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We propose numerical algorithms for solving first price auction problems where 
bidders draw independent valuations from heterogeneous distributions. The heter- 
ogeneity analyzed in this work is what might naturally emerge when subsets of 
distributionally homogeneous bidders collude. Bid functions and expected reve- 
nues are calculated for two special cases. Extensions to more general asymmetric 
first price auctions are discussed. Journal of Economic Literature Classification 
Numbers: D44, C63, C72, D82. © 1994 Academic Press, Inc. 

1. INTRODUCTION 

A large body of the literature on auction theory assumes symmetry of 
beliefs. Buyers have common underlying preferences and draw their sig- 
nals from a symmetric probability distribution. A few key contributions 
in this line of research are Maskin and Riley (1984), Matthews (1983), 
Milgrom and Weber (1982a), and Riley and Samuelson (1981). 

The symmetric case offers the related advantage that bid functions 
and/or expected revenues can often be obtained analytically. Moreover, 
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derivation of the bid functions rarely is a prerequisite to revenue calcula- 
tions, a key feature of many important results. 

Most authors are well aware of the restrictive and often unrealistic 
nature of symmetry assumptions. Relaxing these assumptions results, 
however, in major analytical complications and presents a formidable 
challenge. Of course, Myerson's (1981) seminal work stands as an early 
exception in that he used distributional heterogeneity in deriving his reve- 
nue equivalence theorem. However, by invoking the Revelation Principle 
his work avoided addressing issues such as whether or not Nash equilib- 
rium bid strategies exist for distributionally heterogeneous bidders at a 
first price auction. The pioneering contributions of Lebrun (1991) and 
Maskin and Riley (1991, 1992) attempt to fill many of the gaps in the 
literature with respect to bidder asymmetry. 1 These papers establish 
uniqueness and existence of the equilibrium at a first price auction when 
two bidders draw independent and private valuations from heterogeneous 
distributions. In addition, Maskin and Riley (1991) provide surprising 
revenue nonequivalence theorems. 

Our own interest in asymmetric auctions stems from analysis of collu- 
sive behavior among bidders. If all bidders are ex ante homogeneous then 
collusion among subsets of bidders is very likely to generate asymmetries 
between participants at an auction. 2 Many challenging issues remain open 
at this level such as, for example, the viability of coalitions at first price 
auctions. 3 

In contrast with the symmetric case for first price auctions, expected 
revenue calculations for the asymmetric case typically require knowledge 
of the bid functions. The differential equations that characterize these bid 
functions are mostly untractable, hence numerical techniques can play an 
important role in the analysis of asymmetric (first price) auctions. How- 
ever, numerical solutions to the systems of ordinary differential equations 
(ODE) that result from the first order conditions for the existence of an 
asymmetric Nash equilibrium are non-trivial to evaluate. Although these 
solutions belong to a class of "two-point boundary value problems" for 

i We are not concerned in this paper with asymmetries in the information received by 
bidders. Previous work in that area includes Engelbrecht-Wiggans et al. (1983), Milgrom 
and Weber (1982b), Weverbergh (1979), and Wilson (1977). 

2 Exceptions are possible. If n bidders form k coalitions that are each of size n/k (where 
n/k is an integer) then the coalitions (as bidders) will be symmetric. Also, if k of n bidders 
collude and the others act individually then the resulting n - k + 1 bidders could be symmetric 
if the initial group of n bidders was asymmetric-- the "weakest"  k bidders collude and in 
aggregate are distributionally equivalent to any one of the noncolluding bidders. 

3 Although we only refer to first price auctions in this paper the analysis contained herein 
applies to Dutch auctions as well. 
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which there exist efficient numerical solution techniques, 4 they all suffer 
from major pathologies at the origin. First, forward extrapolation produces 
"nuisance" solutions (linear in our case) that do not satisfy terminal 
conditions and act as "attractors" on the algorithm. Second, and not 
unrelated, backward solutions are well-behaved except in neighborhoods 
of the origin where they become (highly) unstable with the consequence 
that standard (backwards) "shooting" by interpolation does not work. 
Naturally, high numerical accuracy becomes essential under such patho- 
logical conditions. All together, after a good deal of experimentation, we 
opted for using backward (piecewise low-order) series expansions for 
the bid functions. Though the series expansion techniques require more 
(analytical) input from their users than other purely numerical techniques 
might, they prove to be numerically stable as well as efficient for our 
purpose. Their generality will be discussed further in the course of the 
paper. 

The case addressed in the present paper is that of a single-object first 
price auction where bidders are characterized by a particular kind of 
distributional heterogeneity. Specifically, the heterogeneity analyzed 
herein is what might naturally emerge from collusion among a subset of 
bidders.5 The coalition submits a single bid at the main auction and behaves 
asymmetrically relative to the remaining bidders. Two scenarios will be 
considered in turn. The one which is easiest to handle assumes that the 
remaining bidders form a countercoalition. In this paper, this is equivalent 
to the case of two distributionally heterogeneous bidders. Our numerically 
determined equilibrium bid strategies are consistent with the results of 
Lebrun (1991) and Maskin and Riley (1991, 1992). Furthermore, we show 
numerically that the type of bidder asymmetry that might naturally arise 
from collusion leads to higher expected revenue for the seller in a first price 
auction as compared to an English auction. Since this type of asymmetry is 
not covered by Maskin and Riley's (1991) propositions concerning seller's 
revenue, it suggests an important direction for extension of their work. 

Besides the case of two coalitions we also consider the more difficult 
case in which the remaining bidders act noncooperatively. The ease of 

4 An excellent source for ODE numerical algorithms is Press et al. (1986). See, in particular, 
the Bulirsch-Stoer method in Section 15.4 and the shooting method in Section 16.1. 

5 We do not pose a collusive mechanism in the paper. Strictly speaking, we are formally 
analyzing only noncooperative behavior by bidders who draw their private valuations inde- 
pendently from heterogeneous distributions. Since we refer to particular distributional types 
throughout the paper as "coalitions" it might be helpful to think of collusion in the following 
light. Suppose valuations of coalition members are common knowledge within the coalition. 
Furthermore, the member with highest value is awarded the item if the coalition wins at the 
main auction. There are no side-payments within the coalition--winner takes all. Coalition 
members who do not have the highest value cannot bid at the main auction. 
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transition from one case to the other illustrates the flexibility of the pro- 
posed technique. In addition, it suggests that the analysis of Lebrun (1991) 
and Maskin and Riley (1991, 1992) can be extended to more than two 
bidders .6 

Although the analysis in this paper is in terms of heterogeneously distrib- 
uted values, it can easily be interpreted as applying to heterogeneous 
preferences. 7 In particular, we reinterpret the equilibrium bid functions 
for the first price auction with two coalitions as a first price auction 
between two bidders with differing degrees of risk aversion. In this latter 
interpretation, the distribution of values is identical and only preferences 
differ between bidders. 

