvious claims.

Claim 1: If H̃k ≥ Hk (pointwise), then H̃k+1 ≥ Hk+1. This follows from the fact that
H̃k ≥ Hk ⇒ ∀v : U(v|H̃k) ≤ U(v|Hk).

Claim 2: Hk+1 is bounded above (for instance, Hk+1(v) ≤ v), for all k.

Claim 3: Given Hk ≤ HD, Hk+1 is non-decreasing in v. This follows from the definition of
Hk+1 and the positivity of its integrand.

Note that Claims 1 and 2 imply that, starting from H0, the sequence {Hk} must converge.
The limit H∞ must be a fixed point of the map from Hk to Hk+1, and so must be a
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differentiable function of v, given that U∞ is continuous in v. By Dini’s theorem, given
Claim 1 and the continuity of H∞, the convergence of {Hk} to H∞ must be uniform.
Because H0 ≤ HD and HD is a fixed point of the map, H∞ ≤ HD.

Claim 4: The objective function U(v|·) is continuous on [0, HD(v)), for all v ∈ [0, 1]. Clearly,
it is non-increasing (because tightening the constraint in (31) can only lower the objective).
To see that it is continuous, one need only note that for any admissible qv other than the
Dutch auction, a convex combination of qv and the Dutch auction yields an admissible
allocation that smoothly increases revenue and smoothly affects the payoff to the buyer as
the weight on the Dutch auction increases. Hence, the constraint (31) can be satisfied strictly
at an arbitrarily cost in terms of the objective. In particular, for every εk ∈ (0, 1), there
exists εk+1 such that Hk+1(·|(1 − εk)Hk) ≥ (1 − εk+1)Hk+1(·|Hk), with limεk→0 εk+1 = 0.

Claim 5: If liml→∞ |Fl − F | = 0 (in the L1 norm), then for all k ≥ 1,
∣∣Uk

l − Uk
∣∣ → 0 and∣∣Hk

l − Hk
∣∣→ 0, where Uk

l and Hk
l are the sequences of utilities and revenues obtained from a

sequence of continuous distributions Fl. To see this, fix k and suppose that
∣∣Hk

l − Hk
∣∣→ 0.

Given qv(·), define qv,�(t) as (i) qv,�(t) = F n−1
l (t) if t ∈ {s ∈ [0, 1] : qv(s) = F n−1(t)}: (ii)

qv,�(t) = (F n
l (t′′) − F n

l (t′))/[n(Fl(t
′′) − Fl(t

′))] if [t′, t′′] = cl {s ∈ [0, 1] : qv(s) = F n−1(t)}
and t′ < t′′. Note that qv,l satisfies the admissibility constraints because qv does. Given
Claim 4, because Hk

l (v) → Hk(v) < HD(v), we can define a sequence {qm
v,l : m ∈ N}

with limm qm
v,l = qv,l for all l, v, and such that qm

v,l satisfies (31) for all m, l large enough.

Because limm,l q
m
v,l = qv, it follows that

∣∣Uk
l − Uk

∣∣ → 0. It follows then from the definitions

of Hk+1, Hk+1
l that

∣∣Hk+1
l − Hk+1

∣∣→ 0, concluding the induction step.

Claim 6: It follows from uniform convergence that

lim
l→∞

|Fl − F | = 0 ⇒ lim
l→∞

|H∞
l − H∞| = 0.

A.4.3 Discrete Approximation

Suppose we have a discrete distribution of types. There are M different valuations, indexed
by 1, 2, . . . , M , with valuations 1

M
, 2

M
, 3

M
, . . . , 1, and with probabilities f1, . . . , fM .

Suppose qm(j) is the probability that buyer j receives the object, and pm(j) the buyer’s
expected payment. Then j’s utility, using the incentive constraint for the second line, is

Um(j) = Δjqm(j) − pm(j)

= Δjqm(j − 1) + pm(j − 1)

= Δqm(j) + Um(j − 1).
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Iterating, we have

Um(j) = Δ

j−1∑
i=1

qm(i). (32)

The expected price is given by

pm(j) = Δjqm(j) − Um(j) = Δjqm(j) − Δ

j−1∑
i=1

qm(i).

Expected revenue per buyer from types 1, . . . , m is given by (rearranging the double sum-
mation to get the second equality, and letting f + i := f(i) and Fi := F (i))

m∑
i=1

pm(i)fi =

m∑
i=1

(
1

M
iqm(i) − 1

M

i−1∑
k=1

qm(k)

)
fi

= Δ
m∑

i=1

(
i − FM − Fi

fi

)
fiqm(i).

Under the Dutch auction, we have

qD
m(j) =

1

n

F n
j − F n

j−1

Fj − Fj−1

.

The admissibility requirement is then that qm be increasing and that we can partition the
buyers into subintervals, so that if buyer m′s solution bunches together the buyers from j to
k, then

n
k∑

i=j

qm(i)fi = n
k∑

i=j

1

n

F n
i − F n

i−1

Fi − Fi−1
fi

= n
k∑

i=j

1

n

(
F n

i − F n
i−1

)
= F n

k − F n
j−1,

with qm(i) − F n−1
i decreasing.

The maximization problem we consider is now given by

Uk
m(m) = max

qm(i),i=1,...,m
Δ

m∑
i=1

qm(i)

s.t. qm admissible
m∑

i=1

(
Δiqm(i) − Uk

m(i)
)
fi ≥ Rk

m,
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where

Rk+1
m =

m∑
i=1

(
Δiqm(i) − Uk

i (i)
)
fi.

We now construct an induction argument. Notice first that for buyer 1, there is a unique
solution to the maximization problem, which duplicates the outcome of the Dutch auction.
This gives the point of departure for the induction.

Now suppose that every buyer 1, . . . , m solves the maximization problem with the Dutch
auction. We show that buyer m + 1 also does so. The steps in the argument are:

• Buyer m + 1 could choose qm+1(j) to be the Dutch auction. This would satisfy the
constraints of the maximization problem and give Um+1 = UD

m+1. If this is indeed the
solution to the maximization problem, this step of the induction is finished.

• Suppose the solution gives some Um+1 > UD
m+1. Then Rm+1 falls short of RD

m+1 by
fm+1(Um+1 − UD

m+1).

• It must then be that buyer m + 1’s solution to the maximization problem holds fixed
Rm+1 + fm+1Um+1. But since we have a fixed point, we must then also hold fixed
Jm+1 + fm+1Um+1 = RD

m+1.

We now show that any departure of qm+1 from the Dutch auction can only decrease the
total Jm+1 + fm+1Um+1 = RD

m+1. Notice that this proves Lemma 2 for this discrete version
of the problem, with the lemma itself then following from limiting arguments (below).

Suppose first that there is a nontrivial minimal bunch, consisting of valuations in {v, . . . , v}.
Admissibility ensures that we can divide the types in the bunch into a lower interval of types,
for whom q > qD

m(v), and an upper interval for whom q < qD
m(v). We now note that we can

move from the Dutch auction on {v, . . . , v} to the bunch in a finite sequence of steps, at
each step choosing a type j in the lower interval whose current probability q(j) falls short of
qm(j) and a type k > j in the upper interval whose current probability q(k) exceeds qm(k),
and then increasing qj and decreasing qk, while preserving the value fjqj + fkqk, until either
qj = q or qk = q. We then fix the resulting values and proceed to the next step. In a finite
sequence of steps, this leads from the Dutch auction to the bunch.

We argue that each step reduces Jm+1 + fm+1Um+1. Letting

dqk

dqj
= −fj

fk
,

we need to show (where Φ denotes virtual valuation),

d

dqj
(Jm+1 + fm+1Um+1) =

d

dqj
(fm+1(qj + qk) + [qjfjΦj + qkfkΦk])

= fm+1

(
1 − fj

fk

)
+ fj

(
j − Fm+1 − Fj

fj

)
− fj

(
k − Fm+1 − Fk

fk

)
< 0.
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This can be simplified to obtain(
1 − fj

fk

)
(−Fm + Fj) < fj(k − j) +

fj

fk
(Fk − Fj).

Since k > j and Fm > Fj , this inequality is obviously satisfied if fj ≤ fk. If fj > fk, we can
note that a sufficient condition for the inequality is

fj − fk < fj(k − j) + fj,

which again obviously holds.
There remains the possibility that buyer m+1 might want to ration buyers at the bottom.

Rationing at the bottom decreases the buyer’s utility. Hence, this can improve on the Dutch
auction outcome for the buyer only if combined with a higher bunch, where the creation
of the bunch increases utility (at the cost of decreased revenue), with the rationing at the
bottom then increasing revenue enough (relative to the attendant utility decline) to restore
the value of fm+1Um+1 + Jm+1. We show this cannot occur.

In the course of creating a bunch involving types j and k > j, utility increases (in qj) at
rate

1 − fj

fk

(notice we must have fj < fk if the buyer is to have any hope of increasing payoff via such
an adjustment) while revenue decreases at rate

fjΦj + fkΦk

(
−fj

fk

)
=

(
1 − fj

fk

)
(−Fm+1) + Fj − fj

fk

Fk − fj(k − j).