Besides the intrinsic interest in the analysis of heterogeneous prefer- 
ences we develop the risk aversion interpretation to guide our intuition 
regarding distributional heterogeneity. It is well-known that first price 
auctions give greater expected revenue than second price auctions in the 
presence of symmetric risk aversion--risk averse bidders shade their 
bids less than risk neutral bidders in the first price auction. 8 The same 
phenomenon is present in first price auctions when there are two "coali- 
tions" of different size (i.e., n homogeneous bidders form two coalitions 
of size k and n - k). The distributional asymmetry created by the difference 
in coalition size induces the smaller coalition to shade their bid less than 
they would in the symmetric case, because shading their bid is more costly 
in terms of a reduced probability of winning when they face a larger 
coalition with a more favorable distribution. Although there are other 
factors relevant to the expected revenue comparison of first price and 
English auctions, the more aggressive bidding of the disadvantaged coali- 
tion seems to be decisive in making the first price auction superior. 

The paper is organized as follows: The two models are introduced in 
Section 2; the two-coalition scenario is solved in Section 3; Section 4 
deals with the case where the remaining bidders act noncooperatively; 
Section 5 offers a comparison to a second price auction, and Section 6 
concludes. Additional results and algorithmic details are contained in three 
technical appendixes. 

2. THE MODEL 

2.1. Description 

Our analysis focuses on a single-object first price auction. Specifically, 
bidders simultaneously submit sealed bids for a single object where the 

6 Maskin and Riley (1992) demonstrate existence of a Nash equilibrium for general n. 
Uniqueness results are only provided for n = 2 when bidders are distributionally heteroge- 
FteOUS. 

7 This point was made by Maskin and Riley (1991). 
8 See Riley and Samuelson (1981) or Riley (1989). 
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highest bidder wins and pays his bid price. The auctioneer is presumed 
to be a bid taker who does not act strategically (i.e., no reserve,no entrance 
fee, etc.). The group of potential bidders comprises n risk neutral individu- 
als who all draw their valuations independently from a uniform distribution 
on [0, 1]. A subgroup consisting of kl < n bidders form a coalition. We 
assume this coalition acts as one bidder who draws a valuation from the 
cumulative distribution x k~ where x E [0, I] .  9 

Consider next the k 2 = n - kj remaining bidders. Two alternative scenar- 
ios will be considered. Under the first scenario we assume that these k 2 
bidders form a (counter)coalition which acts as one bidder that draws a 
valuation from the cumulative distribution xk2 where x E [0, 1]. We are 
then essentially dealing with a two (aggregate) bidder asymmetric first 
price auction which constitutes a special case of a more general problem 
for which Lebrun (1991, Chap. 3) establishes the existence and uniqueness 
of a Nash equilibrium in pure strategies. 

Under the alternative scenario, the k 2 remaining bidders act noncoopera- 
tively. Hence k 2 + 1 participants will be active at the main auction, of 
which k z draw their valuation from independent uniform distributions on 
[0, 1] and the last one from the distribution corresponding to the highest 
of k 1 independent uniforms on [0, 1]. 

At a more theoretical level the two scenarios naturally constitute the 
polar cases we might wish to consider in order to define characteristic 
functions for noninclusive coalitions at first price auctions, but this goes 
beyond the objectives of the present paper. 

2.2. Nota t i on  

Bid functions are denoted by the greek letter ~b appropriately subscripted 
(1 for the kl-coalition, 2 either for the kE-coalition or for the symmetric bid 
function of the k2 individual bidders, depending on the case considered). 
Lebrun (1991) has shown that these bid functions are strictly monotone 
increasing and, therefore, invertible. Inverse bid functions are denoted 
by the greek letter h. An obvious necessary condition for (hi, hE) to be a 
pair of Nash equilibrium strategies is that they have a common support 
in the form of an interval [0, t.], where t .  is the bid associated with a 

9 We are currently exploring the issue of whether or not mechanisms exist that would 
permit a less than all-inclusive coalition from earning more than non-cooperative expected 
surplus at a first price auction. Such existence problems appear to be quite untractable, 
analytically at least. We hope to gain critical insight on these issues by being able to solve 
numerically such problems as the ones described here. See in particular the tables of results 
that are provided below as well as the discussion in Section 5. 
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u n i t  v a l u a t i o n . l °  T h e  ( n u m e r i c a l )  d e t e r m i n a t i o n  o f  t ,  is  a c r i t i c a l  c o m p o n e n t  

o f  t h e  p r o b l e m  t o  b e  s o l v e d .  

3. COALITION VERSUS COALITION 

3.1. The Differential Equations 

Let t = ~bl(v) denote the Nash equilibrium bid submitted by coalition 
1 when its highest evaluation is v. Hence t is given by 

t = Argmax(v - t)[X2(t)] k2. (1) 

The first-order condition generates the following differential equation: 

k2[Xl(t ) - t]h~(t) = h2(t). (2) 

The corresponding equation for coalition 2 is given by 

kl[X2(t) - t]k~(t) =Xl(t).  (3) 

The initial conditions are 

hi(0) = Xz(0) = 0 (4) 

and the terminal condition requires the existence of  a number t ,  E (0, 1) 
such that 

l0 Some intuition for this well known result is best offered in the contrapositive. Suppose 
that the upper supports of the bid distributions were t2 > tl for the two bidders and the 
upper supports were bid with zero probability. Then Bidder 2 would always win when 
drawing valuations that led to bidding in the interval [q, t2]. However, when drawing such 
valuations bidder 2 would always win when bidding exactly t I and by doing so he would 
decrease the amount paid for the item. 

Now consider the lower support. Without loss of generality suppose that I l and 12 are the 
lower supports for bidders 1 and 2 where 0 -< Ii <- 12 < t,. Hence bidder 2 will submit a bid 
of at least l 2 for any valuation in the interval [0, 12]. In order for this to be optimal it must 
be the case that he can never win with such a bid. In order to never win it must be the case 
that the lower support of bidder l ' s  bid distribution is I I = I z and that this amount is bid 
with zero probability by bidder 1. But this means that bidder 1 will bid at least I l for all 
valuations, including those that fall in the interval [0, /l]. But by doing so bidder 1 will 
earn negative surplus when winning. Consequently, the lower support for bidder l ' s  bid 
distribution cannot be ll > 0. The only values of 11 and Iz for which this argument fails is 
11 = 12 = 0. 
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h i ( t , )  = h z ( t , )  = 1. (5) 

We digress momentarily to comment on the relationship of this model 
of heterogeneous distributions to a model with heterogeneous preferences. 
Suppose that bidders 1 and 2 each draw their valuation from the uniform 
distribution over the unit interval. Further suppose that each bidder has 
a utility function U ( x )  = x'~i where 0 < 0/; -< 1. The objective function for 
a bidder is then 

(v - t)~i[hj(t)]. 

Then if a I = 1/kz and 0/2 = 1/k  I , Eqs. (2) through (5) also characterize the 
inverse bid functions for the auction between bidders with heterogeneous 
risk aversion. H 

Lebrun (1991) transforms the system consisting of Eqs. (2) and (3) into 
a Cauchy system of differential equations and, in doing so, is able to 
establish the existence and uniqueness of a solution, although that solution 
cannot be found analytically. Furthermore, we have obtained an analytical 
relationship between h 1 and h 2 a s  well as an analytical expression for t , .  
See Appendix A for details. The algorithm discussed below does not 
require that such expressions be available but they are useful for evaluation 
of numerical accuracy. 

3.2. N u m e r i c a l  S o l u t i o n  

Let I,. denote the (right-) derivative of ~'i at the origin, 

l~ = lim hi(t). (6) 
t---~0 + 

A straightforward application of l'Hospital's rule to Eqs. (2) and (3) 
yields the following expressions: 

1,  1 
l~ = 1 + ~  12 = 1 + kl (7) 

Successive derivations of Eqs. (2) and (3) reveal that all higher deriva- 
tives of h~ and h2 are 0 at the origin. It follows that any attempt to evaluate 
numerically a forward solution to Eqs. (2) and (3) produces a linear solution 
given by 

ii Chen and Plott (1991) investigate, through analytics and experiments, the issue of 
heterogeneous risk preferences among bidders. 
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hi(t) = l i ' t ,  (8) 

which is unacceptable since it does not satisfy the terminal condition (5). 
Furthermore, experimentation indicates that the "nuisance" solution (8) 
acts as an "attractor" in the sense that forward numerical solutions cannot 
deviate from it. Hence, our first recommendation is that systems of differ- 
ential equations such as those consisting of Eqs. (2) and (3) should be 
solved backward starting from an assumed terminal point using the initial 
condition (4) as an indicator of whether or not we have used the correct 
value for t , .  

As shown by Lebrun (199 l) and fully confirmed by our numerical results, 
the solutions to Eqs. (2) and (3) are monotonic in t , ,  an important consider- 
ation in the design of a backwards "shooting" algorithm. Note, however, 
that the solutions exhibit an explosive tendency toward minus infinity 
around the origin as soon as t ,  exceeds its equilibrium value. Though 
this property of the solution enables us to pinpoint t ,  with considerable 
numerical accuracy, it precludes us from applying conventional interpola- 
tive shooting techniques. 

The partial analytical results which are derived in Appendix A are based 
upon a transformation of Eqs. (2) and (3) which are reformulated in terms 
of the auxiliary functions 

1 
8i(t) = t "  hi( t ) '  i = 1,2. (9) 

The transformed system is given by 

kz[al( t)  - 1]-[62(t)+ t'a~(t)] =az(t) (10) 

kl[az(t) - 1]- [~Sl(t) + t" ai(t)] = a~(t), (11) 

together with the following initial and terminal conditions: 

l 
8 i ( 0 )  : I i, 8 i ( t , )  t ,  i = 1, 2 (12) 

Extensive numerical experimentation with this model, as well as with the 
one which is discussed in Section 4 below, indicates that the solutions of 
the transformed system are numerically more"  stable," and their accuracy 
easier to monitor, than those of the initial system. 

The solution technique that has proved most efficient for our purpose 
and which, furthermore, can easily be adapted to other scenarios consists 
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in approximating the 8's by piecewise (low-order) polynomial expan- 
sions.12 All that is required is an efficient algorithm for the evaluation of 
Taylor series expansions of any order around base points appropriately 
selected in the interval (0, t,]. Let tj denote such a base point and 

~ ( t )  = ~ ai(t - tj) i (13) 
i=0 

~ c  

82(t) = ~ bi(t - tj) i. (14) 
i=0 

Substituting these expressions for the 8's in formulas (10) and (11) and 
equating the coefficients of (t - tj)" across the board yield the following 
recurring expressions for the a's and b's: 

a'+l (n + 1)(b 0 -  1 ) t j  - -  (n + 1)(b 0 -  I) a, 

- ~ i'bn+l-i'(ai-l + 

b~+l ( n + l ) ( a o - 1 ) t j  ~ - ( n + l ) ( a o -  

- ~ i 'a"+'-i '(bi-l + tj'bi)} 

1)] b, 

(15) 

(16) 

These expressions also apply for n = 0 under the standard convention 
that the summations from i = 1 to i = 0 are set equal to zero. Initial 
conditions are 

a 0 = 81(~), b 0 = 82(~). (17) 

In practice it proves convenient to compute directly the individual factor 
in formulas (15) and (16). Let 13 

12 It is important to note that the successive derivatives in formulas (13) and (14) will be 
evaluated analytically, in sharp contrast with the algorithms described in Press e t  al.  (1986, 
Chap. 16) where derivatives are evaluated numerically. The use of analytic derivatives 
improves numerical accuracy and circumvents the well-known problems associated with 
the inaccuracy of numerical high-order derivatives. 