In the course of rationing by decreasing q�, utility decreases at rate −1, while revenue in-
creases at rate

−f�Φ� = −f� + Fm+1 − F�

for some type � that is rationed. We need the net effect on revenue of comparable changes
in utility to be negative. Hence we need

(−f� + Fm+1 − F�)

(
1 − fj

fk

)
+

(
1 − fj

fk

)
(−Fm+1) + Fj − fj

fk

Fk − fj(k − j) < 0.

This is

−(f� + F�)

(
1 − fj

fk

)
+ Fj − fj

fk

Fk − fj(k − j) < 0.

The most difficult version of this inequality occurs when k = j + 1, giving

(Fj − f� − F�)

(
1 − fj

fj+1

)
< 2fj.
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Now noting that Fj − f� − F� < Fj, we can rewrite this as

Fj(fj+1 − fj) < 2fjfj+1.

As M gets small, this condition is implied by the requirement that 1/F is convex.

A.4.4 Characterization of the Fixed Point

We now construct a limiting argument, showing that H∞ → HD. Suppose that 1/F is
convex. By Claim 5, we might as well assume that 1/F is strictly convex (otherwise, consider
Fl = ((1−λl)F

−1+λlG
−1)−1, where λl → 0, λl > 0 and G−1 is a strictly convex distribution.).

Then define the sequence of discrete distributions Fj with

fm
j =

∫ (j+1)/m

j/m

f(s)ds,

where m ∈ N and j ∈ {0, . . . , m − 1}. Note that, because 1/F is strictly convex, for all
m large enough, Fj(fj+1 − fj) < 2fjfj+1 and the conclusions from the previous subsection
apply. Define now the (continuous) distribution F m as, for all t ∈ [0, 1],

F̃m(t) =

∫ t

0

m−1∑
j=0

fm
j 1s∈[j/m,(j+1)/m)ds.

Because t → j/m for all t ∈ [j/m, (j + 1)/m), it follows that, inductively for all k, Ũk
m(t) →

Uk
m(j) for all t ∈ [j/m, (j+1)/m), all j, where Ũm(t) is the utility of type t at the k-th step in

the continuous program, with distribution F̃m, and Uk
m(j) is the utility of type j in the discrete

approximation, as well as H̃k
m(t) → Hk

m(j), where Hk
m(j) is the (per-buyer, unconditional)

revenue in the discrete approximation, which itself satisfies limm Hk
m(j) → HD(t), where

t = lim j/m. Therefore, H̃k
m → HD, and because F̃m → F , it follows from Claim 5 that

H∞ = HD for the distribution F .

A.4.5 Proof of Proposition 3

We now turn our attention to the dynamic game. Note that, because Hk is non-decreasing,
incentive compatibility implies that

U(v|Hk) − U(v − 1/m|Hk) <
1

m
.

Given the sequence {Hk} introduced in the previous subsection (with H0 := limε→0 H0
ε ),

we define the price function p(·|Hk), or pk as p(v|Hk) = v − U(v|Hk) for all v. It follows
from the inequality above that p(·|Hk) is increasing in v.
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The key observation is the following. Suppose that the buyers’ valuations have support
[0, v], and that it is common knowledge that the buyer can secure the continuation payoff
(1 − ε)Hk from next period onward. (This means that he can secure (1 − ε)Hk(s) if the
support is [0, s], for all s.) If the seller posts the price p(v − 1/m|(1 − ε)Hk) in the current
period for some integer m, then we claim that all buyers of type s ≥ v − 1/m must accept.
All types cannot reject: if so, the best that buyer of type v can hope for in the continuation is
Uv(v|(1−ε)Hk), yet by accepting his payoff is v−p(v−1/m|(1−ε)Hk) > v−p(v|(1−ε)Hk) =
Uv(v|(1 − ε)Hk). By the same reasoning, the highest type that rejects must be no larger
than v − 1/m (though he may be strictly lower).

We claim that for each k ≥ 0, and each εk > 0, there exists T k such that it is common
knowledge that the seller can secure at least the continuation payoff (1− εk)Hk in the game
with T k periods to go or more. This is obviously true for k = 0 (and H0 = 0). Let us assume
it is true for some integer k, and we shall show that it holds for k + 1.

Fix εk > 0 and m ∈ N. Define Hm
εk as the revenue function (per buyer) computed as

follows. Given that buyers have valuation with support [0, v], the seller chooses the sequence
of prices

p((m − 1)v/m|(1 − εk)Hk), p((m − 2)v/m|(1 − εk)Hk), . . . , p(0|(1 − εk)Hk),

in descending order, and the buyer of type s accepts the price p(iv/m|(1 − εk)Hk) if s ∈
[iv/m, (i+1)v/m). Fix m. We argue that with T k +m periods to go, the seller can guarantee
Hm

εk . Fix v, and let {pi
v : i = 0, . . . , m − 1} denote the price sequence above (lower indices

for lower prices). We claim, by induction on j = 0, . . . , m−1 that with T k + j periods to go,
the seller does at least as well as if she were to use the sequence pj

v, . . . , p
0
v. This is obvious

for j = 0, because p0
v = 0. Assume that it is true for some j < m − 1. If the seller sets

the price pj+1
v in the initial period, by our earlier observation, all buyers, if any, with values

above (j + 1)v/m must accept (if types with value below (j + 1)v/m accept, all the better,
because prices are decreasing), and in the continuation, we have assumed that the seller does
at least as well as by continuing to use the price sequence {pi

v : i = 0, . . . , j}. [Of course,
the seller’s actual continuation strategy might be very different, because, in particular, she
must secure a continuation payoff of (1 − εk)Hk, but whatever the strategy it follows, the
strategy above provides a lower bound.]

Note now that, for all v, limm→∞ Hm
εk(v) = Hk+1(v|(1 − εk)Hk) uniformly in v. Yet as

we have remarked in the previous section, for every εk ∈ (0, 1), there exists εk+1 such that
Hk+1(·|(1 − εk)Hk) ≥ (1 − εk+1)Hk+1(·|Hk), with limεk→0 εk+1 = 0. Therefore, for every
εk+1 > 0, we can find T k+1 ∈ N such that the seller can guarantee (per buyer) revenue of at
least (1 − εk+1)Hk+1 in the game in which at least T k+1 periods remain.

We conclude that for every integer k, and every ε > 0, there exists T ∈ N such that
the seller can guarantee revenue of at least (1 − ε)Hk in the game with T periods or more.
Because Hk converges to the Dutch auction revenue HD, as established in the previous
subsection, and because ε > 0 is arbitrary, the proposition follows.
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A.5 Proof of Proposition 4

We fix Δ (and hence the number of periods TΔ) and use an induction argument on the
number of remaining periods to show that, with t periods to go and beliefs about buyers’
types that are uniform over a set [0, vt+1],

(i) the perfect Bayesian equilibrium in the continuation game is unique,

(ii) the seller’s payoff equals μtvt+1 for some μt that is independent of vt+1, and

(iii) the period-t price is such that buyers accept if and only if their valuation
exceeds that of an indifferent type vt given by some γtvt+1, where γt ∈ (0, 1) is
independent of vt+1.

To show this, we use the seller’s first-order conditions to determine a recursion (and initial
values) that characterize the sequences γt and μt. We show that these define a unique
sequence, with the property that γt < 1 for all t. We then show that these values achieve a
maximum of the seller’s objective function.

A.5.1 The Last Period

Consider the last period (t = 1) and let the seller’s posterior belief be that the buyers’
valuations are uniformly distributed on [0, v2]. Then buyer vi accepts the price p1 if and only
if p1 ≤ vi, and the seller chooses p1 = v1 to maximize(

1 −
(

v1

v2

)n)
v1 =

((
1 −

(
v1

v2

)n)
v1

v2

)
v2,

so indeed v1 = γ1v2 is linear in v2, where γ1 maximizes

(1 − γn
1 ) γ1, and hence γ1 = (n + 1)−1/n .

The value of the problem, π1 (v2), is then

π1 (v2) = μ1v2, where μ1 =
n

n + 1
γ1,

and so v1 is indeed linear in v2 as well. This solution is obviously unique.

A.5.2 The Induction Step

Now fix t and assume that for any τ < t periods to go, and for every uniform distribution of
buyer valuations on [0, vτ+1], the equilibrium is unique and characterized by values μτ and
γτ < 1 such that the seller sets a price accepted by all buyers with types above γτvτ+1, for
an expected continuation revenue of μτvτ+1. Consider the game with t periods to go, and
beliefs that are uniform over [0, vt+1].
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The buyer’s indifference condition. From (12), and letting γt := vt/vt+1, the buyer’s
indifference condition can be written as

1 − γn
t

1 − γt

(vt − pt) = γn−1
t

1 − γn
t−1

1 − γt−1

(vt − pt−1) . (33)

This equation identifies the critical buyer, given an arbitrary price pt. Higher-valuation buy-
ers will accept the price and lower-valuation buyers reject it. As in (13), this is a telescoping
sum, so that

1 − γn
t

1 − γt

(
1 − pt

vt

)
= γn−1

t

(
1 −

t−1∏
τ=1

γn
τ

)
. (34)

Using γt = vt

vt+1
and our subsequently introduced convention qt := vt+1

v1
, we obtain the

characterization of buyer behavior given by (19). Note that, given γ1, . . . , γt−1, equation
(34) pins down γt uniquely as a function of pt/vt+1. (Write pt/vt = (pt/vt+1)/γt, divide both
sides by γn−1

t and note that the left-hand side is monotonic in γt, while the right-hand side
is independent of it.) This implies that, with t + 1 periods to go, given the posted price by
the seller, there can be at most one critical type that is indifferent between accepting or not.
To conclude from this that the buyer’s optimal behavior is uniquely determined given the
posted price, and the equilibrium strategies in the continuation, we must also argue that,
for a given price, either there exists an interior, indifferent type, or all buyers’ types find it
optimal to reject, but not both. Suppose, for the sake of contradiction, that this were the
case. This means, in particular, that given the price pt, it is optimal for the highest buyer’s
type to reject it, if all buyers do so. In that case, rejecting yields as payoff

Ut−1 =
1 − γn

t−1

n(1 − γt−1)
(1 − pt−1),

where we normalize this highest type to 1, without loss of generality. (We use here an
argument by induction, so that it is optimal for the highest type to accept the price pt−1 in
the following period, and the ratio over successive types will be then given by the equilibrium
value of γt−1, which is independent of the actual value of the highest type.) By deviating and
accepting instead the current price, while all other buyers are waiting, the buyer’s highest
type gets

1 − pt.