13 The a*'s and b*'s are functions of both tj, the base point, and t - tj, but there is no 
need to account for these arguments in our notation since, in particular, the 8's will be 
evaluated recursively, one point at a time. 
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a* = a i • (t - tj) i, b* = b i • (t - tj) i. (18) 

The recursions for the a*'s and b*'s follow from formulas (15) and (16) 
and are given by 

an+l 

b ff + 1 -~- 

([, J (n + l)(b 0 - 1)tj ~ - (n + 1)(b0 - 1) (t - tj)a* 

-- i=' ~ i b * n + l - i ' ( ( t -  tj)a~-I + tj" a*)} (19)  

, ] 
(n + 1)(a 0 - 1)tj ~ - (n + 1)(ao - 1) (t - tj)b* 

- i=, ~ ia*+'- i ' ( ( t - t j )bi*-I  + t j ' b * ) ) .  (20) 

3.3. The A lgor i thm 

For the case under consideration, t ,  happens to be known analytically 
(see Appendix A). However, this seems to be the exception rather than 
the rule. Hence, we opted for an algorithm that includes an iterative search 
for the equilibrium value of t , .  

A single run of computation requires initializing certain parameters 
(such as t,), evaluating the corresponding numerical solution, and then 
deciding upon whether or not another run is needed. 

1. Init ialization. The parameters to be initialized are below. 

(i) t ,:  It can be shown that t ,  l E ( l l ,  12). 14 

(ii) N: The number of (equal length) subintervals of (0, t,) to be 
considered. These subintervals are of the form (tj_~, O with to = 0 and 
tN+ 1 = t , .  

(iii) p: The order of the Taylor series expansions. 
(iv) e: A small positive number to be used in the evaluation of our 

convergence criterion. Guidelines for the selection of (N, p, e) are dis- 
cussed below. 

2. Numer ica l  Evaluat ion.  Approximate values for the pairs (8~(tj_0, 
82(ti_1)) are computed recursively by means of Taylor series expansions 

14 There is no loss of generality in assuming that It < / 2  under  the current  scenario. The 
case when  Ii = 12 = I corresponds to a symmetric Nash equilibrium for which the (analytical) 
solution is known to be 8(0  = I. 
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of order p around tj, for j running backward from j = N + 1 to j = 1. 
Initial values are 8i(tN+O = 8i(t*) = 1/t, .  

3. Convergence Criterion. From a theoretical perspective, a reasonable 
convergence criterion is provided by the following inequality: 

1 2 
2"~i=1 [~i(0) -- li] 2 ~ •2. (21) .= 

If (21) holds, then the corresponding sequences of ~;(tj)'s constitute our 
(approximate) numerical solution. Otherwise, t .  is adjusted in whatever 
direction reduces the left-hand side of (21) (typically the direction is recog- 
nized from earlier iterations). In practice, numerical instability in the 
immediate neighborhood of the origin necessitates fine tuning of the con- 
vergence criterion (21). Details are found in Appendix B. 

Experimentation with values of k~ and k 2 running from 1 to 100 suggests 
that the following values for (N, p, e) prove more than adequate for all 
practical purposes: 

N = I0,000 

p = 5  

e of the order of 10 -5 to 10 -8 (see Appendix B). 15 

Computing time for a single run of computation under these values is 
of the order of 5 sec on a DEC 3100 workstation or a 486/33 PC. Except 
for start-up costs, computing time is essentially proportional to ½.Np.  
(p + l) and can easily be reduced by a factor of 10 at little loss of precision 
(as measured, in particular, by e). Highly accurate numerical evaluation 
of t ,  (6 to 8 correct digits) requires only a few iterations (10 to 20 under 
our current interactive "rule of thumb"  implementation; probably less 
once an efficient search algorithm is implemented). Values of t ,  and e for 
all pairs (k l, k2) with kl + k2 -- 5 and 0 < kl, k2 < 5, N = 10,000, and 
p = 5 are given in Table I. The corresponding bid functions are illustrated 
in Fig. 1. Inspection of the bid functions shows that the more optimistic 
party (larger coalition) shades their bid more which is consistent with 

~5 Relative errors in the numerical values of the 8 functions typically are monotone func- 
tions of the distance away from the terminal point. Hence, e constitutes a conservative 
approximation to (relative) numerical accuracy on the entire trajectory. 
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T A B L E  I 

COALITION VERSUS COALITION 

kl k2 t ,  e ,  

3 2 0.70769174 0.997 × 10 -8 
4 1 0.63737587 0.494 × 10 -7 

100 1 0.73910288 0.518 × 10 -8 

Maskin and Riley (1991). We evaluate the corresponding expected reve- 
nues and comment further on these results in Section 5 below. 

4.  C O A L I T I O N  VERSUS I N D I V I D U A L  N O N - C O L L U S I V E  B I D D E R S  

4.1. The Differential Equations 

The differential equation for the k~-coalition remains unchanged and is 
given by Eqs. (2) and (10). In contrast,  each of the remaining k 2 bidders 
now faces not only the krcoali t ion but also (k 2 - 1) symmetric individual 
rivals. Thus, the bid t for an individual player with valuation v is given 
by 

t = Arg max(v - t) .  [~l(t)] kl. [Xz(t)] k2-1. (22) 

The corresponding differential equation is 

[~.2(t) - t].  [ k  1 • ~ . i ( t )  • ~2(t) + (k2 - 1)" X~(t) • )~l(t)] = Xl(t)" ~,2(t) (23) 

or, after transformation, 

[82(t ) - 1]" [kl • (Sl( t )  + t" 8~(t))" 82(t ) 
+ (k 2 - 1)" (t~2(t) + t" 3~(t))" 81(t)] = 3l(t) " 82(t). 

(24) 

The initial condition for 82 follows by application of l 'Hospital  rule and 
is given by 

1 
82(0) = 1 + kl + kz - 1" (25) 



co 

N U M E R I C A L  A N A L Y S I S  OF A U C T I O N S  

A 
/ 0 0  [ 

0 9 0  I I • Cool i t ionof4 ] 
0 8 0 I  [ • GOdli t lonofl  1 

0 7 0  I- 
0.60 

0.50 

0 4 0  

0 5 0  

0.20 

0.10 

0 . 0 0  I ~ t 

0.00 

I .00 

0,90 

0,80 

0.70 

0.60 

0.50 

0.40 

0.50 

0.20 

0.10 

0.00 ~ 
0.00 

0.60 0.70 0.80 0.90 1.00 0 1 0  0 2 0  0.50 0 4 0  0.50 
Values 

B 

• }o<JI Uon sf 3 
• ;Od t ion of 2 

0.10 0.20 0.50 0.40 0.50 0.60 0.70 0.80 
Values 

0.90 1 .00 

FIG. 1. Coal i t ion  vs  coal i t ion ,  n = 5: (a) 4 vs  1, (b) 3 vs  2. 

205 

Brute force application of Taylor series expansions to Eq. (24) requires 
evaluating double combinatorial summations. However, computation and 
programming greatly simplify if the problem is first reformulated in terms 
of the following auxiliary functions: 

8(t) = ( [ ~ l ( t ) ]  kl" [r~2(t)]k2-1) l/(kl+k2-1) (26) 

qbi(t) = 8 i ( t )  " 8 ( 0  (27) 

6 ( 0  = 8~( t )  " S z ( t ) .  (28) 

In particular, Eq. (24) can be rewritten as 
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(k I + k 2 - 1). [82(t) -- 1]" [8(0 + t" ~'(t)] = ~5(t), (29) 

which is the functional analog to Eq. (11). The Taylor series expansions 
to be evaluated are now given by 

oc 

81(t) = a i • (t  - tj) i, chl(t) = ~ ,  a i • (t  - tj) i (30) 
i=0 i=0 

82(t) = ~] bi" (t  - tj) i, ~b2(t) = ~i" (t  -- t )  i (31) 
i=0 i=0 

oc 

8 ( 0  = c i • (t - t )  i, 4~(t) = ~ Yi" (t  - tj) i. (32) 
i=0 i=0 

The recursive relationships for these coefficients consist of  Eq. (16) to- 
gether with the following additional equations listed in the order in which 
they are to used at each iterative step, 

1 { i 1  
Cn+l = (n  + 1). (b 0 - 1) . t j  k I + k 2 - 1 

- ~ i" b"+ ' - i "  ( c i - '  + tj" ci) 

an+ ! = c n +  l ' ° ~ ° + O "  Cn+ 1 - - - b n +  l 
~o ~o 

I 
+ {A + B}, 

(n + 1) ./30 

(n + l ) ' ( b 0 -  1 ) ] . %  

(33) 

(34) 

where 

A = ~ i(Ci~n+ 1 - i -  alan+ 1 - i ) ,  n = 0 ~ i(ciTn+ 1 - i -  biOln+ 1- i )  
i=0 i=1 
n + l  n+ l  n+ l  

Otn+l = E a i C n + l - i ,  fin+l: ~ b i c , + , - i ,  Y,+I = ~ , a i b , + , - i ,  
i=0 i=0 i=0 

0 = ( k  2 -  1)/k 1, 

together with the (additional) initial conditions: 

° 

ao = CO'\bo! 

(35) 

(36) 
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TABLE II 

COALITION VERSUS INDIVIDUALS 

kl k2 t ,  e ,  

1 4 0.80000000 0.100 x 10 -8 
2 3 0.78324204 0.109 x 10 -5 
3 2 0.74169876 0.553 x 10 -5 
4 1 0.63737587 0.278 x 10 -4 

99 2 0.84113794 0.344 × 10 -7 

So = aoCo, flo = boco, Yo = aobo. (37) 

The final transformation into the equivalent of formulas (19) and (20) in 
Section 3 is straightforward and need not be reproduced here. 

4.2. The A l g o r i t h m  

The generalization of the algorithm derived in Section 3 to this more 
complicated problem is essentially straightforward and requires only mi- 
nor modifications (essentially the addition of Eqs. (34) and (35) and the 
relabeling of a couple of variables). 

Equally important, though we neither have an analytical expression 
for t ,  nor an analytical relationship between 81 and 8z as in Section 3, 
experimentation quickly reveals that all the attractive numerical properties 
of our earlier algorithm are preserved including, in particular, the amazing 
numerical accuracy in the determination of t , .  

Results are given in Table II and illustrated in Fig. 2 for all relevant 
pairs (kl, k2) with kl + k2 = 5 and 0 < kl, k 2 < 5 and are directly comparable 
to the corresponding results in Table I and Fig. 1. They are further com- 
mented upon in Section 5 below. 

4.3. Exi s t ence  a n d  Uniqueness  o f  a Solut ion 

The proof in Lebrun (1991) does not cover our second scenario as a 
special case. However, our numerical algorithm indicates that, within 
numerical accuracy of the order of 10 -6  t o  10 -9  , there is one and only one 
value of t .  (in the relevant interval) for which the first-order conditions 
are satisfied. 16 

16 At an anecdotal level, the algorithm described in Section 3 was partially developed at 
a time when neither Lebrun 's  proof  nor the algebraic results in Appendix A were available. 
Though rational numbers need not be easily recognizable from their (low-order) decimal 
expansion, we had acquired the "cer ta in ty"  that for k I = 2 and k2 = 1, t .  was equal to 
37/64 at a very early stage of  our investigation. 
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FIG. 2. Coalition vs individuals, n = 5: (a) 1 vs 4, (b) 2 vs 3, (c) 3 vs 2, and (d) 4 vs 1. 

We can think of numerous generalizations of the two scenarios consid- 
ered in this paper whose solutions are still going to be (monotonic) func- 
tions of a single parameter such as t, .  Numerical "proofs" of the existence 
and uniqueness of a solution would proceed along the lines discussed here 
and are likely to prove quite straightforward. 

Conversely, our experience with similar iterative procedures in different 
though related contexts suggests that nonexistence of a Nash equilibrium 
would manifest itself in the form of cycles in the numerical search for t, 
(typically between a value of t, for which 8~(0) is zero but 82(0) is not and 
another value for which 82(0) is zero). 
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FIG. 2--Continued 

In short, we are now convinced that there is considerable potential for 
relatively straightforward numerical investigations of the existence and 
the uniqueness of Nash equilibrium solutions within a fairly broad range 
of first price asymmetric auctions. 

4.4. Nonuniform Distribution 

There are numerous interesting scenarios to be considered that require 
assigning different and/or nonuniform distributions to certain classes of 
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bidders. 17 The extension of  our baseline algorithm that is discussed in this 
subsection applies to either of  the two scenarios considered above but, 
for ease of  notation, we restrict our attention to the one discussed in 
Section 3. We now assume that the bidders in the k~ and k 2 coalitions draw 
their (individual) valuation from different distributions with distribution 
functions F~ and F2, respectively.  Let  

h*(t) = Fi(hi(t)), i = 1, 2, (38) 

so that the range of  h*(t) remains the interval (0, 1). Since h i c a n  easily 
be retr ieved from h* by inversion of  formula (38), using standard interpola- 
tion techniques, we now focus our attention on the numerical evaluation 
of  the h*'s  (to be eventually transformed into 8*'s,  in line with formula 
(9), a step we do not discuss again here). The counterparts  of Eqs. (2) to 
(5) are now given by 

k2" [F11" (h~'(t)) - t ] .  h~"(t) = h~'(t) (39) 

ki" [F~ l" (h~'(t)) - t] • h~"(t) = h~(t) (40) 

together with initial and terminal conditions of the form 

hi(0) = 0, h*(t*) = 1, i = l, 2. (41) 

Also, the slope of  h* at the origin is given by 

l* = lim h*(t) = f ( 0 ) .  I;, (42) 
t - .0  + 

where f (0 )  is the derivative of  F / a t  the origin and li has been defined in 
Eq. (7). 