We wish to show that this is inconsistent with another type being indifferent between ac-
cepting and rejecting. If there is such a type, (33) yields that

1 − γn
t

1 − γt

(γt − pt) = γn−1
t n(γtUt−1) = nγn

t Ut−1,
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where the factor γt reflects the fact that, with t − 1 periods, the payoff of the highest type,
if he is vt, is a fraction γt of what it would be if he were type vt+1 = 1. Because we wish to
show that 1 − pt ≥ Ut−1, we must argue that

nγn
t (1 − pt) ≥ 1 − γn

t

1 − γt
(γt − pt) = γn

t

(
1 −

t−1∏
τ=1

γn
τ

)
,

i.e., that

n(1 − pt) ≥ 1 −
t−1∏
τ=1

γn
τ .

From (34), we have that

1 − pt = (1 − γt)

(
1 +

γn
t

1 − γn
t

(
1 −

t−1∏
τ=1

γn
τ

))
,

and so, rearranging, we must show that

n(1 − γt) +

(
nγn

t (1 − γt)

1 − γn
t

− 1

)(
1 −

t−1∏
τ=1

γn
τ

)
≥ 0.

If the second term is positive, we are done, and if not, a sufficient condition is that

n(1 − γt) +

(
nγn

t (1 − γt)

1 − γn
t

− 1

)
= n

1 − γt

1 − γn
t

− 1 ≥ 0,

which is obviously true, as (1 − γn
t ) ≤ n(1 − γt).

The seller’s profit. As in (6), the seller’s profit πt in period t is given by

πt (vt+1) =

(
1 −

(
vt

vt+1

)n)
pt +

(
vt

vt+1

)n

πt−1 (vt) ,

given the posted price pt. Assuming that this price is such that there is an indifferent buyer’s
type, we can proceed as in (14), using (34) to eliminate the price and rewrite this as

πt (vt+1) = (1 − γn
t ) (pt − vt) + (1 − γn

t ) vt + γn
t πt−1 (vt)

= − (1 − γt)

t−1∑
τ=1

(1 − γn
τ )

(
t∏

l=τ+1

γn−1
l

)
vτ+1 + (1 − γn

t ) vt + γn
t πt−1 (vt) .
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Dividing by vt+1, and letting μt−1 := πt−1(vt)
vt

, we have

πt(vt+1)

vt+1
= − (1 − γt)

t−1∑
τ=1

(1 − γn
τ )

(
t∏

l=τ+1

γn−1
l

)
vτ+1

vt+1
+ (1 − γn

t )
vt

vt+1
+ γn

t μt−1
vt

vt+1

= − (1 − γt)

t−1∑
τ=1

(1 − γn
τ )

(
t∏

l=τ+1

γn
l

)
+ γt (1 − γn

t ) + γn+1
t μt−1

= (1 − γt)

t∏
τ=1

γn
τ + γt

(
1 − γn−1

t

)
+ γn+1

t μt−1, (35)

which is an expression that is independent of vt+1, and we may thus define μt := πt(vt+1)
vt+1

.

The seller’s maximization. Because the behavior of the buyers is uniquely pinned down
by the prices, we can maximize the seller’s payoff with respect to γt (and we shall see that,
indeed, the optimum is interior). The first and second derivatives of the seller’s objective
(35) are

(nγn−1
t − (n + 1)γn

t )
t−1∏
τ=1

γn
τ + 1 − nγn−1

t + (n + 1)γn
t μt−1, (36)

and

((n − 1)nγn−2
t − n(n + 1)γn−1

t )
t−1∏
τ=1

γn
τ − (n − 1)nγn−2

t + n(n + 1)γn−1
t μt−1,

respectively. Together with (34), this allows us to obtain the characterization of prices given
in (18). The second derivative can be rewritten as

n

γt

(
(nγn−1

t − (n + 1)γn
t )

t−1∏
τ=1

γn
τ − nγn−1

t + (n + 1)γn
t μt−1

)
− nγn−2

t

t−1∏
τ=1

γn
τ + nγn−2

t .

When the first derivative equals zero, the terms in parenthesis in this second derivative equal
negative one, giving a second derivative of

n(−γ−1
t − γn−2

t

t−1∏
τ=1

γn
τ + γn−2

t ),

which is negative if γt ∈ (0, 1]. Hence, whenever the first derivative has an interior solution,
the second (evaluated at that solution) is negative. This in turn ensures that if the first-order
condition induced by (36) has an interior solution, that solution is unique and is a global
maximizer.
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Uniqueness. We must now show that the first-order condition induced by (36) has a
unique, interior solution. Hence, we must show that (36) determines a sequence {γt} with
each γt ∈ (0, 1). Let qt = (

∏t
τ=1 γτ )

−1, so γt = qt−1/qt. We can then rewrite the first-order
condition (36) as

(n + 1)
(
q−n
t−1 − μt−1

)(qt−1

qt

)n

+ n
(
1 − q−n

t−1

)(qt−1

qt

)n−1

= 1, (37)

and the seller’s maximization problem given by (35) to get

μt =

(
1 − qt−1

qt

)
q−n
t +

qt−1

qt

(
1 −

(
qt−1

qt

)n−1
)

+ (
qt−1

qt

)n+1μt−1,

that is,
μtq

n+1
t − qt = qtqt−1

(
qn−1
t − qn−1

t−1

)
+ μt−1q

n+1
t−1 − qt−1. (38)

Now let ξt := μtq
n+1
t − qt. Notice that the first definition give (20). Then we can rewrite

(37) and (38) as
(n + 1) ξt−1 = n

(
qn
t−1 − 1

)
qt − qn

t qt−1, (39)

and
ξt = ξt−1 + qtqt−1

(
qn−1
t − qn−1

t−1

)
. (40)

We then combine (39) and (40) to get

n (qn
t − 1) qt+1 − qn

t+1qt = n
(
qn
t−1 − 1

)
qt − qn

t qt−1 + (n + 1) qtqt−1

(
qn−1
t − qn−1

t−1

)
,

or rearranging,

qn
t+1 − n

qn
t − 1

qt

qt+1 + n
(
qn−1
t qt−1 − 1

)− qn
t−1 = 0, (41)

which holds for t ≥ 1 provided we adopt the convention q0 = 1 and recall that q1 = (n + 1)1/n.
This gives us the difference equation given by (17).

Observe now that the sequence {γt} is in (0, 1) if and only if the sequence {qt} is strictly
increasing. The following lemma establishes that this is the case:

Lemma 3. Consider the polynomial P defined by

P (x) := xn − n
qn
t − 1

qt
x + n

(
qn−1
t qt−1 − 1

)− qn
t−1. (42)

For each qt−1 < qt with qt > 1, P admits a unique real root strictly larger than qt.
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Proof. Assume throughout that qt−1 < qt. The polynomial P has two real roots if n is even,
and three if n is odd. To see this, observe that for n even, it is a convex function that is
negative for x = qt, since

P (qt) = qn
t − n

qn
t − 1

qt
qt + n

(
qn−1
t qt−1 − 1

)− qn
t−1 ≤ 0

⇔ qn
t − qn

t−1 ≤ nqn−1
t (qt − qt−1) ,

which is the case since the function x �→ xn is convex for n ≥ 2. Observe that this also
establishes that P admits a real root larger than qt. If n is odd, then P is concave on R−
and convex on R+. Further, P (0) = n

(
qn−1
t qt−1 − 1

)− qn
t−1 ≥ 0, and (as noted) P (qt) ≤ 0.

So, in all cases, P uniquely admits a real root x that is strictly larger than qt.

This ensures that each γt is contained in the interval (0, 10, which in turn ensures there
is a unique equilibrium.

A.6 Proof of Proposition 5

A.6.1 Characterizing vt

We investigate the sequence of critical valuations {vt}, leading to the demonstration of
Proposition 5.1 and 5.2. The heart of the argument is contained in the following three
lemmas. Let x(qt, qt−1) denote the unique root larger than qt solving (42).

Lemma 4.
(4.1) The root x(qt, qt−1) is contained in (qt, qt + (qt − qt−1)).
(4.2) For qt−1 < qt, x(qt, qt−1) is strictly decreasing in qt−1, and holding qt/qt−1 fixed, the

ratio x(qt, qt−1)/qt is an increasing function of qt.