Adaptation of  our baseline algorithm to Eqs. (39) and (40) requires a 
few minor modifications as well as a more important one. The latter 
requires implementation of  Taylor  series expansions for the function 

17 We have not yet considered extensions to affiliated heterogeneous distributions but this 
might be an important area for investigation. When antique dealers collude it appears that 
a primary motivation is to conceal their appraisal expertise from the collectors in atten- 
dance-two dealers who know that a highboy is an authentic period piece will reveal this 
assessment to uninformed collectors if they bid against one another. Preservation of the 
returns to their private information might be a reason why informed bidders can form less 
than all-inclusive coalitions that are profitable relative to noncooperative behavior at first 
price auctions. 
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TABLE III 

AUCTIONEER'S EXPECTED REVENUE AND BIDDERS' EXPECTED SURPLUS (PER CAPITA) AT 
A FIRST PRICE AUCTION (n = 5) 

Coalition vs. Coalition Coalition vs. Individual 

kl k2 Auct. k I k2 Auct. kl k2 

1 4 0.5057 0.0860 0.0567 0.6668 0.0335 0.0333 
2 3 0.5875 0.0523 0.0467 0.6510 0.0352 0.0371 
3 2 0.5875 0.0467 0.0523 0.6089 0.0406 0.0488 
4 1 0.5057 0.0567 0.0860 0.5057 0.0567 0.0860 
5 0 0.0000 0.1667 N/A 0.0000 0.1667 N/A 

Note. Computed by Monte Carlo using 100,000 drawings. Inversion of the k's in order 
to retrieve the bid functions themselves proceeds by interpolation--the interval (0, 1) is 
divided into R subintervals of equal lengths and the bids corresponding to the separation 
points are computed and stored. The largest Monte Carlo standard error for any entry in 
the table is 0.00032. 

F[l(h*(t)). An algorithm for efficient recursive evaluation of  such expan- 
sions is provided in Appendix C. 

5. SECOND PRICE VERSUS FIRST PRICE AUCTIONS 

At a minimum this research provides a numerical solution for bid func- 
tions that would be employed by specific kinds of  distributionally heteroge- 
neous bidders at a first price auction. A more optimistic view is that this 
research provides an insight into a revenue nonequivalence between first 
price (or Dutch) and second price (or English) auctions when a subset of 
bidders collude. 

Suppose a bidder coalition at a first price auction can be characterized 
as follows. The membership of  the coalition is determined ex ante and 
the types of  each coalition member  are common knowledge within the 
coalition. If  the coalition wins the item the coalition member with highest 
value is awarded the item. There are no side payments within the coalition. 
In other words, winner takes all. Also, coalition members with values 
that are not highest within the coalition cannot submit a bid at the main 
auction. For  this description of  coalition behavior the expected revenues 
and surpluses for kl + k2 = 5 are reported in Tables III  and IV for the 
first price and second price auctions, respectively.18 Similar calculations 

18 The reader should be careful to note that these expected revenue calculations do not 
apply to the risk aversion interpretation. Although both interpretations of our auction problem 
yield the same bid functions, the order statistics are not the same for the two. 
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TABLE IV 

AUCTIONEER'S EXPECTED REVENUE AND BIDDERS' EXPECTED SURPLUS (PER CAPITA) AT 
A SECOND PRICE AUCTION (n = 5) 

Coalition vs. Coalition Coalition vs. Individuals 

k I k 2 Auct.  kl k2 Auct. kl k2 

1 4 0.4667 0.0333 0.0833 0.6667 0.0333 0.0333 
2 3 0.5833 0.0417 0.0556 0.6501 0.0417 0.0333 
3 2 0.5833 0.0556 0.0417 0.6001 0.0556 0.0333 
4 1 0.4667 0.0833 0.0333 0.4667 0.0833 0.0333 
5 0 0.0000 0.1667 N/A 0.0000 0.1667 N/A 

Note. All calculations are analytic. 

for the first price and second price auctions are reported in Table V for 
kl + k2 = 101 (for large kl only). 19 Bid functions are depicted in Fig. 3a 
for kl = 100 and in Fig. 3b for k I = 99 (k2 = 2 individual bidders). Note 
that the left-hand side of Tables III-V concern the case of a coalition 
facing a complementary coalition, while the right-hand side concerns the 
case of a coalition facing individual noncooperative bidders. 

In comparing Tables III and IV and the calculations within Table V, 
note that conditional on the size of the coalition the auctioneer's expected 

TABLE V 

AUCTIONEER'S EXPECTED REVENUE AND BIDDERS' EXPECTED SURPLUS 
(PER CAPITA)--n = 101 

kl k2 Auct. kl k2 

Second Price* 100 1 0.4999 0.0049 0.0001 
99 2 0.6665 0.0033 0.0001 

First Price** 100 1 0.6578 0.0025 0.0412 
99 2 0.7787 0.0015 0.0159 

First Price or 
Second Price* 101 0 0.0000 0.0098 N/A 

* Calculated analytically. 
** Based upon 1 million drawings. (100 vs 1), The largest standard deviation for an element 

in the row is 0.000024. (99 vs 2) The largest standard deviation for an element in the row 
is 0.000008. 

19 Besides their theoretical interest,  high k scenarios provide a useful test of  numerical 
accuracy since experimentation indicates that, everything else being constant,  accuracy 
decreases as k 1 and/or  k2 increases. 
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FIG. 3. Coal i t ion  vs  indiv iduals ,  n = 101: (a) 100 vs  1, (b) 99 vs  2. 

revenue at the first price auction is always greater than or equal to expected 
revenue at the second price auction. We take this to be evidence supporting 
our conjecture that the first price auction is less susceptible to collusion 
than the second price auction. We argue in the following paragraphs that 
the calculations for the first price auction are a lower bound on the ex- 
pected revenue to the auctioneer, while those for the second price auction 
reflect its actual performance. 