Recall that qt = vt+1

v1
. Hence, Lemma 4.1 indicates that as the seller moves up the interval

of possible buyer valuations (i.e., moves earlier in the sequence of periods (TΔ, TΔ−1, . . . , 1)),
she slices off smaller and smaller intervals of buyer valuations to which to sell: vt − vt−1 is
decreasing in t. Intuitively, the seller discriminates more finely among higher-valuation
buyers. Lemma 4.2 assembles some technical results to be used in proving Lemma 5.

Proof. For (4.1), let qt−1 = q(1 − α), for some α ∈ (0, 1) and q ≥ 1, qt = q and consider
P (q(1 + α)). Now,

P (q(1 + α)) = (1 + α)nqn − (1 − α)nqn + nα(1 − 2qn) > 0,

because
(1 + α)n − (1 − α)n > 2nα,
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as the left-hand side is convex in α with derivative equal to 2n at α = 0. Therefore, it must
be that q(1 + α) > x and so x − qt ≤ qt − qt−1.

The first part of (4.2) is immediate, since dP/dqt−1 > 0. As for the second part, observe
that we can rewrite (41) as

rn
t − r−n

t−1 − n(rt − r−1
t−1) −

n

qn
t

(1 − rt) = 0,

where rt := qt+1/qt for all t. Fixing rt−1, it follows that rt is increasing in qt, since the
left-hand side is increasing in rt (note that rt > 1) and decreasing in qt.

Lemma 5. Consider a sequence ut with q0 = u0, q1 ≥ u1, and for every t ≥ 2, ut+1 ≤
x(ut, ut−1). Then qt ≥ ut for all t.

Proof. The proof is by induction on t. Observe that, for t = 1, by construction both q1 ≥ u1

and q1/q0 ≥ u1/u0. Assume now that, for some t ≥ 1, both qτ ≥ uτ and qτ/qτ−1 ≥ uτ/uτ−1

for all τ ≤ t. It follows that

qt+1

qt
=

x(qt, qt−1)

qt
≥ x(ut,

ut

qt
qt−1)

ut
≥ x(ut, ut−1)

ut
≥ ut+1

ut
.

The first inequality follows from the second part of Lemma 4.2, given that ut ≤ qt. The
second inequality follows from the facts that ut

qt
qt−1 ≤ ut−1 (by the induction hypothesis)

and x(qt, qt−1) is decreasing in its second argument (the first part of Lemma 4.2). The final
inequality follows the fact that x(ut, ut−1) is an upper bound on ut+1. Since q0 = u0, the
conclusion that qt+1 ≥ ut+1 follows from this inequality and the induction hypothesis.

Lemma 6. Consider the sequence {ut}∞t=0 defined by ut = (1 +n(t− 1)t/2)1/n, for all t ≥ 0.
The sequence ut diverges and, for all t ≥ 1 and all n ≥ 6, ut ≤ qt.

Proof. Divergence is immediate from the definition of ut. We can calculate that u0 = 1 = q0

and u1 = 1 < (n + 1)
1
n = q1. The result then follows from Lemma 5 and the fact that, for

every t ≥ 2, ut+1 ≤ x(ut, ut−1). This last inequality is established via a tedious calculation.
Details are presented in Section B.1.

Establishing statements (5.1) and (5.2) of Proposition 5 is now straightforward. Recall
that, in an optimal auction with zero reserve price, the expected revenue is given by

πD(n) =
n − 1

n + 1
.

This value is therefore an upper bound on the expected revenue that the seller can hope
for in the dynamic game as Δ → 0, if limΔ→0 vΔ1 = 0, or equivalently limt→∞ qt = ∞.
For n ≥ 6, it follows from Lemma 5 that limt→∞ qt = ∞ and hence limΔ→0 vΔ1 = 0. The
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best the seller can hope for, as Δ → 0, is therefore πD(n). Because qt − qt−1 is decreasing
in t (Lemma 4.1), it is bounded, and therefore limΔ→0 maxt≤TΔ

vΔt − vΔ,t−1 = 0, and so
also limΔ→0 maxt≤TΔ

pΔt − pΔ,t−1 = 0, where pΔt is the price charged with t periods to go
in the game with period Δ and hence TΔ stages. It then follows from Proposition 1 in
Chwe [15] that the expected revenue converges to πD(n). This gives the second conclusion
of Proposition 5.

What if n < 6? We can explicitly compute the first terms of μt for n ∈ {2, . . . , 5}, and
observe that μt > πD(n) for t = 1 if n = 2, 3, t = 4 if n = 4, and t = 36 if n = 5. Since one
feasible strategy for the seller is to set pτ = 1 until period t = 1 (if n = 2, 3), t = 4 (if n = 4)
or t = 36 (if n = 5) and then obtain value μt, the seller’s optimal strategy must give a payoff
exceeding πD(n), and hence limΔ→0 μTΔ

> πD(n). The preceding argument establishes that
a necessary condition for such a limiting payoff is that limΔ→0 vΔ1 > 0. This establishes the
first part of Proposition 5.

A.6.2 Declining Terminal Prices

We prove here that limΔ→0 vΔ1 is decreasing in n, giving Proposition 5.3. In particular,
limΔ→0 vΔ1 is then lower than the last price quoted in an optimal auction with commit-
ment, as the reserve price (which is the limit of the lowest price in the dynamic game with
commitment) equals 1/2, which is limΔ→0 vΔ1 when n = 1.

The result is proved in several steps. First, recall that v1 = γ1v2, where γ1 = (n + 1)−n.
Now consider the following auction, parameterized by v. First, the auctioneer continuously
lowers the price until the indifferent type is v. At this stage, if the unit is still not accepted,
she offers the price w = γ1v, i.e. the monopoly price on the residual demand. If it is also
rejected, the auction is over. We may compute the revenue from such an auction by first
computing the probability q(x) that a buyer of type x wins the object. This equals 0 if
x < w, (vn − wn)/(n(v − w)) if x ∈ [w, v), and xn−1 for x ≥ v. The price that type x
accepts is as usual p(x) = q(x) − ∫ x

0
q(t)dt/q(x), and expected revenue Rn(w), which equals∫ 1

0
p(x)dF n(x), is then

Rn(w) =
n − 1

n + 1
− (n((n + 1)1/n − 1)w − 1)wn,

which is a function of w that is increasing up to ((n+1)1+1/n−n−1)−1, and then decreasing.
Consider n = 2, . . . , 5. We first claim that, given w = limΔ→0 vΔ1, the revenue Rn(w)

exceeds the limiting revenue from the equilibrium of the dynamic game (as Δ → 0). Indeed,
consider the two allocations corresponding to each mechanism, the auction described above,
and the allocation from the limit. In both cases, buyers’ types below w do not get the unit;
types in [w, v) get it only if there is no type above v, with the same probability in both cases
(v = limΔ→0 vΔ2, since the price in the last period is the monopoly price on the residual
demand). So the difference originates from types above v. However, for such types, the
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auction described above achieves an efficient allocation, while this is not necessarily true in
the other case. Since with a uniform distribution, the virtual valuation is strictly increasing
in types, it follows that Rn(w) exceeds the revenue from the limit of the dynamic game, and
hence from the dynamic game, independently of the length of the horizon (since the seller’s
payoff increases with T ).

By considering the first terms of the sequences μt (recall that it is a non-decreasing
sequence) we obtain that limΔ→0 μTΔ

> 4/10 for n = 2, limΔ→0 μTΔ
> .515 for n = 3, and

limΔ→0 μTΔ
> .6019 for n = 4. Yet Rn(w) exceeds those values only if w > 4/10 (for n = 2),

w > .32 (for n = 3) and w > .24 (for n = 4). Since the sequence 1/qt is decreasing, with
limt→∞ 1/qt = limΔ→0 vΔ1, it is now easy to verify that, after computing the first few terms,
limt→0 1/qt is less than .4 for n = 3, less than .32 for n = 4 and less than .2 for n = 5. It
follows that limΔ→0 vΔ1 is decreasing in n for n = 3, 4, 5. Since this limit is 0 for n ≥ 6, the
same holds for all n > 2, and clearly the conclusion also holds for n = 1 and n = 2 (in the
former case, the only price accepted with positive probability is 1/2, while in the latter case,
by computing the first few terms, it is verified that limΔ→0 vΔ1 < 1/2.)
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B Appendix: Not for Publication

B.1 Details, Proof of Lemma 6

Our purpose is to prove that, for all t ≥ 2 and n ≥ 6,

(1 + nt(t + 1)/2)
1
n ≤ x((1 + n(t − 1)t/2)

1
n , (1 + n(t − 2)(t − 1)/2)

1
n ).

or, equivalently, for all t ≥ 1 and n ≥ 6,

(1 + n(t + 1)(t + 2)/2)
1
n ≤ x((1 + nt(t + 1)/2)

1
n , (1 + n(t − 1)(t − 2)/2)

1
n ).