A variety of issues are relevant in assessing our conjecture. First, does 
the revenue comparison hold up for arbitrary distributions? Maskin and 
Riley (1991) show for the two bidder case that with certain kinds of 
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distributional heterogeneity the English auction dominates the first price. 
They provide sufficient conditions on the valuation distributions for domi- 
nance of the first price auction. 2° The distributional heterogeneity consid- 
ered in this paper is not covered by their conditions. 21 However, Maskin 
and Riley (1991) intuitively characterize distributions that will lead to 
revenue dominance of the first price auction. "When the asymmetry re- 
sults because one buyer places sufficiently higher probability on high 
valuations then it is the sealed bid auction which dominates" (p. 29). It 
is certainly the case that the valuation distributions for coalitions in this 
paper possess this property. Intuition for dominance of the first price 
auction in our case is available by recalling that our problem is equivalent 
to one where at least one of the bidders is risk averse. The revenue 
superiority of the first price auction with risk averse bidders is a well 
known result from auction theory. 

The numerics show that expected revenue is higher for first price auc- 
tions, given the size of the coalition. But, are collusive agreements easier 
to reach in first price auctions? The results in Tables III and IV suggest 
that this is unlikely. Note that when the coalition of kl faces k 2 individuals 
at the second price auction coalition members always do better than 
individual bidders and the difference grows as k~ grows. In contrast, at 
the first price auction the k 2 individual bidders always do as well 22 or better 
than the coalition and the difference grows as kl grows. This argument is 
strengthened by the results displayed in Fig. 3 and Table V concerning 
the case of kl + k2 = 101. One hundred colluding bidders generate a very 
large external benefit for the single noncolluding bidder at a first price 
auction. In fact, the outside bidder's expected surplus exceeds what he 
would obtain as a member of an all-inclusive coalition! 23 

2o Maskin and Riley's (1991) Proposition 3.6 states: 
Sufficient Conditions for the Superiority of the High Bid Auction: If 

Fl(v)/F2(v ) is increasing in v (a) 

and for all v, w, w > v 

Fl(W) < F2(v) ~ F~(w) < F~(v), (b) 

then expected revenue is higher in the sealed high bid auction that in the open 
auction. 

21 Our distributions violate condition (b) of Maskin and Riley's (1991) Proposition 3.6 as 
stated in the previous footnote. This illustrates a central role of numerical analysis--sug- 
gesting the direction of new theoretical analysis. 

z2 For the case of a coalition kl = 1 facing k2 = 4 individual bidders at a first price auction 
we know that per capita revenue is identical for all bidders and the advantage to k~ in Table 
III is not significant. 

23 The result is analogous to that of Salant et al. (1983) where a merger between two of 
three Cournot competing firms benefits the firm who did not participate in the merger. 
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This observation leads to the third issue. Is participation in the coalition 
at a first price auction individually rational? Individual defection is not 
profitable for k I + k 2 = 5. Specifically, any coalition member considering 
leaving a coalition of size kl to become one of k2 + 1 noncooperative 
bidders who face a coalition of size k~ - 1 finds this to be unprofitable. 
Of course, it would also be unprofitable to defect from the coalition if the 
consequence would be that everyone bid noncooperatively. However, as 
noted in the last paragraph, for k~ = 101 and k2 = 0 individual defection 
is profitable. Table V also reveals that defection from a coalition of k~ = 
100 is profitable too. It is important to note that if defection results in 
everyone bidding noncooperatively then participation in the coalition is 
still individually rational. However,  given that individual defection is not 
profitable for k~ = 5 in Table III but is for k~ = 101 in Table V, it seems 
reasonable to conjecture that small all-inclusive coalitions might be feasi- 
ble at first price auctions while large all-inclusive coalitions might be 
infeasible. 

Suppose we relax the assumption that valuations are known within the 
coalition. Intuitively, imposition of the incentive compatibility constraint 
cannot increase expected surplus for the coalition--the coalition cannot 
do worse by solving an unconstrained problem instead of a constrained 
one. Without providing explicit details, Graham et al. (1990) identify a 
mechanism that a coalition can employ at a second price auction (called 
a second price preauction knockout, or "PAKT")  to elicit valuations from 
members that result in the same auctioneer revenues and bidder surpluses 
as reported in Tables IV and V (for the second price auction). Clearly, 
any incentive-compatible valuation elicitation mechanism used by a coali- 
tion at a first price auction could not do better than what is reported in 
Tables III and V (for the first price auction). In this light, these first price 
coalition calculations are as favorable as possible from the coalition's 
viewpoint. 

Finally, have we disadvantaged coalitions at first price auctions in our 
comparisons by not allowing for side payments among coalition members? 
This is unlikely. Again, suppose types are known within the coalition and 
the highest valued bidder within the coalition will win if the coalition wins. 
The coalition will need to charge the winner a premium above the price 
paid at the main auction in order to generate revenues to fund the side 
payments. However,  if a coalition member can submit a bid as a noncoop- 
erative bidder, then by bidding e above the bid that the coalition would 
bid on his behalf he can secure the item for himself whenever the coalition 
would have won for him and not share any of his surplus with other 
bidders. In other words, the participation constraint seems to drive us 
toward the absence of side payments. 
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6. CONCLUSION 

W e  have  p r o p o s e d  an a lgor i thm for  eva lua t ing  bid func t ions  for  specif ic 
kinds  o f  d is t r ibut ional ly  h e t e r o g e n e o u s  b idders  at a first pr ice  auct ion .  
The  a lgor i thm has  p r o v e n  to be  ve ry  efficient  and numer ica l ly  s table  
" d e s p i t e "  singulari t ies at the origin. I t  a lso appea r s  to be  genera l izab le  
to a b r o a d e r  class  of  a s y m m e t r i c  first pr ice  auc t ion  p r o b l e m s  though,  in 
the p r e sen t  pape r ,  we  have  l imited ou t se lves  to outl ining the pr inc ip les  
under ly ing  such genera l iza t ions .  N u m e r i c a l  e x a m p l e s  have  been  p r o v i d e d  
for  auc t ions  involving 5 and,  in addi t ion,  101 p layers .  We  be l i eve  tha t  
such  ca lcula t ions  i m p r o v e  our  initial unders tand ing  of  a b road  range  o f  
(col lusion re la ted)  issues  tha t  have  p r o v e d  hi ther to  analy t ica l ly  un t rac -  
table.  

W e  e m p h a s i z e  the usefu lness  o f  numer ica l  me thods  in p rob ing  and 
formula t ing  con jec tu res .  F o r  e x a m p l e ,  the four  g raphs  in Fig. 2 s e e m  to 
d e m o n s t r a t e  a s m o o t h  t rans i t ion  b e t w e e n  cases .  H o w e v e r ,  cons ide r  the 
coal i t ion o f  2 ve r sus  3 individual  b idders .  W h e n  our  analys is  o f  this case  
was  first c o m p l e t e d  there  we re  abso lu te ly  no resul ts  in the l i tera ture  re- 
garding the ex i s t ence  of  equi l ibr ia  in the four  b idder  case ,  m u c h  less its 
s m o o t h n e s s .  Also,  cons ide r  the case  of  a coal i t ion o f  3 ve r sus  2 individuals  
in the s ame  figure. Pr ior  to genera t ing  the equi l ibr ium bid func t ions  we  
did not  have  any  resul t  to sugges t  that  there  was  a c o m m o n  te rmina l  poin t  
(the logic o f  foo tno t e  10 regarding  the c o m m o n  terminal  poin t  does  not  
c o v e r  all r e l evan t  cases  wi th  th ree  bidders) .  Since p roduc ing  the bid func-  
t ions we  have  d e m o n s t r a t e d  tha t  the te rminal  point  for  the th ree  b idders  
is the same.  24 

24 Let t~' and t] ~ denote the terminal bids for the individuals and coalition, respectively. 
The nontrivial case to eliminate is t~' > t~. This is conceivable since each individual bidder 
faces another individual bidder and the coalition. Note that with v = 1 Eq. (2) equals 0 for 
t = t~'. Hence, Vt > t~', we have 

k z ( 1  - t)X~(t) - X2(t) < 0. (A) 

Let v~' = h2(t~'). For individuals with v > v] ~ there is no competition from the coalition. So, 
the objective function is 

(v - t). (X2(t))k: -1. 

The first-order condition evaluated at t~' is 

(k2 - l)(1 - tDx~(tD = x2(tD. (B) 

Substituting (B) into (A) yields 

..__J__l < 0  
~'2(t~') k2 - 1 

which is not possible. Hence, t~' = t~'. We are grateful to Dan Levin for encouraging us to 
produce this result. 
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Partial analytical results are available for the system of differential equations defined by
formulas (2) to (5). Consider the transformed system as given in formulas (10) to (12), deleting
the argument 1 for ease of notation. Equations (10) and (I I) imply the relationship

(43)

or, equivalently,

Integration, followed by exponentiation, generates the identity

(8- l)k1 (8 - I)k'
~~2+1 =c· ~

(44)

(45)

where C is a constant. If we let 1 tend toward zero, accounting for the initial condition in
Eq. (12), we find that

(46)

If we then replace 1 by 1* and use the terminal condition in Eq. (12), we find that

(47)

The numerical values which are reported in Table I coincide up to 8 significant digits with
these theoretical values. Routine calculations reveal that the limit of 1* is ~ for k2 = I as
kl ~ 00. The bid functions in Fig. 3a are close to this limit (1* = 0.739 for k1 = 100 and
k2 = I).

APPENDIX B: CONVERGENCE CRITERION

The application of the convergence criterion (21) requires additional qualification. As kl
and k2 increase we observe greater numerical instability in the immediate neighborhood of
the origin. On the other hand, convergence toward the limiting values 11 and 12 takes place
increasingly faster (in line with the fact that the gap between II and 12 gets smaller) and, in
fact, is achieved for all practical purposes before the numerical solutions start diverging.
Convergence being monotone we can easily adapt the criterion (21) in order to cope with
local instability around the origin. Specifically, we evaluate the distance

(48)

for each intermediate point 1j in (0, I). Our modified convergence criterion is then given by
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Mine } < e 2. (49) 
J 

Furthermore, once a value t .  has been found for which (49) holds, the 8's are assigned 
their limiting values for all values of t which are less than that which minimizes e 2. In 
practice we search for a t .  that solves the optimization problem 

e2. = Min (Mine]) (50) 
t ,  J 

up to the required accuracy and then use the corresponding e ,  to decide upon the critical 
value of t below which the 8's are set at their limiting value. The values which are reported 
for e in Tables I and II correspond to such pairs (e, ,  t,). 

A P P E N D I X  C:  A CHAIN R U L E  FOR TAYLOR SERIES EXPANSION 

Efficient evaluation of Taylor series expansion for such functions as F/-a0~*(t)) in Eqs. 
(39) and (40) necessitate the implementation of an appropriate chain rule. Let us briefly 
discuss such a rule, using a self-explanatory set of notations distinct from that used in the 
rest of the paper. That rule follows immediately from a lemma which is probably well-known 
but is included here for completeness since we have found no references for it. 

LEMMA. Let  

f ( u )  = ~ f i ( u  - Uo) i (51) 
i=0 

g(t) = ~ gi(t - to) i, (52) 
i=0 

t oge ther  wi th  u o = g(to). Then  

z¢ 

f (g( t ) )  = ~ ai(t - to) i, (53) 
i=0 

where  ao = fo and  f o r  i >- 1 

i 

ai = ~ ,  f t" Ot.i (54) 
I=I 

a n d  where  the 0 are eva lua t ed  recurs ive ly  as  f o l l ows :  

01,1 = g l  

i + I - I  

Ou = ~ ,  &'Ol- l , i - j ,  
i=l  

l < _ l ~ i .  

(55) 

(56) 
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Proof. The proof exploits the uniqueness of the Taylor series expansion in (53), thereby 
avoiding explicit chain rule derivations off(g(t)) .  We have 

f(g(t)) = ~ ft(g(t) - g(to)) l 
1=0 

(57) 

Hence a i is indeed given by formula (54) where Oi,i denotes the coefficient of (t - to) i in the 
/th power of the factor in brackets in the r.h.s, of Eq. (57), whence Ot, i = 0 for I > i. The 
proof follows from the fact that 

~_t Ot,i(t -- to)i = [j=~t_l Ol-~,j(t -- to)J] " [k=~ gk(t -- to)k ] • (58) 
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