(At this point, letting x = 1/t and y = 1/n, one can rewrite this inequality as a function
on the unit square and then gain some confidence in its veracity by using a program such
as Mathematica to plot it.) Upon manipulation, this is equivalent to showing that, for all
t ≥ 1, n ≥ 6,

4t (2 + nt (t + 1))1/n+(2 + nt (t + 1)) (2 + n (t − 1) t)1/n−nt (t + 1) (2 + n (t + 1) (t + 2))1/n ≤ 0,

or (
1 +

n (t + 1)

1 + nt(t+1)
2

)1/n

−
(

2

nt (t + 1)
+ 1

)(
1 − nt

1 + nt(t+1)
2

)1/n

− 4

n (t + 1)
≥ 0. (43)

This will be done in two steps.

B.1.1 The Case t = 1

In that case, we must show that

gL (n) := n
(
(1 + 3n)1/n − 1

)
≥ 2 (1 + n)1/n + 1 =: gR (n) .

Observe that, for x > 0,

d

dx

(
x ln

(
1 + x−1

))
= ln

(
1 +

1

x

)
− 1

1 + x
≥ 0,

where the last step follows from the standard inequality ln x ≥ (1 + x)−1 applied to 1/x. It
follows that gR is decreasing in n.

Consider now the function gL. Its second derivative with respect to n is

(1 + 3n)
1
n
−2

n3
λ (n) ,
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where
λ (n) = (1 + 3n) ln (1 + 3n) ((1 + 3n) ln (1 + 3n) − 6n) − 9 (n − 1)n2.

We claim that λ is negative ∀n ≥ 1. To see this, observe first that

d3λ

dn3
=

−54

(3n + 1)2

(
1 + 3n + 9n2 − 2 (1 + 3n) ln (1 + 3n)

)
< 0,

because
1 + 3n + 9n2 ≥ 2 (1 + 3n) ln (1 + 3n) ,

which is because, from the standard inequality ln
(
1 + 1

x

) ≤ 1√
x2+x

, it follows that ln (1 + 3n) ≤
3n/

√
1 + 3n. Taking squares in the resulting inequality and collecting terms yield the desired

result.
Therefore,

d2λ

dn2
= 18

(
1

1 + 3n
+ ln (1 + 3n) + ln2 (1 + 3n) − (1 + 3n)

)

is decreasing, and it is negative for n = 1, so it is negative for all n ≥ 1.
In turn, this implies that

dλ

dn
= 3

(
2 (1 + 3n) ln2 (1 + 3n) − 9n2 − 6n ln (1 + 3n)

)
is decreasing, and it is negative for n = 1, so it is negative for all n ≥ 1. Repeating once
more the argument, this establishes that λ is decreasing, and again it is negative for n = 1,
and therefore for all n ≥ 1.

We have now established that d2gL/dn2 ≤ 0 for all n ≥ 1. Thus, dgL/dn is decreasing in
n. However, limn→∞ dgL/dn = 0, and so dgL/dn ≥ 0. This proves that gL is an increasing
function.

This part of the proof is concluded by observing that gL (6) > gR (6). Since gL is
increasing, while gR is decreasing, the inequality follows for all n ≥ 6.

B.1.2 The General Case, t > 1

B.1.2a A Sufficient Inequality. Recall that, from Taylor’s theorem,

(1 + x)1/n ≥ 1 +
x

n
− n − 1

2n2
x2 +

(n − 1) (2n − 1)

6n3
x3 − (n − 1) (2n − 1) (3n − 1)

24n4
x4

+
(n − 1) (2n − 1) (3n − 1) (4n − 1)

120n5
x5 − (n − 1) (2n − 1) (3n − 1) (4n − 1) (5n − 1)

720n6
x6,
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and similarly,

(1 − x)1/n ≤ 1 − x

n
− n − 1

2n2
x2 − (n − 1) (2n − 1)

6n3
x3 − (n − 1) (2n − 1) (3n − 1)

24n4
x4

−(n − 1) (2n − 1) (3n − 1) (4n − 1)

120n5
x5 − (n − 1) (2n − 1) (3n − 1) (4n − 1) (5n − 1)

720n6
x6.

We now apply these two bounds to the left side of (43), inserting x = n(t+1)

1+
nt(t+1)

2

and x =

nt/
(
1 + nt(t+1)

2

)
respectively. We obtain a rational function whose denominator is positive

(being a square) and whose numerator is twice the following polynomial in n of degree 6:

a6n
6 + a5n

5 + a4n
4 + a3n

3 + a2n
2 + a1n + a0,

with

a0 = −4t6 + 24t5 − 120t4 + 480t3 − 1440t2 − 2880t− 2880,

a1 = 48t7 + 78t6 + 1330t5 + 670t4 − 7818t3 − 9454t2 − 6166t,

a2 = 12t9 + 24t8 + 852t7 + 890t6 − 9240t5 − 23184t4 − 21588t3 − 13104t2 − 1950t,

a3 = 360t9 + 990t8 − 3030t7 − 12645t6 − 15635t5 − 4805t4 + 3285t3 + 5990t2 + 1730t,

a4 = 60t11 + 240t10 − 930t9 − 5370t8 − 11580t7 − 15376t6

−16824t5 − 19620t4 − 14730t3 − 6960t2 − 1410t,

a5 = −180t11 − 945t10 − 2115t9 − 2610t8 − 168t7 + 5322t6

+11830t5 + 16105t4 + 12093t3 + 4904t2 + 836t,

a6 = 3t (1 + t) (1 + 2t) (−80 + t (1 + t) (−272 + t (1 + t) (−126 + t (1 + t) (8 + 5t (1 + t))))) .

We must show that this polynomial is positive.

B.1.2b Preliminary Observations. Observe first that a6 is positive for t ≥ 2. Indeed,
the last factor is a polynomial of degree 4 in x = t (1 + t), namely

−80 − 272x − 126x2 + 8x3 + 5x4.

Since the coefficients change signs only once, Descartes’ rule implies that there is at most one
strictly positive root. Since this polynomial is negative when evaluated at x = 0, and positive
when evaluated at x = 6 (i.e. t = 2), the root must be in (0, 2), and so the polynomial is
positive for all t ≥ 2.

Observe that, by Descartes’ rule, a1 can have at most one strictly positive root. The
coefficient a1 is negative for t = 2 and positive for t = 3, so that the unique root is in (2, 3),
and so a1 is negative for t ≥ 2. Similarly, a2 can have at most one strictly positive root.
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The coefficient a2 is negative for t = 3 and positive for t = 4, so the unique root is in (3, 4),
and so a2 > 0 for t ≥ 4. Similarly, a3 can have at most two strictly positive roots. Further,
the signs of a3 at t = 1/2, t = 1 and t = 4 alternate, so that here again, there is no root
for t ≥ 4, and so a3 > 0 for t ≥ 4. By the same method, a4 can have at most one strictly
positive root, and a4 is negative for t = 4 and positive for t = 5, so a4 > 0 for t ≥ 5. Finally,
a5 can have at most one strictly positive root, and it is positive at t = 1 and negative at
t = 2, so it is strictly negative for t ≥ 2.

We need two further facts. First, −a5 > −a0 for t ≥ 2. To see this, let us compute the
difference

a5 − a0 = −180t11 − 945t10 − 2115t9 − 1610t8 − 168t7 + 5326t6 + 11806t5

+16225t4 + 11613t3 + 6344t2 + 3716t + 2880,

so, again by Descartes rule, there can be at most one positive root of the difference, and the
difference is positive for t = 1 and negative for t = 2, and so this difference is negative for
t ≥ 2.

Second, we claim that −a5/a6 is increasing for t ≥ 4. To see this, observe that the deriva-
tive of the ratio a5/a6 is equal to the ratio of the following numerator, over a denominator
which is positive since it is a square,

−150t17 − 2820t16 − 19500t15 − 363160t14 + 129880t13 + 933852t12 + 2769050t11

+53161174t10 + 6507696t9 + 5494474t8 + 3239750t7 + 2186194t6 + 2877454t6

+3504246t5 + 2839892t4 + 1532112t3 + 550712t2 + 120816t + 11904,

so it has at most one strictly positive root, and it is positive for t = 3 and negative for t = 4.
So the ratio −a5/a6 is increasing for t ≥ 4 and so always less than its limit, which equals

lim
t→∞

−a5

a6

= 6.

B.1.2c The Result For n > 6. We are now ready to get our result, at least in the case
n > 6 for now. We use the Lagrange-McLaurin theorem.25 Given some polynomial of degree
n, with real coefficients {ai}, let m = sup {i|ai < 0}, and B = sup {−ai|ai < 0}. Then any
real root r of the polynomial satisfies

r < 1 +

(
B

an

) 1
n−m

.

25Riccardo Benedetti and Jean-Jacques Risler, Real algebraic and semi-algebraic sets (Hermann, Paris,
1990), Theorem 1.2.2.).
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Given our previous analysis, it follows that, applying the theorem to the polynomial in
n for t ≥ 5, any real root is less than

1 − a5

a6
< 7.

This establishes the inequality (*) for the case n > 6 and t ≥ 5. For n > 6 but for each
t = 2, 3, 4, we can compute

1 − max

{
−a0

a6
,−a1

a6
,−a2

a6
,−a3

a6
,−a4

a6
,−a5

a6

}
,

which of course is independent of n. It is still less than 7 for both t = 3, 4. In both cases,
the maximum is achieved by −a5/a6. In the case t = 2, the maximum is achieved by −a4/a6,
and in that case the bound on the root is only n < 30. However, we can directly verify that
for t = 2 and each value n = 7, . . . , 30, the polynomial is positive.

B.1.2d The result for n = 6. We are left with proving the result for the case n = 6.
Plugging into the polynomial in n, we obtain the following polynomial in t,

155520t11 + 1321920t10 + 4324320t9 + 8065440t8 − 40593600t7 − 168237440t6

−321927240t5 − 358960440t4 − 234969960t3 − 83572680t2 − 12520920t− 5760.

Once more, by Descartes’ rule, there can be at most one strictly positive root, and since this
polynomial is negative for t = 2, and positive for t = 3, we are done —except for the case
n = 6 and t = 2. Evaluating the original inequality for that one case concludes the proof.

B.2 Proof of Propositions 6 and 7

The proofs of Propositions 7 and 6 have much in common. The commitment argument is
simpler, and it is accordingly easiest to first establish Proposition 7, and then extend the
argument to the noncommitment case of Proposition 6.

B.2.1 Proof of Proposition 7

B.2.1a The Seller’s Payoff with Commitment We first express the seller’s payoff in
terms of the indifferent buyers’ valuations. Fix a period length Δ and hence number of
periods TΔ, and then suppress Δ in the notation. The seller’s payoff with commitment can
be written as

Π = (1 − vn
T ) pT +

(
vn

T − vn
T−1

)
pT−1 + · · · + (vn

2 − vn
1 ) p1, (44)
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where

vn
t+1 − vn

t

vt+1 − vt
(vt − pt) =

vn
t − vn

t−1

vt − vt−1
(vt − pt−1) = vn

t − vn
t−1 +

vn
t − vn

t−1

vt − vt−1
(vt−1 − pt−1)

= vn
t − vn

t−2 +
vn

t−1 − vn
t−2

vt−1 − vt−2

(vt−2 − pt−2) = · · · = vn
t − vn

1 ,

so that (
vn

t+1 − vn
t

)
pt =

(
vn

t+1 − vn
t

)
vt − (vt+1 − vt) (vn

t − vn
1 ) . (45)

Substituting (45) into (44), we have

Π = (1 − vn
T ) vT +

(
vn

T − vn
T−1

)
vT−1 + · · ·+ (vn

2 − vn
1 ) v1

− (1 − vT ) (vn
T − vn

1 ) − (vT−1 − vT )
(
vn

T−1 − vn
1

)− · · · − (v3 − v2) (vn
2 − vn

1 )

= vT − (1 − vT−1) vn
T − (vT − vT−2) vn

T−1 − · · · − (v3 − v1) vn
2 + (1 − v2 − v1) vn

1 .

We can think of the seller as choosing the identities of the indifferent buyers in order to
maximize this payoff. Taking derivatives with respect to these valuations (and setting vT+1 =
1), we obtain the first-order conditions

nvn−1
t =

vn
t+1 − vn

t−1

vt+1 − vt−1
(t = 2, . . . , T ) , (46)

nvn−1
1 (1 − v2 − v1) = vn

2 − vn
1 . (47)

The first formula can be re-written as

σn
t − nσt = σ−n

t−1 − nσ−1
t−1,

where σt := vt+1/vt.

B.2.1b Two Preliminary Inequalities This section collects two useful technical results.

Lemma 7. Let h (x) := xn − nx. Then, for n ≥ 2,

h (2 − x) ≥ h (x) (x ∈ [0, 1]) , and lim
x↑1

h−1 ◦ h (x) − 1

x − 1
= −1, (48)

where h−1 is the inverse of h : [0,∞) → R.

Proof. Because the function y �→ yn is convex,

(1 + y)n − (1 − y)n ≥ 2ny,
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for y ∈ [0, 1], so that, for x = 1 − y,

(2 − x)n − n (2 − x) ≥ xn − nx,

i.e. h (2 − x) ≥ h (x). Now, observe that the limit is simply the derivative of h−1 ◦ h (x) at
1. Because h′ (1) = 0,

h (1 − ε) − h (1) =
h′′ (1)

2
ε2 + o

(
ε3
)
, h (1 + δ) − h (1) =

h′′ (1)

2
δ2 + o

(
δ3
)
,

and so, if h (1 − ε) = h (1 + δ) → h (1), it follows that ε/δ → 1, so that (h−1 ◦ h)
′
(1) = 1.

Lemma 8. For all n ≥ 2, there exists K > 0 such that, for all t ≥ 1,

h

((
1 +

1

t + K

)− 3
n+1

)
≥ h

((
1 +

1

t + 1 + K

) 3
n+1

)
. (49)

Proof. For n = 2, it is easy to verify that the two sides are equal, independently of the value
of K. Consider n > 2. Taking a Taylor expansion, we have that

h
(
(1 + y)−

3
n+1

)
− h

((
1 +

y

1 + y

) 3
n+1

)
=

3n (n − 1) (n − 2) (2n − 1)

5
y5 + o

(
y6
)
,

so that there exists ȳ such that, for all y ∈ [0, ȳ],

h
(
(1 + y)−

3
n+1

)
≥ h

((
1 +

y

1 + y

) 3
n+1

)
.

Letting K := ȳ−1 − 1, the result follows.

B.2.1c Properties of the Commitment Solution We now use these inequalities to
characterize the sequence {vt}∞t=1 of critical buyer types.26 Fix v1 ∈ (0, 1) and σ1 > 1 and
consider the sequence {vt}∞t=1 defined by v1, σ1 and

σn
t − nσt = σ−n

t−1 − nσ−1
t−1, i.e. h (σt) = h

(
σ−1

t−1

)
,

for h (x) = xn − nx. Observe that, since h is decreasing on [0, 1], and increasing on [1,∞),
σt ≥ 1 for all t. Further, because h (x) ≥ h (x−1) for all x ≥ 1, it is strictly decreasing in t,
with limit given by 1.

26For a fixed Δ, only the first TΔ terms in the infinite sequence we study will be relevant, but the entire
infinite sequence will come into play as Δ → 0.
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Lemma 9. 1. For all n, the sequence {vt} is concave, with

lim
t→∞

vt+1 − vt

vt − vt−1

= 1.

2. For all n, there exists K > 0 such that

σt ≥
(

1 +
1

t + K

) 3
n+1

.

3. For all n, and m ∈ N,

limt→∞
vmt

vt
≥ m

3
n+1 .

We use Lemma 9.2 in the proof of Lemma 9.3, and use Lemmas 9.1 and Lemma 9.3 in
Section A.4.3.

Proof. First, observe that

vt+1 − vt ≤ vt − vt−1 ⇔ σt ≤ 2 − σ−1
t−1,

for σt = vt+1/vt. Now
h (σt) = h

(
σ−1

t−1

) ≤ h
(
2 − σ−1

t−1

)
,

where the last inequality follows from (48), given that σ−1
t−1 ≤ 1. Since h is increasing for

x ≥ 1, and both σt ≥ 1 and 2 − σ−1
t−1 ≥ 1, it follows that indeed σt ≤ 2 − σ−1

t−1, so that the
sequence vt is concave. Further, since

vt+1 − vt

vt − vt−1
=

σt − 1

1 − σ−1
t−1

=
h−1 ◦ h

(
σ−1

t−1

)− 1

1 − σ−1
t−1

,

and limt σt = 1, it follows from limx↑1 (h−1 ◦ h (x) − 1) / (1 − x) = 1 that

lim
t

(vt+1 − vt) / (vt − vt−1) = 1.

Given σ1, fix K such that both σ1 ≥
(
1 + 1

1+K

) 3
n+1 and (49) is satisfied. Let

νt :=

(
1 +

1

t + K

) 3
n+1

.

By induction, we show that σt ≥ νt. By definition of K, σ1 ≥ ν1. Suppose now that
σt−1 ≥ νt−1. Since h is decreasing on [0, 1], and given (49),

h (σt) = h
(
σ−1

t−1

) ≥ h
(
ν−1

t−1

) ≥ h (νt) ,

55



and since h is increasing on [1,∞) ,
σt ≥ νt.

Observe that
vmt

vt
= Πmt−1

τ=t στ ≥ Πmt−1
τ=t vτ =

(
mt + K

t + K

) 3
n+1

,

so that
limt

vmt

vt
≥ m

3
n+1 .

Lemma 9 tells us about the sequence {vt}∞t=1 given a value v1. We must next identify
the appropriate value v1. One strategy available to the seller is to set a price with t periods
to go equal to 1+t/T

2
, causing v1 to converge to 1

2
as Δ gets small (and hence TΔ large). It

follows from standard results (Athey [2]) that her revenue then converges to the revenue of
the optimal auction. Conversely, her revenue converges to the revenue of the optimal auction
only if p1 = v1 converges to 1/2 as Δ gets small, allowing us to take v1 = 1

2
. It follows from

the first-order conditions (46)–(47) that v2 then converges to v1, so that asymptotically the
entire sequence {vt}∞t=1 is contained in [0, 1].

B.2.1d The Limit Δ → 0 We now consider the limit Δ → 0. Consider the sequence of
functions vΔ (x) on [0, 1] defined as follows. For any period length Δ, define the step function

vΔ (x) = vΔt for all x ∈
[
t − 1

TΔ

,
t

TΔ

)
, vΔ (1) = 1.

Pick a subsequence of functions {vΔ (x)} that converges on the rationals, to some limit
function. Because each sequence is non-decreasing, so must be the limit, and let x �→ v (x)
denote the right-continuous extension of this limit. Since the sequence {vt} is concave
(Lemma 9.1), the function v must be concave, and it is therefore continuous on (0, 1), and
admits left- and right-derivatives everywhere on (0, 1).

Because the sequence σt defined by a value of σ1 and the recursion h (σt) = h
(
σ−1

t−1

)
is increasing in σ1, and given that vTΔ

= 1, it follows that the value of σ1 solving the
commitment problem for fixed v1 is decreasing in v1. Since limΔ→0 v1 = 1/2, σ1 is bounded
above in Δ, so that, since for a fixed σ1,

lim
t→∞

vt+1 − vt

vt − vt−1
= 1,

it follows also that, for all values k > 0 such that kT ∈ N,

lim
T→∞

vkT+1 − vkT

vkT − vkT−1
= 1.
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It follows that the left- and right derivatives of v agree everywhere, so that v is differentiable
on (0, 1). Therefore, considering the equation

nv (x)n−1 (v (x + δ) − v (x − δ)) = (v (x + δ)n − v (x − δ)n) ,

we might use a Taylor expansion to the third degree as δ → 0, to obtain

n (n − 1) v (x)n−3 v′ (x)

[
v (x) v′′ (x) +

(n − 2)

3
v′ (x)2

]
δ3 + o

(
δ4
)
.

Because limt→∞
vmt

vt
≥ m

3
n+1 for all m (Lemma 9.3), v′ (x) > 0. Hence it must be that

v (x) v′′ (x) +
(n − 2)

3
v′ (x)2 = 0.

This differential equation has as general solution

v (x) = K1 (x + K2)
3

n+1 ,

for constants K1, K2, and our boundary conditions v (1) = 1/2, v (1) = 1 allow us to identify
these constants, giving (24):

v (x) =
1

2

((
2

n+1
3 − 1

)
x + 1

) 3
n+1

.

Since

vn
t+1 − vn

t

vt+1 − vt
(vt − pt) = vn

t − vn
1 ,

and limε→0
v(x+ε)n−v(x)n

v(x+ε)−v(x)
= nv(x)n−1, it follows that nv(x)n−1(v(x) − p(x)) = v(x)n − v(0)n,

and the expression (25) for p(x) follows.

B.2.2 Proof of Proposition 6

Our characterization of the non-commitment solution builds on our proof of Proposition 7.
We first derive an asymptotic estimate of the sequence qt/qt+1 (from (17). The polynomial
(41) that defines qt can be rewritten as

qn
t+1 − qn

t−1 =
n

qt
(qn

t (qt+1 − qt−1) − (qt+1 − qt)).

Since the sequence qt diverges, we may ignore the second term from the right-hand side, and
so, defining st = qt/qt+1 (i.e., in terms of the notation of Section A.3.2, st = r−1

t ), we have,
for large t,

s−n
t − sn

t−1 − n(s−1
t − st−1) ≈ 0.
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As we also know that st → 1, we let st = 1−εt, and, so using Taylor expansions to the third
order,

3ε2
t + (n + 4)ε3

t − 3ε2
t−1 + (n − 2)ε3

t−1 ≈ 0.

Since εt → 0, this implies that λt := εt/εt−1 → 1. Rewriting this equation, we have

3(εt − εt−1)(1 + λt)εt−1 + ((n + 4)λ2
t + (n − 2)λ−1

t )εtε
2
t−1 = 0,

so, approximately,

εt − εt−1 +
n + 1

3
εt−1εt = 0.

If we let μt = (n + 1)εt/3, this gives

μt−1 − μt = μtμt−1,

or
1/μt − 1/μt−1 = 1,

so we obtain that μt = (t + C)−1, for a constant C (possibly infinite). That is, for large t,
either εt = 0 or εt = 3

n+1
t−1. However, recall that we already know (cf. Lemma 5) that

qt

qt+1

≤ ut

ut+1

=

(
1 − nt

1 + nt(t+1)
2

)1/n

< 1 − n

t
,

and so the possibility that εt = 0 could be ruled out. We conclude that st = 1 − 3
(n+1)t

asymptotically.27

It also follows that

lim
t

qt+1 − qt

qt − qt−1

= lim
t

s−1
t − 1

1 − st−1

= lim
t

t − 1
= 1.

Therefore, if we define, as in the case with commitment, the sequence of functions vΔ (x) on
[0, 1] as the step function

vΔ (x) = vt for all x ∈
[
t − 1

TΔ

,
t

TΔ

)
, vΔ(1) (1) = 1,

27Observe that we made approximations sequentially in the process of deriving this solution. If we plug
in our solution into the recursion involving st and st−1, we find that the second approximation is of the
order o(t−3), and the term that was ignored in the initial polynomial is of the same order, so the order
of approximations is irrelevant. Also, observe that, since the term that is being ignored is of order o(t−3),
yet the slope of the function st �→ s−n

t − sn
t−1 − n(s−1

t − st−1) at 1 is equal to o(t−1), the impact of the
approximation is of the order o(t−2), so that even the cumulative impact of the approximations is negligible,
justifying the approximation.
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and, following what has been done with commitment, we pick a subsequence of functions{
vT (x)

}
that converges on the rationals, to some limit function (which, because each se-

quence is non-decreasing, is non-decreasing as well, as well as concave since the sequence qt

is), and we let x �→ v (x) denote the right-continuous extension of this limit, it follows that
the left- and right-derivatives coincide everywhere on (0, 1). Now,

v′(x) = lim
Δ→0

vt+1 − vt

Δ
= lim

Δ→0
T

qt − qt−1

qT

= lim
Δ→0

T

t

qt

qT

t
qt − qt−1

qt

=
3

n + 1

v(x)

x
,

with boundary condition v(1) = 1. This gives v(x) = x
3

n+1 , or (22). Since

vn
t+1 − vn

t

vt+1 − vt
(vt − pt) = vn

t − vn
0 ,

the solution (23) for p(x) follows.

B.3 Multiple Units

This section derives the price function (26) and payoff function (26). We provide the pre-
liminary analysis for any number of units, and then specialize to the case of two units.

B.3.1 The buyer’s indifference condition

As in the single-object argument, we begin by identifying indifferent buyers. Suppose that
there are k units left. Define

φt = k

n−1∑
j=0

(
n−1

j

)
j + 1

γn−1−j
t (1 − γt)

j +

k−2∑
j=0

(
n − 1

j

)(
1 − k

j + 1

)
γn−1−j

t (1 − γt)
j ,

where, as usual, γt = vt/vt+1. By accepting now, the buyer with valuation vt gets

φt (vt − pt) .

By waiting one period instead, he gets

γn−1
t φt−1 (vt − pt−1) +

k−1∑
j=1

(
n − 1

j

)
(1 − γt)

j γn−1−j
t Wk−j,tvt,

where Wk−j,t is the normalized expected payoff when only k−j units are left (and the number
of bidders has gone down to n − j) and t periods to go. Indifference requires the two to be
equal. Observe that, defining

φt (vt − pt) = Mtvt+1, (50)
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the buyer’s indifference condition becomes

Mtvt+1 = γn−1
t φt−1 (vt − vt−1) +

k−1∑
j=1

(
n − 1

j

)
(1 − γt)

j γn−1−j
t Wk−j,tvt + γn−1

t Mt−1vt. (51)

B.2.2 The sellers’s maximization problem

The seller’s payoff is

St+1vt+1 = max

{
γn

t Stvt +

k−1∑
j=1

(
n

j

)
(1 − γt)

j γn−j
t (jpt + Yk−j,tvt) + k

n∑
j=k

(
n

j

)
(1 − γt)

j γn−j
t pt

}

= max

{
γn

t Stvt −
[∑k−1

j=1 j
(

n
j

)
(1 − γt)

j γn−j
t + k

∑n
j=k

(
n
j

)
(1 − γt)

j γn−j
t

]
(vt − pt)

+
∑k−1

j=1

(
n
j

)
(1 − γt)

j γn−j
t (Yk−j,t − j) vt − k

∑n
j=k

(
n
j

)
(1 − γt)

j γn−j
t vt

}
,

where Yk−j,t is the seller’s normalized continuation payoff when only k−j units are left, with
t periods to go. Observe now that

k−1∑
j=1

j

(
n

j

)
(1 − γt)

j γn−j
t + k

n∑
j=k

(
n

j

)
(1 − γt)

j γn−j
t = n (1 − γt) φt,

so we may re-write the seller’s payoff as

St+1 = max

{
γn+1

t St − n (1 − γt)
[
γn

t φt−1 (1 − γt−1) +
∑k−1

j=1

(
n−1

j

)
(1 − γt)

j γn−j
t Wk−j,t + γn

t Mt−1

]
+
∑k−1

j=1

(
n
j

)
(1 − γt)

j γn+1−j
t (Yk−j,t − j) − k

∑n
j=k

(
n
j

)
(1 − γt)

j γn+1−j
t

}
,

which is a function to be maximized over γt. This can be written more compactly as

St+1 = max
{
γn+1

t St + h (γt)
}

. (52)

B.2.3 The seller’s maximization

Taking derivatives of (52) with respect to the γt, the seller’s first-order conditions are

St = −h′ (γt) / ((n + 1) γn
t ) , (53)

and therefore, using (53 in (52),

h′ (γt+1) = γn
t+1 (γth

′ (γt) − (n + 1)h (γt)) . (54)

Writing h as
h (γt) = g (γt) − n (1 − γt) γn

t Mt−1 (55)
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and using this expression to substitute for h in (54) gives

g′ (γt+1) − n (n − (n + 1) γt+1) γn−1
t+1 Mt = γn

t+1 (γtg
′ (γt) − (n + 1) g (γt) + nγn

t Mt−1) . (56)

We further have, from the price recursion (51)

Mt = At + γn
t Mt−1, (57)

with

At = γn
t φt−1 (1 − γt−1) +

k−1∑
j=1

(
n − 1

j

)
(1 − γt)

j γn−j
t Wk−j,t. (58)

Using (58) in (57) to eliminate Mt−1, we solve for

Mt =
g′(γt+1) − γn

t+1 (γtg
′(γt) − (n + 1)g(γt) − nAt)

n2γn−1
t+1 (1 − γt+1)

. (59)

Therefore, inserting in (56),

g′(γt+1) − γn
t+1 (γtg

′(γt) − (n + 1)g(γt) − nAt)

γn−1
t+1 (1 − γt+1)

− n2At =

γt
g′(γt) − γn

t (γt−1g
′(γt−1) − (n + 1)g(γt−1) − nAt−1)

(1 − γt)
.

The expression γtg
′(γt) − (n + 1)g(γt) − nAt can be further simplified. Indeed,

γtg
′(γt) − (n + 1)g(γt) − nAt =

k−1∑
j=1

j(1 − γt)
j−1γn−j

t

((
n − 1

j

)
n(1 − γt)Wk−j,t −

(
n

j

)
γtYk−j,t

)

+
k−1∑
j=1

(
n

j

)
j2(1 − γt)

j−1γn+1−j
t + k

n∑
j=k

(
n

j

)
j(1 − γt)

j−1γn+1−j
t .

B.2.4 The function v(x)

We now let k = 2 and seek the function v(x), giving the identity of the indifferent buyer
given that there are two units for sale and the length of time to the deadline is x. Given
k = 2, we have

Y1,t ≈
n qt−1

qt
−
(

qt−1

qt

)n

n + 1
, and W1,t ≈ 1

n

(
vt

vt+1

)n−1

.

Observe that
1

γ(x)
− 1 ≈ v′(x)

v(x)
.
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If we let t + 1 = x + ε, t = x and t − 1 = x − ε, we can approximate Y1,t by

1

n

(
(n − 1)

(
1 +

3ε

nx

)−1

−
(

1 +
3ε

nx

)1−n
)

,

(recall that there is one fewer buyer) and W1,t by

1

n − 1

(
1 +

3ε

nx

)1−(n−1)

.

Finally, we can approximate γt as follows:

γt+1 =

(
1 +

v′(x)

v(x)
ε +

(
v′′(x)

v(x)
−
(

v′(x)

v(x)

)2
)

ε2

)−1

,

γt =

(
1 +

v′(x)

v(x)
ε

)−1

,

γt−1 =

(
1 +

v′(x)

v(x)
ε −

(
v′′(x)

v(x)
−
(

v′(x)

v(x)

)2
)

ε2

)−1

,

and do an asymptotic expansion in ε around 0, obtaining

(n2(n + 1)w(x)4 − 2nw′(x)2 + w(x)2(3 + n(3n + 1)w′(x)))ε3 + o(ε4) = 0,

where w(x) := v′(x)/v(x). We also know that v(0) = 0, v(1) = 1. Calculating the valuations
v(x) is thus a matter of solving the ordinary differential equation.

n2(n + 1)w(x)4 − 2nw′(x)2 + w(x)2(3 + n(3n + 1)w′(x)) = 0. (60)

B.2.5 The price function p(x) and payoff π

Turning now to the price p(x), from φt (vt − pt) = Mtvt+1 (cf. (50)), it follows that

pt = vt − Mt

φt
vt+1 = vt+1

(
γt − Mt

φt

)
.

We have expression (59) for Mt, and thus attention turns to computing

γt − Mt

φt
.

Using our approximations W , X and γ, it is straightforward to verify that, in the case k = 2,

lim
ε→0

γt − Mt

φt

=
n − 2

n
.
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This in turn gives the price function

p (x) =
n − 2

n
v (x) .

It is then straightforward that the seller’s payoff is given by 2n−2
n−1

.

B.4 Committing to Lower Prices

This section provides an example in which the seller cannot commit to charging a low enough
price in the second stage, and an example in which the seller cannot commit to charging a
high enough price.

B.3.1 The Model

Assume that there are two buyers and two periods. Buyers have one of three possible
valuations, v1, v2, or v3 = 1, with v1 < v2 < 1. A buyer has valuation vi with probability ρi,
where

ρ1 =
1

8
, ρ2 =

1

4
, ρ3 =

5

8
.

Conditional on all buyers being of type v1 or v2 in the last period, the seller’s choice is
obviously between charging v1 or v2. She chooses the latter, higher price if and only if

Δ =

(
1 −

(
ρ1

ρ1 + ρ2

)n)
v2 − v1 > 0.

There are four obvious pure strategies in the two-period game: selling to type v3 first, and
then to type v2; selling to type v3, and then to v1; selling to types v3 and v2 first, and then
to v1; and finally, selling to no one first, and then to type v3. The seller could also wait and
sell to some larger subset of types in the second period, but it is clear that this is worse than
some strategy in which type v3 accepts in the first period. (Of course, the latter strategy
may not satisfy sequential rationality). We consider these strategies are in turn.

B.3.1a Selling to type v3, and then to type v2. Denote the price charged in the first
period by p32 (the second price is v2), and the expected payoff by V32. The price p32 must
satisfy

1 − (ρ1 + ρ2)
n

1 − (ρ1 + ρ2)
(v3 − p32) = (ρ1 + ρ2)

n−11 − (ρ1/(ρ1 + ρ2))
n

1 − ρ1/(ρ1 + ρ2)
(v3 − v2),

and the payoff V32 must satisfy

V32 = (1 − (ρ1 + ρ2)
n)p32 + (ρ1 + ρ2)

n

(
1 −

(
ρ1

ρ1 + ρ2

)n)
v2.
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Solving, we find that

V32 = (1 − ρn
1 )v3 − 1 − ρ1

ρ2
((ρ1 + ρ2)

n − ρn
1 )(v3 − v2).

B.3.1b Selling to type v3, and then to type v1. Denote the price charged in the first
period by p31 (the second price is v1), and the expected payoff by V31. The price p31 must
satisfy

1 − (ρ1 + ρ2)
n

1 − (ρ1 + ρ2)
(v3 − p31) = (ρ1 + ρ2)

n−1(v3 − v1),

and the payoff V31 must satisfy

V31 = (1 − (ρ1 + ρ2)
n)p32 + (ρ1 + ρ2)

nv1.

Solving, we find that
V31 = v3 − (ρ1 + ρ2)

n−1(v3 − v1).

B.3.1c Selling to type v2, and then to type v1. Denote the price charged in the first
period by p21 (the second price is v1), and the expected payoff by V21. The price p21 must
satisfy

1 − ρn
1

1 − ρ1

(v2 − p21) = ρn−1
1 (v2 − v1),

and
V21 = (1 − ρn

1 )p21 + ρn
1v1.

Solving, we find that
V21 = v2 − ρn−1

1 (v2 − v1).

B.3.1d Selling to type v3 in the second period. Clearly, this yields a payoff of V3 =
(1 − (ρ1 + ρ2)

n)v3.

B.1.2 Case 1: (v1, v2) = (1/8, 1/4). The seller cannot commit to a low price

It is easy to check that Δ = 7/72 > 0—conditional on the buyers not being of type v3, it is
optimal to set the price to v2 in the one-stage game. However, we have that

43

64
= V31 >

⎧⎨
⎩

V32 = 21/32
V21 = 15/64
V3 = 5/8

.

That is, the optimal two-stage strategy is to sell to high types first, and then to all types.
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This also dominates all schemes involving mixing (since if type v2 or type v3 is supposed
to randomize in the first period, this lowers the probability of acceptance, relative to the
same type accepting with probability one in the first period, as well as the price paid in the
first period, and it does not affect the price in the second).

But since Δ > 0, the seller cannot achieve this payoff, because in the second stage, she
cannot help but charge a high price. Therefore, this is an example in which the seller cannot
commit to charge low enough a price in the second stage.

B.3.3 Case 2: (v1, v2) = (4/5, 8/9). The seller cannot commit to a high price

It is easy to check that Δ = −4/405 > 0. Conditional on the buyers not being of type v3, it
is optimal to set the price to v1 in the one-stage game. However, we have

539

576
= V32 >

⎧⎨
⎩

V31 = 37/40
V21 = 79/90
V3 = 5/8

.

This also dominates all schemes involving mixing (for the same reasons as before).
But since Δ < 0, the seller cannot achieve this payoff, since in the second stage, she

cannot help but charge a low price. This is therefore an example in which the seller cannot
commit to charge high enough a price in the second stage.
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